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Abstract. A general formula for global gauge and gravitational anomalies is
derived. It is used to show that the anomaly free supergravity and superstring
theories in ten dimensions are all free of global anomalies that might have
ruined their consistency. However, it is shown that global anomalies lead to
some restrictions on allowed compactifϊcations of these theories. For example,
in the case of O(32) superstring theory, it is shown that a global anomaly
related to π7(O(32)) leads to a Dirac-like quantization condition for the field
strength of the antisymmetric tensor field.

Related to global anomalies is the question of the number of fermion zero
modes in an instanton field. It is argued that the relevant gravitational
instantons are exotic spheres. It is shown that the number of fermion zero
modes in an instanton field is always even in ten dimensional supergravity.

I. Introduction

Anoamlies which arise in perturbation theory [1] can ruin the consistency of
quantum field theories. Cancellation of such anomalies is a significant restriction
on models in four dimensions [2], and even more so in higher dimensions [3],
especially when gravitational and mixed gauge-gravitational anomalies are
included [4]. Recently Green and Schwarz have exhibited a new mechanism for
anomaly cancellation in higher dimensions [5], which leads to the existence of
n = 1 supersymmetric theories with "miraculous" anomaly cancellation in ten
dimensions (and O(32) or E8 x E8 gauge group). These theories are particularly
attractive because they are the low energy limits of consistent superstring theories
[6]. (The original discovery involved O(32), but a superstring theory based on Es

x E8 has been discovered [7].) Such "miraculous" cancellation of anomalies also
occurs [4] in the n = 2 chiral supersymmetry theory in ten dimensions, but that
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theory, while also the low energy limit of a superstring theory, seems less attractive
phenomenologically.

When perturbative anomalies cancel, this means that the effective action is
invariant under gauge and coordinate transformations that can be reached
continuously from the identity. One must still ask whether the effective action is
invariant under gauge or coordinate transformations that are not continuously
connected to the identity. Lack of such invariance leads, for instance, to
quantization of a certain mass parameter in 2 +1 dimensions [8], It also leads to
the inconsistency of an SU(2) gauge theory with an odd number of fermion
doublets in 3 +1 dimensions [9]. In this paper, gauge or coordinate transform-
ations that cannot be reached continuously from the identity will be called global
gauge or coordinate transformation, and lack of invariance of the effective action
under such transformations will be referred to as a global anomaly.

Global anomalies can enter in general relativity; for instance, in 8/c or 8/c+1
dimensions, a theory with an odd number of spin 1/2 Majorana fermions coupled
to gravity has a global anomaly [4]. In parity conserving theories, the Euclidean
effective action is always real. Global anomalies can then involve only the sign of
the effective action, and can be investigated by counting the number of fermion
zero modes modulo two. In parity-violating theories, the analysis of global
anomalies is more subtle since the effective action is complex, and one must keep
track of its phase, not just its sign. Of course, in parity-violating theories,
perturbative anomalies may occur. It really only makes sense to discuss global
anomalies if the perturbative anomalies cancel (since a global coordinate or gauge
transformation, defined by its topological class, is only well-defined modulo a local
transformation). Evaluation of global anomalies in parity-violating theories in
which local anomalies cancel is an interesting and subtle problem, raised in [4]. In
certain cases [10, 11], global gauge anomalies can be calculated by embedding
them in the local anomaly of a larger group. This method also gives interesting
results for gauge theories in which anomalies are cancelled by the Green-Schwarz
mechanism [12]. However, it does not appear possible to evaluate global
gravitational anomalies in this way. Evaluation of global gravitational anomalies
in the ten dimensional supergravity theories is important, because in ten
dimensional space-time the group of (orientation-preserving) diffeomorphisms
(with compact support) is disconnected, having 992 components [13, 19]. One
must ask whether lack of invariance under some of the 991 global coordinate
transformations spoils the consistency of some of the ten dimensional theories that
are free of perturbative anomalies. The main result of this paper is to show that this
does not occur for the O(32) and Es x E8 theories and apparently also does not
occur for the chiral n = 2 theory.

We will not discuss global gauge anomalies for the ten dimensional supergrav-
ity theories; the reason for this is that π10(O(32))^π10(E8 x£8)^0, so global
gauge anomalies cannot arise.

Showing that a given superstring theory reduces at low energies to a field
theory free of global or local anomalies does not guarantee that the superstring
theory is fully consistent since it is always possible that the string theory has
"inherently stringy" anomalies that vanish in the limit of lowly Riemannian
geometry. However, anomalies present in the field theory would have to be present
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in the string theory (assuming one studies the right field theory with all relevant
terms!), in view of the usual arguments showing that anomalies can be extracted
from the long distance behavior of a theory.

Section II of this paper is devoted to mathematical preliminaries. Section III
(not strictly necessary for the later development) gives a simplified and partial
account of global anomalies in terms of instantons. Section IV gives a general
analysis of global anomalies for theories in which the anomalies cancel out of the
sum of one loop diagrams. Application to the chiral n = 2 supergravity theory
indicate it has no global anomalies in ten dimensions, but the conclusion is not
quite rigorous because of physical and mathematical uncertainties about antisym-
metric tensor fields. Section V gives a very general global anomaly formula for the
O(32) and E8 x E8 theories. It is shown that these theories have no global
anomalies in ten dimensions, before compactification. However, global anomalies
may put restrictions on compactiίications of these theories. A first example of this
kind is developed in Sect. VI; it is a Dirac-like quantization condition for the field
strength of the antisymmetric tensor that holds in the O(32) case. Section VII
contains concluding comments.

