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Abstract: It is shown that for a set of full measure with respect to any
translation invariant probability distribution on the space of initial configura-
rations of classical particle systems on Rd with interaction given by a smooth
superstable potential of finite range there is a solution to the Newtonian
equations of motion, provided that the specific energy and the particle density
of the initial configuration exist a.s.

0. Introduction

The infinite particle system approach to statistical mechanics raises the question of
the existence of Newtonian dynamics for countable systems of interacting particles
in Euclidean space IRA This means the following (if we confine ourselves to the case
of pairwise interaction): Let be given a potential function U : RdΓ\Rfulfilling some
regularity properties including smoothness and decay conditions. We consider the
following infinite system of ordinary differential equations, concerning a sequence
{ίz?J, i= 1, 2, ... of twice continuously differentiable functions ^ : [0, oo)r~\Rd:

(W) : £,= - Σ Pl/fe-^ ), i= 1,2, ... .
j*i

The problem is to prove for a largest possible class of initial conditions

[where xf = ̂ -(0), vt = ώ(0)] that a solution to (JV) exists. Naturally, we suppose
that the initial configuration is locally finite, i.e. {xj^ι.2,... has no accumulation
points.

This is a purely analytical question. It is well-known that in the case of
dimension one and two for some classes of potential functions U Lanford [1]
(d = 1), Dobrushin and Fritz [3, 4] (d = 1 , 2), and Gurevich and Suhov [1 5] (d = 1)
succeeded to show the existence and (in a certain sense) the uniqueness of a
solution to (JV) for large classes of initial configurations which are characterized
by explicit conditions.
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For the purpose of equilibrium statistical mechanics it would be satisfying to
prove the existence of dynamics [i.e. of solutions to (JV)] for a set of full measure
with respect to the equilibrium Gibbs states which correspond to the potential
function U. Such results were obtained by Sinai [5,6], Marchioro et al. [7],
Alexander [8], Lanford [2] for any dimension d*zl.

This paper deals with the non-equilibrium dynamics in the case of random
translation invariant initial conditions. The main result is of the same type as those
concerning the equilibrium case. It can be shown that, for a set of full measure with
respect to any translation invariant probability distribution on the space of initial
configurations with respect to which specific energy and particle density are finite,
one can find a solution to (JV), provided that the interaction potential U has the
following properties:

Ul) U is a C2-function,
U2) U(x) = U(-x) (Symmetry),
U3) U has a bounded support, i.e. there is some R > 0 such that U(x) = 0 for

U4) U is superstable, i.e. there are positive constants α, b such that for each
finite sequence {xl5 ..., XN} of elements of Rd we have

where Π is the number of pairs (zj) such that \xt — XJ\<R.
We get the existence of non-equilibrium dynamics for any dimension including

the physically realistic case d = 3.
The problem of uniqueness is still open. Especially it would be desirable to get a

result that the limit procedure defined here leads to a unique solution for almost all
initial configurations and that in that way there can be constructed a transforma-
tion group acting on a subset of full measure of the space of initial configurations.

We give a brief heuristic outline of the proof of the main result. A usual
approach to infinite particle dynamics is, roughly speaking, to consider large boxes
and the particles within those boxes, and then to enlarge the boxes to cover the
whole space (and all particles). Then one has to prove the convergence of the
trajectories of the finite particle systems towards a solution of (JV) for the whole
system. We modify this approach a little in order to be able to make use of the
translation invariance of (random) initial configurations. Instead of considering
the finite subsystem of Φ0 lying in a large cube we consider the infinite periodical
system which we obtain if we dissect the whole Rd into large cubic cells and endow
each of them with the same finite subsystem of Φ0. Finally we shift the periodic
system with a random vector being uniformly distributed over a cell, such that we
get a random periodical and (statistically) translation invariant particle system.
For periodic systems the existence of dynamics is obvious, since we may consider
them as finite systems on a suitable torus. Then we show that, if we enlarge the cells
to infinity, the sequence of translation invariant probability measures governing
the bundle of trajectories of the periodical systems (of course, all randomness stems
from the initial condition) is relatively compact, such that we can find a limit point
in the sense of the weak topology. This limit point is a probability measure
concentrated on solutions of (JV), where the initial values are equal to Φ0 *

n

distribution.
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As in the deterministic case [1, 3, 4] the main problem for the feasibility of this
programme is to find an energy bound ensuring that there is no accumulation of
large amounts of energy near the origin. In the deterministic case this is quite
difficult (and unsolved for d^3 up to now). In the translation invariant random
case considered here all things are easier, since now the origin is a place "as any
other," a "typical place," where the energy is statistically distributed, and, in view of
the conservation law for the specific energy being valid in the translation invariant
case, cannot become too large.