Although we will not explore this subject here, it is worth mentioning that
global gravitational anomalies enter in string theory in an entirely different way.
At tree level, one encounters in the theory of closed strings a path integral on a
world sheet that is topologically a sphere. The orientation preserving diffeomorph-
ism group of the sphere is connected, and in variance under this group is required in
quantizing the free string. At one loop level, the world sheet is a torus, whose
diffeomorphism group is far from connected. The group of components of the
orientation-preserving diffeomorphism group of the torus is called the modular
group. Failure of modular invariance, which eliminates some would-be gauge
groups in the models of [7], can be construed as a global gravitational anomaly on
the string world sheet. This might have non-trivial generalizations in higher
orders.

II. Mathematical Background

Consider a theory in n space-time dimensions, for which we consider a Euclidean
formulation on a sphere Sn. The group of parity-conserving diffeomorphisms of S"
may contain an element π not continuously connected to the identity. We wish to
ask whether the effective action of our theory is invariant under π.1

A diffeomorphism π of the n-sphere can be studied by relating it to a manifold
of n +1 dimensions which is closely related to the standard n +1 sphere Sn+1. This
manifold, which we will call S£+1, *s defined as follows [14] (Fig. 1). Take the
standard n+1 sphere and cut it in half at the equator; then glue the two halves
back together after transforming the boundary of the northern hemisphere by π.
[In other words, a point x on the boundary of the southern hemisphere is glued

1 It is highly plausible that lack of such invariance would signify the inconsistency of the theory
under study, but properly this should be deduced from canonical considerations. This has been
done in the gauge theory case [9] and a similar discussion is possible in the gravitational case, as
we will briefly discuss in Sect. Ill



200 E. Witten

Fig. la and b. To make a potentially exotic sphere, an ordinary sphere is cut in two on the equator.
The two hemispheres are then glued back together along the equator after making a
diίfeomorphism π of the boundary of the northern hemisphere

onto a point π(x) on the boundary of the northern hemisphere*] It is obvious that if
π is continuously connected to the identity, then S"+ ί and Sn+1 are topologically
equivalent. However, if π is not continuously connected to the identity, then SJ + ί

and Sn+1 turn out to differ in a subtle way.
Two manifolds A and B are said to be homeomorphic if there is a continuous,

one to one mapping from A to B. If there is a differ entiable, one to one mapping
from A to J5, then A and B are said to be dίffeomorphic. In the case of spheres, a
manifold which is homeomorphic but not diffeomorphic to the ordinary sphere
Sn+ * is said to be an "exotic sphere." It is relatively easy to prove [14] that S"+ 1 is
always homeomorphic to Sn+ 1 (and diffeomorphic to it if π is topological trivial).
With more difficulty it can be proved that SJJ+ i is diffeomorphic toSn+i only if π is
topologically trivial [15]. Thus S"+1 is an exotic sphere if and only if π is not
continuously connected to the identity. It can also be proved [13], with some
difficulty, that every exotic n+l sphere is S"+1 for some π. Thus, exotic n+l
spheres and topological classes of diffeomorphisms of the n sphere are in one to one
correspondence.

It is almost always easier to construct (and study) an exotic n+l sphere Sn+ 1

than to construct directly the associated diffeomorphism of Sn. Moreover, the
easiest way to study an exotic n + 1 sphere S" + 1 is usually to study an oriented n + 2
manifold B which has Sn+i for boundary. (B will always exist since the Pontryagin
and Stiefel- Whitney numbers of an exotic sphere are zero.)

Before giving examples of how this is done, let us first discuss some facts about
oriented manifolds with boundary. To be specific (since it is the main case that will
interest us later) consider an oriented 12 manifold B with boundary dB. Let B be
endowed with a Riemannian metric g, and let .R be the associated curvature two
form. If B is a closed manifold, with no boundary, so dB = 0, then the following
integrals are topological invariants:

(1)
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To show that these are topological invariants, one notes for instance that under a
change in the metric of J3, the change in Tr R2 is δ Tr R2 = a A with some globally
defined A\ hence

here we have integrated by parts, and used the fact that dB = 0 and that d Tr JR2 = 0.
Now we wish to generalize 71? 72, and 73 - insofar as possible - to give

topological invariants of a manifold B with non-empty boundary dB. This is
possible only under certain conditions.

In general, the equation Tr R2 = dH cannot be solved globally on B; if it can be
solved, /! and I2 vanish. However, it may be possible to solve Tr R2 = dH on dB. If
so, we generalize 7X and 72 to

J^KTrK2)3- ί77(Tr£2)2,
B dB

T2=$ΎrR2ΎrR4- j77Tr£ 4.
B dB

To see that these are invariant under a change in metric of B, note that if δ Tr R2

= dA, then the choice δH = Λ preserves the requirement that ΎrR2 = dH on dB,
and clearly then δTλ = δT2 = Q. This does not quite show that T± and Γ2 are well-
defined, because we must show that fx and Γ2 are independent of the choice of 77, as
long as dH = ΎrR2.