Some Notations. Point process notations are taken from [10]. Counting measures
are usually denoted by Greek capitals as Φ, Ψ (except for counting measures on
function spaces). By δx we denote the Dirac measure concentrated on x. We denote
by μ the Lebesgue measure on IRA We will use the notations B, clB, dB for interior,
closure, and boundary of a set B. The indicator function of a set B is denoted by tB.
The sets of integers and nonnegative integers are denoted by TL and N, respectively.
We introduce the following notations:

for se(0, oo), xeKA Let be ^eNd. Then we denote by \\S\\ the maximal
coordinate of t.

1. Newtonian Dynamics with Periodical Initial Conditions

We consider the set Rd x Rd endowed with the following metric:

d([x,ϋ],[>,w]):=|x-3;| + |t?-w|/(l + |t;-w|), x, j;, t>,

A counting measure is a measure Φ on [Rd x Rd, 9td®9ld], which has the property
that Φ(B) E N for any d-bounded set B in 9ίd® 9trf. The set of all counting measures
we denote by M. Let Φ be an element of M. Then (cf. [10, Proposition 1.2.1]) Φ has
a representation

Φ= Σ δ[XttΌύ,

as a sum of Dirac measures, where (in view of our choice of the metric d) {xj[= 1 has
no accumulation points. So we may interpret Φ as particle configuration (with
given positions x{ and velocities )̂.

In the following we will denote by Φ x , for a counting measure

the measure

Φ x = Σ
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which is obtained from Φ by cancelling all velocity "marks" (such that Φ x is a
counting measure on Rd).

Let, for each y e IRd, 7̂ , denote the spatial shift operator on JR.d x Rd defined by
TJ,[x, υ] : = [x + y, v ] which extends to M by the set-up

TyΦ(X) : = Φ(TyX) , X e Rd® Rd ,

where

Let Fc denote the set of all continuous bounded real functions /on Rd x Rd having
a d-bounded support, i.e. f(x,v) = Q for \x\^Cf, Cy being some real number
depending on /. The vague topology on M is defined as the weakest topology
making all mappings

feFc

continuous. Here

y f(χ. i}.) = V /Yx. v )

for

*= Σ £[»„„,].

It is well-known that the vague topology makes M a Polish space (cf. [10,
Chap. 1.9]). The corresponding σ-field of Borel sets we denote by 501.

We want to give without proof (see [14]) a simple characterization of the vague
convergence of counting measures in terms of their atoms, which is valid not only
in the context of our special phase space Rd x Rd, but also for counting measures
on arbitrary complete separable metric spaces A. Let be given a sequence

{ΦJ/c=o,ι,2,... of elements of M. Then the vague convergence Φ&—r;—> ΦQ takes

place iff there are representations (for some /^ oo)

ΦΛ= y δ^0 Z-ί UCLi 5

Φi ~ y ό
K Λm^ I

such that the following relations hold:
Ai) JV(fc)t/αs/c->oo,

Aii) ai)k-+ai as /c->oo,
Aiii) For each bound set B g A there exists a k' e N such that

A probability distribution P on [M, 9JI] will be called translation invariant, if for
any y e TR.d we have P = P ° T~i. We call Φ a b-periodic configuration, for ft e (0, oo),
if τbyΦ = Φ for each yeZ. Let Mb denote the set of all fe-periodic counting
measures.



Non-Equilibrium Dynamics of Multidimensional Infinite Particle Systems 249

Consider a Φ0eMb, Φ0ΦO, and choose a representation

Φo=Σδ[XitVtΓ
ί= 1

It is an immediate consequence of the existence and uniqueness theorem for
ordinary differential equations on smooth manifolds (see [12, Chap. 5.3]) that
there is a unique solution {^J^i of (N) with initial condition {[Xi9vJ}^l9 such
that

Φ t:=ΣW*<θ3 6 M6 for all ί^O.
i=l

Indeed, there is a one-to-one correspondence between counting measures in Mb

having the property Φx (Wb) = n, and points of the manifold Ίdn x Rd", where T*M is
the rfn-dimensional torus obtained from (Wb)

n by an identification of opposite
sides. In view of the fϊniteness of the interaction radius R we may consider (N) as an
ordinary first order differential equation on T*1 x Rd", where the existence of the
solution for all times ί^O follows in the usual way from the energy conservation
law, which ensures the boundedness of the velocities.