_If dH = dH' = TrR2, then d(H-H") = Q. In changing from H to 77', the change
in / is

ι= ί (H-H')(ΎrR2)2 = f (H-H^-dH Tr#2 = 0, (3)
dB

where in the last step we integrate by parts and use d(H — H') = dΎrR2 = Q. Thus 7\
is well-defined. As for Γ2, it changes by

AT2= J (77-77')Tr£4. (4)
dB

In general, this does not vanish. But if Tr R4 = dK on dB, then

AΓ2= ί (H-H')dK=- j d(ff-ίΓ) K = 0, (5)
as

In conclusion, then, J\ can be generalized to a topological invariant of a
manifold B with boundary if Tr #2 = dH on 3#. I2 can be so generalized if Tr R2

= dH and ΎrR4 = dK on <3£. However, there is not analogue of 73 for manifolds
with boundary. This observation meshes in an interesting way with the Green-
Schwarz anomaly cancellation mechanism, as we will see in Sect. V.

In Sect. VI, we will encounter a situation in which Tr R4 Φ dK on dB, so that T2

depends on the choice of 77; however, in the physical problem, there will be a
natural and physically motivated choice of H. Under such conditions, T2 is
meaningful as a functional of 77 and the metric of dB (independent of the choice of
metric of B away from dB).

It is useful to note that T^ and 72 are not merely independent of the metric ofB.
They are also independent of the connection on the tangent bundle of B, even if one
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considers connections with torsion. A manifold is said to be parallelizable if it
admits a connection ^perhaps with torsion) for which # = 0 everywhere;
obviously, in that case T±=T2 = 0.

We are now nearly ready to discuss exotic spheres. We will follow Milnor's
presentation [16] of a refinement by Eells and Kuiper [17] of Milnor's original
treatment. We will consider both the seven and eleven dimensional cases, though
our main interest is eleven dimensions.

For a closed eight dimensional manifold B, define

In view of our previous discussion, p2 has no generalization for manifolds B with
boundary, but pi does as long as Tr R2 = dH on the boundary of B; we will denote
this generalization as pi whether or not B has a boundary.

For an eight dimensional spin manifold, the index of the Dirac operator is

index(i0) - j^ό (7p? - 4p2) , (6)

while the signature σ is

σ=-τ5pl+τsP2. (7)

These combine into

mdex(iJ9) = 8fe(p?-4σ). (8)

Since the Dirac index is an integer, it follows that goβ (PI — 4σ) is an integer for any
closed eight manifold.

Now consider a seven dimensional spin manifold M with Tr R2 = dH on M. If
M is the boundary of some oriented eight dimensional spin manifold B, let

λ(M)=^(p2(B) - 4σ(B)) mod 1 . (9)

The claim is that modulo 1, λ depends on M only and not B, though the right-hand
side of (9) appears to depend on B as well as M. To prove this, let B and B' be two
different oriented spin manifolds that bound M. Then by gluing B and B' together
along M (with opposite orientation so that the boundary term in λ will cancel) we
get a closed eight manifold X which may be denoted X — B + ( — B'). If
λ=^(pl(B)-4σ(B)\ λf=^(pl(B/}-4σ(Bf)\ then λ-λ'=^(p2(X)-4σ(X)\
which by our previous comments must be an integer. Hence λ = λ'modl.

Now, in 4k— 1 dimensions for any fe^2, Milnor has given [18] an elementary
geometrical construction of a manifold Q which is homeomorphic to the standard
sphere and bounds a parallelizable manifold B of signature 8. (The construction
makes use of an 8 x 8 matrix which happens to be the Cartan matrix of the group
Es.) Now, consider the case of seven dimensions, k = 2. Since B is parallelizable,
pf(β) = 0, so λ(Q)= -4σ(£)/896 = - 1/28. Since λ = Q for the standard sphere, Q
must be an exotic sphere. By taking n connected copies of Q for 1 rg n ̂  27, one
makes 27 exotic spheres which must be non-diffeomorphic to one another since
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they have different λ. With more work one can show that these are all of the exotic
seven spheres.

In eleven dimensions, the facts are similar. For closed twelve manifolds, define

na_ L

3] GO

We have . * / «cx ,
mdex(ι0) - (-

(12)

This can be rearranged to give

(13)

where α and β are certain rational numbers. As we will see later, half the Dirac

index is always an integer in 12 dimensions. Hence ( apl + βp\p2— » ^^ ) is an

V 8 -992/
integer for closed twelve dimensional spin manifolds.

Let M be an eleven dimensional spin manifold with Tr jR2 = dH, Tr R4 = dK. If
M is the boundary of a spin manifold B, let

Λ/m \
(14)

It follows as before that modulo 1, λ depends only on M and not on the choice of B.
In this case, Milnor's manifold Q which is homeomorphic to the standard

twelve sphere and bounds a parallelizable manifold of σ = 8 has λ = —-, so it is

again an exotic sphere. By taking connected sums of Q one gets a family of 991
exotic eleven spheres, and it can be shown that there are not others [19].

We will see in Sects. IV and V that the facts just cited are adequate for
calculating global gravitational anomalies (on the standard spheres) in six or ten
dimensions. To calculate global gravitational anomalies in fourteen dimensions
would be more complicated, however (should this be required in the future), since
there are exotic fifteen spheres that do not bound parallelizable manifolds [19].

Several further mathematical comments are in order. So far we have studied a
diffeomorphism π of the n sphere in terms of a related "sphere" S"+1. There is an
alternative and closely related construction that has two virtues: it is more general,
and it is closer to our needs in later sections.

Let M be any oriented n manifold, and π an orientation preserving
diffeomorphism of M (or π may be a gauge transformation on some vector bundle
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-Mx{θ}

Fig. 2. A cylinder M x /, M being some manifold and I the unit interval. The cylinder can be made
into a closed manifold (M x S*)π by identifying (x, 0) with(π(x), 1) for any x e M. If π is the identity,
(M x S1^ is the usual product M x S1

Fig. 3 a and b. The connected sum of two manifolds A and B is made by cutting a ball out of A and
B and gluing them together. If A and B are tori [Part (a)] then A+B is a surface with two handles
[Part (b)]

over M, if we wish to investigate global gauge anomalies; or π may be a combined
gauge and coordinate transformation to study combined global anomalies). Now
consider the cylinder Mxl (Fig. 2), where / = [0,1] is the unit interval. We may
glue together the top and bottom of M x / [identifying (x, 0) with (π(x), 1) for any
x 6 M] to make a closed manifold which we may call (M x S1)π. (If π is a gauge
transformation, this procedure constructs a possibly nontrivial vector bundle over
MxS1.)

Obviously, if M happens to be S", (Sn x S\ and S^+1 are closely related. One
precise relation among them is the following. (Sn x S1^ is the connected sum of Sn

π

 +l

and Sn x S1. Here, the connected sum of two manifolds A and B, denoted A + B, is
obtained by cutting out an open ball from A and one from B and gluing A and B
together along the boundary of the removed ball (Fig. 3). To show that (Sn xSi)π

£ (Sn x S1) + Sl+1, a picture may suffice (Fig. 4). It may be proved that λ is additive
under connected sums; that is λ(A + B) = λ(A) + λ(B) for any A and B. Hence λ((Sn

x 5!) j = λ(Sn x S1) + λ(Sn

π

+ x) - λ(Sn

π

+ *), since it is easily shown that λ(Sn x S1) = 0.
To prove that λ is additive under connected sums, let © be the disconnected sum, so
V®V is a manifold with disconnected pieces 17 and V. Obviously, λ is additive
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Fig. 4. The purpose of this figure is to show that (Sn x S^^S" x S1) + S"π

+ί. The figure is drawn
for n= 1. (S1 x S1)π is a torus where an incision has been made and the two sides of the cut have
been glued back together after transforming one side by π. This can be deformed into a form
(second picture) that is obviously the connected sum of a standard torus S1 x S1 and a sphere in
which a similar incision has been made and repaired; the latter is S%

(-A-B)

Fig. 5a and b. A construction that is useful for proving that various topological invariants are
additive in connected sums. For any A and B, A+B + ( —A — B) is the boundary of a simple
manifold Y. In the figure, A and B are circles. If A and B were two spheres, the picture would consist
of two peas (A and B) in a pod (A + B with opposite orientation). The manifold Y always has zero
signature and admits a metric for which the Pontryagin densities are zero pointwise

under disconnected sums, since if 17 bounds X and V bounds Y, U 07 bounds
X@Y. For any oriented manifold X, let ( — X ) be X with opposite orientation.
Now, let Y be defined by Y=A®B®(-A-B). Then λ(Y) = λ(A)+λ(B)
— λ(A + B), since λ is additive under disconnected sums and odd under change of
orientation. To prove λ is additive under connected sums we must show λ(Y) = 0.
But Y bounds a manifold Z that may be formed by a "peas in the pod" construction
(Fig. 5). And Z has pl = PιP2 = & = Q' [For instance, σ depends only on the
properties of closed six surfaces in Z that cannot be deformed into surfaces in Y.
There are no such. In addition, Z admits a metric with (Tr #2)3 = (Tr R2) (Tr R4}
= TrR6 = 0 at each point. These assertions are not hard to verify.]

We will eventually have need of a few more mathematical facts. The first such
fact is that in 8fe + 4 dimensions the index of the Dirac or Rarita-Schwinger
operator is always even. Indeed, let C be the charge conjugation matrix, so C~ 1ΓμC
= Γ* for any gamma matrix Γμ. Let %> be the anti-unitary transformation
Ήψ = Cφ*. Then if ψ is a zero mode of the Dirac or Rarita-Schwinger equation, so
is <βψ. Moreover [20], in 8fc-h4 dimensions #2= — 1, so the number of zero
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modes is always even. (In 8/c dimensions, this is not true. The index of the Rarita-
Schwinger operator is one on the 8 dimensional spin manifold HP2.)