Obviously the (arbitrary) way of indexing Φ0 does not influence Φί? so that (N)
defines a family of mappings

Sb

t:MbΓ\Mb, ί£0.

Using the vague convergence criterion given above it is easy to see that the one-to-
one correspondence between

Mn

b:={ΦeMb:Φ*(Wb) = n}

and Ύdn x Rdπ is a homeomorphism with respect to the vague topology in Mb (i.e.
the restriction of the vague topology in M). This fact together with the theorem
about continuous dependence of solutions of ordinary differential equations on
initial values implies

Lemma 1. S? is, for any ί^O, a vaguely continuous mapping from Mb into itself.

It is also clear that S* is translation invariant, i.e.

Ty°S
b

t=Sb

t°Ty for any ye!Rd,

Fix some b > 1 and consider the following mapping

Pb' Φ = Σ δ[Xt9

It is easy to derive from the definition of SPΐ (see [10, Chap. 1]), that pb is a
Sft-measurable mapping from M into itself and that Mb is an element of SR. We set
9Kb: = Mj,n9Jl. So pb transforms any probability distribution P on [M, 3JI] to a
probability distribution P6: =pop~ί on [M,SR] which is concentrated on the
measurable subspace [M6,9K6]. Now we consider the following mixture:

1
bd wb

Clearly we have
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Lemma 2. Pb is translation invariant.

We assume from now on that P is translation invariant itself.

Lemma 3. For b-+ao we have the weak convergence relation Pb => P.

Proof. Let X be a Abounded subset of Rd x Rd and let Y be an element of SDί. We
have

P*(Φ(* nJSQ e 7) = fc~d J μ(dx)Pb((TxΦ)(* nJSQ e 7)

μ(dx)P\Φ(*
]Bid}

μ(dx)P(pb(Φ)(*

such that the desired weak convergence holds for the restriction of the particle
system to bounded sets. This implies the statement of the lemma (cf. [10,
Proposition 4. 1.1 2]). D

In view of Lemma 1 we can define probability distributions

Pb:=Pbo(SbΓί-

Since Sβ = idMb, we have Pb

Q = Pb.

2. Specific Energy

Let Φ be an element of M and let [xί? ι?J denote the position and velocity of a
particle in Φ. By the energy of this particle we understand the (finite) expression

Consider the energy of Φ within the unit cube

e(Φ,W1):= Σ V
£e/(Φ)

which is a measurable function of Φ.
Let P be a translation invariant probability measure which satisfies the

following two conditions:

2) e: =ΈPe(Φ, WJ exists
i.e. P is supposed to have finite mean particle density and specific energy.
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Taking into account the superstability of the potential U we have the following

Lemma 4. There is a finite constant C = C(m, e) > 0 (depending on P only through m
and e) such that

Proof. 1. We will show that q is finite. For any N e N consider the cube W2NR which
can be cut into smaller cubes of edge length 2R,

W2NR = U

where x(N) : = [ - (N - l)R9 . . . , - (N - ΐ)K] e KA Now we have for any Φ e M

e(&> W2NR) = ekίn + eint + ebd ,

where

<w =ί Σ M2iW*(*ί),
ie/(Φ)

e in,:=ΐ Σ tfto-*/)**^
We/J )

e«:=i Σ tf(*,-*j)l^»(*,)
i,j6/(Φ)

In view of the superstability of [7 we have the estimate

e(Φ, W2NR)^ -aΦ*(W2NR) + bΠ(Φ,

where for any Borel set B we denote by JI(Φ, JS) the number of pairs (i J) such that
x^XjGB and |xf — x^Λ. Then we get

e(Φ, W2NR) ^ - aΦ x (W2NR) + b Σ Π(Φ, W2R(x(N) + 2M)) + βM . (2.1)

Obviously there exist some absolute constants a,β>0 such that for any Φ e M, we
have Π(Φ, W2R)^alΦx(W2R)-]2-β. So

(2.2)

Let us denote by ΰ the supremum of |E7| + 1. Then we get

\ebd\^ΰΠ(Φ, W(2N+2)R\W(2N-2}S).

Any pair of particles in Φ with \xt — XJ\<R and

is covered by some cube W2R(x0(N) + Rf)9 where x0(N) is the vector
( - NR, . . . , - JV^) e Rd and / e Nd, || i\\ ̂  2JV, and at least one coordinate of t is 0
or 2N. We denote the set of such ( by L(N). Then we have
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This together with (2.2) yields

e(Φ,W2NR)^-aΦx(W2NR)-bβN"

-ύ Σ lΦx(W2R(x0(N) + RW2. (2.3)
<feL(N)

We introduce the following notation (for any Φ e M, x e Rd, 1 ̂  k ̂  d),

where Lk(N) is the set of all *f eNd with \\f\\ ^N- 1 and ̂  = 0.
Let efc be the unit vector in direction of the fcth coordinate axis. Now from the

relation (2.3) we get

e(Φ, W2NR) + aΦ x (W2NR) + bβNd

+ ύΣ Σ Σ γ,JΦ,Xo(N) + nNRek + yR,k)
fe=l i = 0 ye£d

bα d N~1

^ -Γ Σ Σ ?*(<*>, x(N) + 2^mβfc, fc) . (2.4)
α fc=l m = 0

Here Ed is the set of vectors with all coordinates being 0, 1 or 2. For σ > 0 we define
a continuous function fσ : [0, oo) Γ\[0, oo) by means of the set-up

for s = σ

for

For each σ>0 the function fσ has the following properties:
i) fσ is concave,

ii) /σ(s + sO^/σ(s)+/σ(sO, s,5^0,
iii) λ/σ(s)^/σ(^)^/I/σ(s), s^O, λ^l,

So we get (using Jensen's inequality) for any σ>0, N^(bά) 1:

V2NR)\ + aΦ>

d 1

-δΣ Σ Σ

1 Σ Y Λfav(Φ, «(W) + 2Rmet, Jfe)). (2.5)
fc=l m = 0

From the definition of yN and the property m< oo, it follows that

g(σ, N, k): = E/,(yN(Φ, x, k)) < oo ,

where the fact that this expectation does not depend on x is a consequence of the
translation invariance of P.
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So from (2.5) we deduce

*' Σ g(σ,N,k)

k=ί

such that

For sufficiently large N the factor in square brackets on the left-hand side is
positive. With σ-κx>, we get that

Hence we have

2. Now in (2.3) we may form expectations on each side: So we have

In that way we get for sufficiently large N an upper bound for 1E[_ΦX(W2R)']2

depending only (linearly) on e and m. Now we choose an integer fc0 such that
2k0R ̂  1 . Then we have

Cutting the cube W2koR into (k0)
d cubes of edge length 2R we get, making use of the

translation invariance of P and of the Schwarz inequality

ί = E[Φx(W\)]2^Έ[Φx(W2J0]2£C(m,e) D

Let us fix some translation invariant probability measure P having finite
specific energy e and particle density m. Let b > 1 be given. It is easy to derive from
the definition of Pb that this probability measure has a finite second moment
<f : = Epb[Φ

 x ( W^)]2, too, and that qb ̂  C'q for some absolute constant C (we can
choose C=22d).

From this we derive that the absolute value \eb\ of the specific energy is bounded
by a constant independent of b:

\eb\^C. (2.6)

It is clear that the mean particle density m remains unchanged when passing from
P to Pb.

Let us investigate what happens under time evolution. From the fact that Sb

leaves the particle number in Wb invariant (this is in fact the number of particles of
the finite torus system considered above) we easily derive that

ιή*:=EP ί,Φ x(W>i)=Ξm, ί^O, (2.7)
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if we take into account the translation invariance of Pb. On the other hand it is
well-known that the energy of the finite torus system is an invariant of the motion.
Since this energy is equal to e(Φ, Wb) for Φ e Mb, we may conclude that Sb

t leaves the
specific energy unchanged, too. So

$ = e\ ί^O. (2.8)

This together with Lemma 4 leads to the conclusion that there is a constant C0 (not
depending on b) such that

(2.9)

for all ί^O.

3. Energy Bounds

Let us consider a sequence F0, F1;... of continuously differentiable functions on Rd

with finite support having the properties
VI) Vk(x)=l for \x\^k+R,

V2) O^Fk(x)^l for \x\£k+R + l,
V3) Vk(x) = 0 for \x\>k + R + l,
V4) |PFk(x)|g2 for xεR".