The charge conjugation operator has another useful application. It is true [20]
in 8/c + 2 dimensions (but not in 8/c + 6) that %2 = -1. If ipψ = λψ9 then also ipφψ)
= λ(<£ψ). ψ and Ήψ must be linearly independent since V is an antiunitary operator
with %2=-L Now let Γ = /i Γ2... Γsk+2 be the chirality operator. The states Γψ and

ΓΉψ (which is —«Tφ, since ΉΓ=-Γ(g in 8/c+ 2 dimensions) obey L0(/V)
= -XΓφ, i0(Γ(£ψ)= — λΓΉψ, since Γ anticommutes with iβ. If 1 = 0 the pair of
states (ψ,<tfψ) may coincide with the pair (Γψ, ΓΉψ). For Λ Φ O this is impossible,
since one pair has Dirac eigenvalue +λ, and one pair has Dirac eigenvalue —λ.
From these facts we may deduce the following. The number of zero eigenvalues of
the Dirac operator in 8/c -h 2 dimensions is always even, corresponding to pairs
(ψ, %>ψ). (Since ψ and <#ψ have opposite chirality, the Dirac index is always zero.)
Now, if by varying the metric a pair of states (ψ,%>ψ) migrates from non-zero
eigenvalue λ to λ = 0, then the pair (Γψ, ΓΉψ) will migrate from — λ to 0 at the same
time. In this process, the number of zero eigenvalues changes by four. Since this
and its inverse are the only possibly processes by which the number of zero
eigenvalues can change, we see that in 8/c H- 2 dimensions the number of zero modes
of the Dirac operator is a topological invariant modulo four [21]. The discussion is
unmodified if the fermions transform in a real representation of some gauge group,
such as the adjoint representation of O(32) or E8 x Es. Note, however, that we have
been counting states of both chiralities in the above discussion. If we are dealing
with chiral fermions in 8fc-f 2 dimensions, we keep only one state from each pair
(ψ, <£ψ). Hence, the number of zero modes of the chiral Dirac (or Rarita-Schwinger)
operator in 8k + 2 dimensions may be any integer, and is a topological invariant
modulo 2.

The last facts we will need concern the signature of twelve dimensional spin
manifolds with and without boundary. Analogous facts hold in four dimensions
and we will consider the two cases in parallel. First, suppose B has no boundary. In
four dimensions, the signature and Dirac index are related by a well-known
formula

J=index(if>). (15)
o

In twelve dimensions, there is no well-known formula analogous to (15). However,
the "miraculous" anomaly cancellation found in [4] depended on a relation
between σ, the Dirac index, and the Rarita-Schwinger index for twelve dimensional
closed spin manifolds. The relation is

J = index(£ S)-3 index(i0), (16)
o

where index (R - S) is the index of the Rarita-Schwinger operator. Since we have
shown that the Dirac and Rarita-Schwinger operators have an even index in 8/c + 4
dimensions, (15) and (16) show that σ is divisible by sixteen for closed spin
manifolds of four or twelve dimensions. (This is not so in 8/c dimensions; HP2k is a
spin manifold of dimension 8fe and of σ = 1. It is true in 8fe -f- 4 dimensions for any k
[22].)
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Now, let M be an eleven dimensional spin manifold. Suppose it can be bounded
by the twelve dimensional spin manifold B. Then modulo sixteen, the signature of
B depends only on M, and not on B. For if B and B' are two spin manifolds that
bound M, then gluing them together along M gives a closed twelve manifold X,
whose signature must be divisible by sixteen. But σ(X) = σ(B) — σ(B/), so σ(B)
= σ(B/} mod 16. The invariant just defined is additive under connected sums, by the
same argument that shows this property for λ.

These considerations lead to an alternate proof that Milnor's eleven manifold
Q which bounds a spin manifold B of signature eight and is homeomorphic to the
standard sphere cannot be diffeomorphic to the standard sphere. For the standard
sphere bounds a ball, which has σ = 0, and SφOmodlό.

III. Instantons and Global Anomalies

Our general analysis of global anomalies will be rather long and technical. Under
certain conditions, however, global anomalies have a rather simple manifestation:
they show up in the existence of an instanton field in which there are an odd
number of fermion zero modes. Four dimensional theories with an odd number of
zero modes in an instanton field always have global anomalies. This fact, which
was originally found by computation [9], has an explanation due to Goldstone
[23] which we will review later. In this section, we will show that in the ten
dimensional anomaly free theories, the number of fermion zero modes in an
instanton field is always even. This is a necessary but not sufficient condition for
absence of global anomalies; there are theories (such as some G2 theories recently
considered by Harvey [12]), in which global anomalies are not related to having an
odd number of zero modes in an instanton field. Since we will later discuss global
anomalies in a general way, the discussion in this section is not strictly necessary.
However, the arguments are so much simpler than those of Sects. IV and V that
they seem worth describing separately. And the facts about ten dimensional
instantons that we will need may have other applications. However, the rest of this
paper can be read without reading this section.

This section will be organized as follows. First we will discuss which instantons
are relevant. Then we will review Goldstone's argument showing that existence of
an instanton with an odd number of zero modes always implies the existence of a
global anomaly. Finally, we will show that instantons in anomaly free supersym-
metric theories in ten dimensions always have an even number of fermi zero modes.
This is trivial in the N = 2 theories, which have an even number of Dirac and
Rarita-Schwinger multiplets, so we will concentrate on the N = 1 theories based on
O(32)and£8x£8.

In discussions of gravitational instantons, a basic fact about Yang-Mills
instantons is sometimes overlooked. Let / be a Yang-Mills instanton in a
Euclidean space M of dimension d. Then there is always an anti-instanton Γwith
the property that / + Γcan be reached continuously from A*μ = 0. Here / + Γis a pair
consisting of an instanton and a widely separated anti-instanton.