On the other hand we introduce a sequence /0,/ι,/2, ••• of continuously
differentiable functions on IR4 with finite support fulfilling the conditions

fl) Λ(x) = l for
β) 0£/t(x)gl for
β) Λ(x)=0 for

I^2 for

Using these functions we define "modified energy functions"

:= Σ ΛW itor+i Σ
ie/(Φ) JeΙ(Φ)

L •/**

For any bounded Borel set B e Rd we introduce the notation

ieI(Φ)\ j*=ι\ψ) I
L ^'φί J

Let Φ0 e M6. Then, writing Φ f : = SbΦ0, we see that all functions ek(Φb) are
continuously differentiable with respect to t and we get

^k(Φt)= Σ jFΛMί))-^OΓil^OI^ Σ
αί «εi(Φ)[ L -iφί
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Hence we have, using \VU\ ^U for some ΰ,

d_

Tt'

+ Σ .
ίe/(Φ)

(3.1)

Fix some T^ 1. Choose a constant L^ 1 and assume that, for some fe,

sup βfe(Φί)^2fc+1L, sup ek+ί(Φt)<2k+2.

Let ί0 be chosen such that ek(Φto)^2k+1L. Then we would have, in view of (3.1),
ek(Φ^2kL for any ί 6 [0, Γ] with

-i
' f c + l r Ofe7|ί-ί0|^(2fc+1L-2fcL)( sup d

Vo^s^Γ

Now from 7^ L ̂  1 it easily follows that ek(Φt) ̂  2*L on a subset of [0, T] of measure
not less than (2u+8)-1L-1/22~*/2-3, such that

o

This leads to the conclusion that either

(i) osu£τ

or

(ii) J ek(Φt)dt ^ [8(2w + 8)] ~ 1L1/22fc/2 for some k
o

or

(iii) sup ek(Φ^^2k+^L for every k.
O^t^T

1. Let us first discuss the third possibility. From the fact that the energy and the
particle number in Wb are invariants of Sb

t (hence velocities are bounded for given
Φ0 e Mb) we easily infer that (iii) is impossible.

2. Consider (ii). We get using the Fubini theorem

«* : =ί ί ek(Φt)dtP\dΦ0) = f J ek(Φt}P\dΦ«)dt .
0 0

From the definition of ek we get for some K, K', K" > 0 (not depending on b)

αfc^ f J {|XΦ, BK(k+ 1)2) + ΰ(Φ x (BK(k+ 1)2))
2]

o

<> lK'(k + l)2det + K*(k + \}
0
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Here we estimated Epf[Φx(BjK(k+1)2)]2 by ί? = EP/,[Φx(W>i)]2 in the way which
was shown at the end of the proof of Lemma 4. So we get, using (2.6), (2.8), and (2.9)

for some K"r not depending on b.
From this we derive, using the Markov inequality for some K0,Kί >0,

U ί ί **(Φ,)Λ ̂  [8(2ff + 8)] ' 1Lll22k/2

fc^O

From 1. and 2. we easily infer that, for any bounded Borel set

Lemma 5.

ί/ze constant K(B) does not depend on b.

4. A Velocity Bound

Let Φ be an element of Mb. Denote by ̂  the trajectory of the ίih particle with
respect to Sf (for any fixed indexing). We consider the following event (not
depending on the indexing)

γty :={Φe Mb: There is an i e /(Φ) and a τ e [0, Γ]

such that &&) G W^i, \ώt(τ)\>M} .

(From the theorem about continuous dependence of the solutions of ordinary
differential equations on initial data, it can be derived that this is a measurable
subset of M.)

Now we get, estimating the acceleration of the particles

P\Yty)ίP»(\ΦeMb:
\( >e/(Φ)

f Σ
0 JeHΦ)

l+ Σ
e/(Φ) \ 0 jeΙ(Φ)

Let b > 1. In view of the h-periodicity of the system, this is equal to the value of the
set function

yeZd

Σ |Fl7(as/r)-β!|(r))|<ίr)lj=:A(β)
e/(Φ) / JJ0 je/(Φ)
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at the argument B = Wί. Here B runs through the σ-algebra of all Borel subsets of
Wb. It is easy to see that λ is a measure on Wb. Moreover, from the translation
in variance and b-periodicity of Pb it follows that λ is translation invariant, too. Of
course, this translation invariance is meant modulo b. (To understand that
consider the torus system by means of which we defined the motion group Sb.)
Hence λ must be a multiple of the Lebesgue measure on Wb9 and so we can continue
the above chain by

0 je/(Φ)

Hence α(ί) does not depend on t and we get for f = 0,

Using the estimate \v\ ̂  1 + \v\2

9 we get

Σ\P\dΦ}\2e(Φ, wy-
L ί

+ ff Γf

°L
Let us denote the expression

$Pb(dΦ)
i,JeI(Φ)

by j8(ί). The same arguments as above yield the independence of β from t. So we
may continue the chain of inequalities by

+ ί ΓJ P"(dΦ) Σ t-w&frWU^r') - cci(r)}\\ dr)
o|_ M J /

^M"1 m+2e + (\+2R)2d

Finally, by (2.9) this can be estimated by

where C0 does not depend on b. Altogether we have shown

Lemma 6. There is some constant fet (not depending on b or t) such that
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That means that the maximum velocity of a particle chosen from a bounded region
(at any given time ί) remains statistically bounded for finite intervals of time
uniformly in the periodicity constant b.

Remark. Of course, instead of using the unit cube in the definition of Yt^
b we could

have taken any bounded Borel set B. If we denote the set defined in that manner by

YΆ we βet

. (4.1)

5. Trajectory Processes

Let ̂  be the set of all continuous Rd-valued functions ξ defined on [0, oo) which
have the property that ]ime~t\ξ(t)\ = Q. We equip this set with the following
metric:

It is easy to see that ^ is a complete separable metric space. Consider the set
y = Rd x Rd x <g endowed with the metric ρ<? : = d + ρ^/(l + ρ*). This makes £f a
complete separable metric space, too. Hence we may consider £f as phase
space in the sense of point field theory (cf. [10, Chap. 4]). Here # plays the role of an
additional "mark space." Let [̂ , M] denote the corresponding space of counting
measures, with the canonical σ-field of Borel sets (with respect to the vague
topology) M. The set of all probability measures on [Jί, M] we equip with the
weak topology [10, Chap. 4].

Let us consider the trajectory ̂  of a particle [xf , uj belonging to some Φ e Mb.
Now consider the relative (or displacement-) trajectory ζί:=^i — xiy and add it as a
"mark" to [x^t J, getting [xi9vi9ζi]e^9 where the fact that ζ^^ easily follows
from the boundedness of velocities in the periodic case. In that way we get a family
of mappings

We have

Lemma 7. For each b^.1 the mapping Fb is continuous with respect to the vague
topologies in Mfc and Jt .

Proof. The vague topology is metrizable [10, Chap. 1.9]. So, let {Φf} be a sequence
of initial conditions from Mb such that Φ^-»Φ 6 Mb vaguely. In view of the criterion
for vague convergence given in Chap. 1, this is equivalent to the assertion that for
some /o we have

and that the element af e Tnd x Rπd corresponding to Φf , ( ̂  /0> converges towards
α (the element corresponding to Φ). Now again from the theorem on the
continuous dependence of the solutions of ordinary differential equations from the
initial values we infer that, for any bounded interval of time [0, Γ], the trajectory
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α/0 converges uniformly in t e [0, Γ] towards α(ί), and so do the "unrolled"
trajectories of the particles of Φ ,̂ such that, for any particle [xi9 vj in Φ and the
corresponding particles [x ,̂̂ ] in Φf we have

(uniformly in ί for bounded ί) On the other hand from a^a we infer that for the
energy (being a continuous function on TMd x Rπd) we have e(a^-*e(a). So all <
are bounded by some £0, such that

for ί^O. So we have for any T> 1

lim sup s

- - Γ - - - - o ,

limsupργ(ζίt„ Q^limsup sup OC*,/0-C«(OI
<f-»oo ^->oo O^ί^T

Γ<ί Γ-xx)

such that ρ<e(Cjf^Q-»0 as /-»oo.
In view of the vague convergence criterion given in Chap. 1, we may conclude

that F\Φt)-+F\Φ). D

So any point field distribution P generates a family of probability measures ̂ b

on Jί defined by

Suppose that P fulfills the assumptions given above, i.e. P is translation invariant
and has a finite specific energy and mean particle density. Now we can prove the
following:

Proposition 1. The family {SP*} is relatively compact with respect to the weak
topology.

Proof. 1. Using the compactness criteria 4.1.5 and 4.1.3 in [10], we see that the
proposition would be a consequence of the following assertion: For any closed
bounded subset X of ίf and any ε>0 there is a compact Dx εCX such that

b>

We shall show this in the sequel. Without any loss of generality we may choose X
as

We introduce the following sets (depending on a constant L)

V far alls, s',£^

with s ̂  ί, s' ̂  t and C(0) = 0} .