Now, why do we have to include instantons in path integrals? Why can't we
just declare that we only want to do integrals in the trivial topological sector? The
answer, known [24] from early papers on instantons, is cluster decomposition. We
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(α) (b)

Fig. 6a and b. A handle on the plane, viewed as a gravitational instanton (Part a). There is no such
thing as an anti-handle, though it is possible to imagine two widely separated handles (Part b)

must include / + / because it is in the topological class of Aa

μ = 0. If x and y are two
points in M, this means one must include a field with an instanton near x and an
anti-instanton near y. If y is very far from x, 7-hΓ produces, by cluster
decomposition, the same effect that an isolated instanton at x would have
produced. This is why instantons play a role in Yang-Mills theory.

For many of the gravitational instantons that have been considered in the
literature, this argument does not work. Consider an asymptotically Euclidean n
dimensional space with a localized topological defect, such as the handle of Fig. 6,
which we wish to regard as a gravitational instanton. Except for very special cases,
there does not exist an anti-instanton Jsuch that J + Jis diffeomorphic to Rn. If J
does not exist there is no need to include J in path integrals.

Let us determine when /exists. If one of the^Betti numbers bt of J is non-zero
for 1 ̂  i <; n -1, then J cannot exist For b^J + J) = b^J) + b^T) ^ bt( J) (since Betti
numbers are non-negative). If J + J^ Rn, then bt( J + J) = 0 for 1 <; i ̂  n — 1, and we
must have bt(J) = 0 for 1 <; i <Ξ n — 1. Now let X be the one point compactifϊcation of
J (defined by adding one point at infinity, as in the usual process of going from Rn

to Sn). For w^4, it follows from the Smale [13] (n^ 5) and Freedman [25] (n = 4)
proofs of the generalized Poincare conjecture that X must be homeomorphic (but
not necessarily diffeomorphic) to Sn if (̂J) = 0 for 1 ^ί^n— I.2

If X is homeomorphic to S", does J exist? For n = 4 this isn't known. We now
focus on n ̂  5. Here, if X is homeomorphic to Sn, it must, as discussed in Sect. II, be
SI for some diffeomorphism π of Sn~ί. Let π~1 be the inverse diffeomorphism of π,
and let X = S%-i. Then X + X is diffeomorphic to Sn. This can be seen by a picture
(Fig. 7). If J is related to X the way J is related to X (by removing a point and
making the standard conformal change of metric to^an asymptotically Euclidean
space), then J is the desired inverse of J. Indeed, J + Jis Rn precisely because X + X
isSn.

It follows from this, in my opinion, that exotic spheres are the only
gravitational instantons for which there is a sound basis within the presently
understood framework of physics. When we discuss gravitational instantons, these
are the ones we will discuss. Of course, it is always possible that future

2 If n is 2 or 3, J never exists unless J = R". For n = 2 this follows from the classification of two
manifolds, and for n — 3 from the prime decomposition theorem for three manifolds [26]



Global Gravitational Anomalies 209

Fig. 7. This sequence of pictures is meant to show that S"

developments will give a sound physical basis for considering other gravitational
instantons. This might even occur on the basis of string theory.

While this is outside our main line of development, let us pause to note that
similar remarks can be made about gravitational solitons. In a theory in n— 1
space and 1 time dimension, one could take an asymptotically Euclidean n— 1
manifold Y which is not diffeomorphic to R"'1 and try to interpret it as a
gravitational soliton. Does this make sense? It certainly makes sense and is correct
if there is an asymptotically Euclidean manifold Fsuch that 7 + Fis diffeomorphic
to R"'1. For then it is possible to make a continuous transition from R"'1 to a
state with a Y particle and a far away Ϋ antiparticle. In that case amplitudes such as
e+e~ -> YΫ occur unpreventably. If F does not exist, the object Y cannot be created
or annihilated, and it is most natural to assume it is unphysical. Thus, in view of
our previous remarks, at least for n ̂  6, gravitational solitons correspond to exotic
n— 1 spheres. In standard general relativity we might expect such entities to
collapse into black holes, but in view of the excellent short distance behavior of
superstring theory, it would not be surprising if in that theory some of the seven
[19] exotic nine spheres are realized as stable elementary particles.

Returning to gravitational instantons, the exotic spheres can be interpreted as
tunneling events, just like Yang-Mills instantons. Let gμv be the Euclidean metric
on Rn~1 in some coordinate system, and gπ

μv its conjugate under π (which, of course,
is the Euclidean metric in the transformed coordinates). Now, consider the metric

ds2 = dt2 + [(1 - λ(t))gμv + λ(t)gπ

μv-]dx»dxv, (17)

where t is "time" and λ is a strictly monotonic function with λ(—oo) = 0,
λ(-r oo) = 1. The one point compactifϊcation of this space is the exotic sphere S".
Thus, the instanton connected with Sn

n is a tunneling event from g to gπ. (This view
of the instanton as a tunneling event makes it possible to see that, unlike other
gravitational instantons, exotic spheres are present in the canonical, Hamiltonian,
approach to quantum gravity.)

Now let us turn to the question of showing that if there are an odd number of
fermion zero modes in an instanton field, there is always a global anomaly.

Yang-Mills instantons and exotic spheres are tunneling events associated with
some gauge or coordinate transformation π of the initial value surface, π is realized
in quantum field theory by some operator A. Gauss's law implies that gauge or
coordinate transformations that can be reached continuously from the identity
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leave physical states invariant. A is not under this restriction (if π is topologically
non-trivial), and in general A — ew, where θ is an analogue of ΘQCD

Now, if the instanton associated with π has an odd number of zero modes, this
means in a Hamiltonian language that A creates an odd number of fermions. Thus
(— ί)FA(— l)F= —A, where ( — 1)F is the operator that counts fermions mod2.