Clearly the XL are closed subsets of ίf. Fix some L and consider any sequence
{•SilieiN — {[XP υ» Cf]}ί6N °f elements of XL. For each natural number N we find a
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subsequence {sr } of {s J such that the xr and υv converge towards some x and υ and
such that ζt, converges uniformly on the interval [0,N] towards a continuous
function defined on [0,ΛΓ]. This is a simple consequence of the Arzela-Ascoli
theorem. By the diagonal method we find a subsequence {£r} of {ζt,} converging
point wise towards a continuous function ζ defined on [0, oo) such that the
convergence is uniform on each bounded interval of time.

Obviously for each i we have

such that the same estimate holds for ζ. Since j (1 + s) ~ lesds = o(e*\ ζ is an element
of V. We have, for any N > 0 : °

lim sup Qv(ζr, 0 = lim sup sup e ' '|£r(ί) -
i"->oo i"->oo ί^O

^liminfΓlimsup sup e~'|Ci-(0 -£(*)!
N^oo i"-»oo O^t^N

N-» oo ί > N 0

Hence we have sr - > [x,t;, ζ] 6 JίL as Γ-*oo, such that XL is compact.
Q<S

2. With the help of (2.9), Lemma 6 and the Schwarz inequality, we get

\&(fo^^

£ (ί ̂

&: Tίiβre is a [x^uj m Φ swc/i

l/2

/2

where c is some constant not depending on b. Hence we have

lim (sup J 0>b(dφ)φ(X\XL)\ = 0 . D
L-»ooU>l

6. The Existence Theorem

The proposition proved above yields the key to show the existence of Newtonian
dynamics.

Theorem. Let the potential function U fulfill the assumptions given in the
introduction. Let P be the probability measure of a translation invariant particle
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system (with phase space Rd x ]RdJ which is supposed to possess finite particle
density and specific energy. Then for P-almost all configurations Φ0 there exists a
solution to (N) with initial condition Φ0.

Proof. 1. The results above yield a family of probability measures {0>b}b>ί on
[</̂ , M]. From Proposition 1 we derive that there is a limit point of this family, so
that for some & and a certain sequence b^oo, we have

We introduce the following subsets of Jl\

ί
1: = <φeJί: For each ie7(φ) with xf eB l 9

we have £«(*) - itf - J ds f dr Σ f 7 t/ίx, - X; + ζt(r) - C/
0 0 jel(φ)

72

M : = fφ e ̂ : For each i e I(φ) with xf e 51? we have

βSiιIC,(a)l*Λf},

Y** N \={φeJί: For each i e /(φ) such that there is a

τe[0,l] with xi + ζί(τ)eBR+M+ί,
we have Ix^JV}.

Here M and JV are natural numbers with M, JV > 1 . We set

2 γM,N § a vaguejy closed set. Indeed, let {<£v]y=ι,2,.. be a sequence of
elements of YM'N tending to some φεJί. Let be given representations

such that the properties Ai)-Aiii) (introduced in Chap. 1) are fulfilled (in the
context of our special phase space 5 )̂. Now suppose that x1 e Bi. Hence for almost
all { we have xx e e Bv. Since all φf e 72

M, we have sup |£x /5)| ̂  M for almost all
O^s^l

/, such that sup ^(sJI^M, too. So φe 72

M such that 72

M ig a closed set.

Hence within the time interval [0, 1] the vector x^ + ζ^s) does not leave the set
BM+i. Let J denote the set of all indices such that X j -j-ζ^τ^e JBM+κ+ι f°r some

M+i. j -- M+κ+ι
τ,e[0,l].

For any i e J we have xίy + C/,Xτ f) e J5M+Λ + 1 for almost all /, such that those
[i, f\ fulfill |xίf ,| ̂  ]V, from which we deduce that |x£| ̂  JV. So φ e 73

M'N, and this is a
closed set, too. Since the closed set £fN : = {[x, v, ζ\ E £f : \x\ ̂  N} is ρ^-bounded, we
may deduce from the fact that φ is a (locally finite) counting measure, that J is a
finite set, contained in the finite set J' of all indices i with st : = [xί? viy ζj e ίfN. Now,
since £fN is closed and bounded, in accordance with Aiii) we find a /0 such that for
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zf^o we have

= 0 , sitt : = [xit „ vit „ ζίt ,] φ &>N for iφj'.