Now, following Goldstone, in an asymptotically Euclidean space let J be the
generator of a rotation about an arbitrary axis in space, and let

Gs = π ~ί exp (— isJ)π exp (isJ) (18)

for 0 ̂  s ̂  2π. Obviously, G0 = 1, and in a physical Hubert space of states that obey
Gauss's law, Gs= 1 for all s, since Gs is a gauge transformation that can be reached
continuously from the identity. But G2π = π~1(-l)Fπ(-l)F= — 1. Since this
contradicts the claim that Gs = 1 for all s, it must be that the physical Hubert space
does not exist; this is the symptom of a global anomaly [9].

Now, let us verify that at least this kind of global anomaly does not arise in
superstring theory, by showing that the number of fermion zero modes in an
instanton field is always even. We must consider both gravitational and gauge
instantons.

For gravitational instantons, we consider the five [19] exotic ten spheres. The
N = 1 supergravity theories have 497 elementary chiral Dirac fields (of various
chirality) and one chiral Rarita-Schwinger field. We know from Sect. II that for
either kind of field, the number of zero modes on any ten manifold M is a
topological invariant mod two. There are indeed [27] exotic ten spheres on which
the chiral Dirac operator has an odd number of zero modes. To avoid trouble, we
must show that, at least on exotic spheres, the chiral Rarita-Schwinger operator
has an odd number of zero modes precisely when the Dirac one does.

For index purposes3, the chiral Rarita-Schwinger operator is equivalent to the
equation J#ψμ = 0 (for a field ψμ of definite chirality; μ is a vector index) plus the
contribution of three spin 1/2 ghosts (of various chirality). The number of physical
zero modes of the chiral Rarita-Schwinger equation, mod 2, equals the number of
solution of $hpμ = 0 minus the number of zero modes of the three chiral spin 1/2
ghosts. Since three spin 1/2 ghosts have, mod 2, as many zero modes as 497 physical
spin 1/2 multiplets, what we must show is that on exotic 10 spheres, βψμ = 0 always
has an even number of solutions.

Let α and β be, respectively, the number of solutions of the Dirac equation and
of pψμ = 0 on some exotic ten sphere. We will show β — 0 mod 2 by showing 1 lα = α
4-jβmod2. To show this, we arrange a chiral Dirac and a chiral Rarita-Schwinger
field into one multiplet ψΛA, α = 1...16, A = l..Λl. Here α is a chiral spinor index,
and A is a vector index if A = 1... 10, and a scalar index if A = 11. The number of
solutions of f)ψA = 0 is independent mod 2 is what real connection is used on the A
index. If the Riemannian connection is used, the number of zero modes is α -h β.
However, a theorem of Kervaire and Milnor [19] ensures that it is possible to
choose a real connection on the A index so that the equation f)ιpA = 0 is equivalent

3 This is only true for index purposes because the actual gauge fixed Rarita-Schwinger equation
involves non-minimal terms. (Index purposes include the mod 2 index being computed here)
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(up to a gauge transformation) to eleven decoupled Dirac equations. With this
connection the number of zero modes is llα, so this shows Ila = a+βmod2.

The theorem of Kervaire and Milnor that is relevant is their statement that
exotic spheres are s-parallelizable. This means that if Γis the tangent bundle of an
exotic sphere and ε is a trivial line bundle, then Tφε is topologically trivial. In
other words, the theorem says roughly that on an exotic sphere, a vector field and a
scalar field can topologically be rearranged into eleven scalar fields. The proof of
this theorem in 8fc + 2 dimensions is somewhat subtle.

This completes our discussion of gravitational instantons; we turn to Yang-
Mills instantons. Since π9(O(32)) = Z2, π9(E8xE8) = 0, the interesting case is
O(32), and there is precisely one O(32) instanton to be considered.

Our first task will be to give an explicit description of the O(32) instanton on
S10, which we take with standard metric. The spin connection on S10 is an O(10)
gauge field. Let us consider the O(10) embedding in O(32) defined by saying that
the vector representation of O(32) transforms as the real, 32 dimensional spinor
representation of O(10). This embedding of O(10) in O(32) turns the spin
connection of S10 into an O(32) gauge field - which turns out to be the instanton.

To show that it is the instanton, it is enough to show that it is topologically
non-trivial - since the instanton is the only topologically non-trivial class of O(32)
gauge fields on S10. To show it is topologically non-trivial, it is enough to show
that the (non-chiral) Dirac equation on S10 with this gauge field, in some
representation, has a non-zero number of zero eigenvalues mod 4. The vector
representation is a good choice.

Consider a spinor φαx, where α is a spinor index on S10 and x labels the vector of
O(32). In fact, x is, in view of the construction above, equivalent to a spinor index of
O(10). The Dirac equation for spinors with an extra spinor index is equivalent to
the equation (d + d*) φ = 0 for differential forms φ. The number of zero modes is the
sum of the Betti numbers. For S10, b0 = b 10 = 1 and the others vanish. So there are
two zero modes. Since 2Φθmod4, this field is topologically non-trivial and is the
instanton.