Hence for each ( ̂  /0,

. t/-xu + f l fXr)-C4 tXr)), 0^1. (6.1)
0 0 i€J'

Since, as we have shown, φ e ϊ̂ '̂ , no trajectory xt + ζt with ί φ J' for ί e [0, 1] hits
BM+R+ί, hence any such trajectory fulfills \xl — xί + ζ ί ( i ) — ζi(t)\'^:R for O^ί^ 1.
From (6.1) we get

0 0 l^ ί</

We derived φ e 7l5 such that φ e yM»^. This proves the fact that YM>N is a closed
set.

3. Therefore we have (cf. [11, Theorem 2.1])

^(7M'N)^limsup^(7M'N). (6.2)
i-» oo

We can estimate

Clearly,

On the other hand using Lemma 6 we get

sup^b(ey^\y2

M)^sup^({φe^: There is an ie/(φ) with xte W2
b>ί b>ί

and |£(f)|>Λf for some ίe[0,1]})

λι ~> 1 ' M ~* oo

4. For real numbers M,AΓ>1 and natural numbers L we introduce the
following sets:

X*'N'L: = j Φ e Mb: There is an i e /(Fb(Φ)) and a

natural number A^L such that

I β B and jx

Now we obtain for any natural number L

where
Z ϊ f ' L : = {Φ e Mfr: There is an i e /(Φ) such that

xί + Cl (τ)eJ5M+Λ+2 and |C>)I^
for some 0<τ<l j .
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So we have for any fixed M [with the help of Lemma 5 and (4.1)]

<; lim sup limsup supPb(X¥'N'L)+ limsup supP&(Zf'L)
L-+ oo N~+oo b> 1 L-xχ> b> 1

L / C

^lim sup lim sup sup Σ Pb l < Φ ε M^: T/ier^ is an ie I(Φ)

/or some τe [0, 1]

+ limsupsupPV{ΦeM f t : sup
L-+OO b>l \\ O ^ τ ^ l

^limsup lim sup sup Σ (̂
L-^ oo JV->oo

L->oo iV->oo

5. Altogether we have, using (6.2)

lim liminf^Y^^-l. (6.3)
M->oo N-^ oo

Let us denote by 73 the measurable set Π U ^3M>JV Obviously
M JV

73 = {φ 6 Jί\ For each bounded B 6 Rd there is just a finite number

of / e /(φ) such that xt + ̂ (τ) e 5

for some τe[0, 1]}.

From (6.3) and the definition of YM>N we get 0>(Y3)=l such that, setting

we get

lim
M-^ oo

Since the restriction to the finite time interval [0, 1] and the unit ball B^ was
arbitrary, we see that

: For each bounded Be Rd and each T > 0 there is

just a finite number of i e I(φ) such that

xt + Ci(τ) ε B for some τ ̂  T, and for each i e l(φ)

we have

ζM^υf-ϊdsldr Σ
0 0 jel(φ)
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We denote the (measurable) event considered above by Y0. Then, of course, any
φeY0 yields a solution to (N): The collection of Revalued functions *,- + £,•
resulting from the atoms [xi9 υt, ζ J of φ fulfils (N) with initial condition given by
the atoms of Πφ, where Π is the projector defined by

Π:φeJίr\Πρ= Σ δ[x.v.}eM.
ίel(φ)

6. Obviously Π is a continuous mapping from Jl to M. We have in view of the
continuity Theorem 5.1 in [11] and Lemma 3,

^oΠ-^lim^oir^limP^P,
i-» oo i-> oo

since

As mentioned above, (y, ρ<?) is a complete separable metric space. Hence (cf. [10,
Chap. 4]), \jM> M] is a standard Borel space. So we may form regular conditional
probabilities ^(*|MΠ), where Mπ: =JfI~1(9M) is the (countably generated)
σ-subfield of M generated by Π. We have ̂ (T0|MΠ) (φ) = 1 for ̂ -almost all φ e J(.
So in view of the relation 0>°Π~1=P and of the Mjj-measurability of
^(70|MΠ) (φ), we get that for P-almost all Φ0 e M and all φ e JI~ ̂ ΦQ), the relation
P(70|Mπ)(φ) = l holds. On the other hand, for P-almost all Φ 0 eM and any
φelT^Φo), we have &(Π~\Φ0)\Mπl(φ) = l (see, for instance, [13,
Theorem 1.1.8]). So for a certain set Hi in 9JI of P-measure 1 we have
7I~1(Φ0)n70Φ0 for Φ0eM, such that according to 5. there is a solution to (N)
with initial condition Φ0 for any Φ0 e M, and M has P-measure 1. D
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