Now we turn to the representation which actually is relevant for ten
dimensional supergravity and superstring theory, which is the adjoint represent-
ation. Thus, we need to count the number of zero modes mod 4 of a chiral field ψΛXy

= — ψayx. Since x and y are equivalent to spinor indices of O(10), this field really has
three O(10) spinor indices. Now, zero modes of the ψχxy field will form
representations of the O(ll) rotation group of S10 (since the spin connection,
which entered this construction, is certainly O(ll) invariant). The representations
that will appear are spin representations of O(ll) (which change sign under a 2π
rotation in O(ll)), since ιpΛXy has three spinor indices, an odd number. All the spin
representations of O(ll) have dimension divisible by 32, so the chiral ψaxy field
certainly has an even number of zero modes.

This completes the demonstration that the number of zero modes in an
instanton field is always even in the O(32) and E8 x E8 theories.

Let us conclude this section with some remarks about the canonical or
Hamiltonian treatment of global gravitational anomalies. The Euclidean treat-
ment of global gauge anomalies involves a global gauge transformation t/(f, x1) in
space-time (t is time and x1 are space coordinates). The Hamiltonian treatment [9]
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involves instead a one parameter family of spatial gauge transformation such as
the family Gs in Eq. (18). The connection between them is trivial because L/(ί, xl)
may be viewed as a one parameter family Ut(xl) of spatial gauge transformations.

In general relativity the situation is puzzling at first because there is no obvious
connection between a diffeomorphism in d dimensions (t9x

ΐ)-+(t'(t9x
i')9 x'J(f, x'))

and a one parameter family of diffeomorphisms of d— 1 dimensions xί->χ^'(χί).
The connection between them is made by a highly non-trivial theorem due to Cerf
[15]. Cerf proved that in five or more dimensions every diffeomorphism oϊd space
which vanishes at infinity is deformable topologically to a diffeomorphism that
leaves the time invariant fax^-tfax'fax*)). Such a diffeomorphism is indeed a
one parameter family (t is the parameter) of diffeomorphisms of d — 1 space. This
theorem makes possible a Hamiltonian treatment of global gravitational anom-
alies just analogous to the Hamiltonian treatment of global gauge anomalies.

IV. A General Formula for Global Anomalies

In this section we will develop a formula that is useful for analyzing global
anomalies. We will formulate the problem in terms of global gravitational
anomalies, but similar reasoning applies to the gauge case.

Consider a quantum field theory formulated on some (Euclidean signature)
manifold M. Let π be a diffeomorphism of M. Let I(gμv) be the effective action of
our theory, as a functional of the metric gμv of M. Let gμv transform into gn

μv under
π. If ΔI = l(gπ

μ^) — l(gμ^) is not an integer multiple of 2τri, the theory suffers from
global anomalies.

To define AI precisely requires a little bit of care. Let #^v, Orgίrg 1, be a one
parameter family of metrics interpolating from gμv to gπ

μv. For instance, we may
take gt

μv = (l -ήgμv + tgπ

μv. Then we define

AI= \dt—7(0^), (17)

and this is the quantity we must study.
We will concentrate on problems in which the one loop determinants are

complex. Real determinants can at worst change in sign under π, and the sign can
be studied as in [9]. A useful simplification for complex determinants is that a
complex function will generically not vanish as a function of the one real variable ί,
and we will assume that our determinants are non-zero for all f, 0 ̂  t ̂  1.

In studying Δl, we will first consider the case when the one loop determinant of
the matter fields (summing over all multiplets) is free of perturbative anomalies.
After treating this case, we will study the more subtle situation in which one loop
matter anomalies are cancelled by the local terms introduced by Green and
Schwarz.

As a typical case, we consider first the anomaly due to a spin 1/2 Weyl fermion.
For a Majorana-Weyl fermion (possible in 8k + 2 dimensions), the effective action
is /= l/21ndetz 1/)R; here f)R is the Dirac operator restricted to fermi fields that

A l " \ ,Li f=Γ -T-.1 r>2 Γ>2obey I —-— )ψ = ψ, with Γ = iΓ1Γ2...Γ2 being the chirality projection operator
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(Γ2 = 1). Under an arbitrary change in the Dirac operator, jp=>f> + <5|>, the change
in the action is

. (19)

where we have chosen to exhibit explicitly the chirality projection operator

— - — 1, so that now φ is the full-fledged, parity-conserving Dirac operator.

In (19), the parity-conserving term %Ύr—τδί$ = δ((detHl))114) may be

dropped. The reason for this is that (detz',0) is parity conserving and positive, and
(detz0)1/4 would change in phase, as a function of ί, only when detz|) vanishes.
We have already noted that in 4k + 2 dimensions, for a generic interpolation from
gμv to g*v, the Dirac determinant has no zeros. (The real determinant detz'ί) has a
factorization detiί) = detiί>L deti|>Λ3 where deϋ|)L and detz'jp^ are complex
functions that do not generically vanish as a function of one real variable.) If one
chooses to consider a non-generic interpolation from gμv to g*v for which det φ has
zeros, the parity-conserving part of (18) cannot be dropped, and a compensating
subtlety would appear in analyzing the parity violating part.4

We may hence reduce (19) to

(20)

where ψj and λj are eigenstates and eigenvalues of the Dirac operator (which
depend on ί), and where we have taken care to include the contribution of a Pauli-
Villars regulator field of mass M. However, in and only in theories that are free of
perturbative anomalies, the contribution of the regulator fields vanishes. The
reason for this is as follows. The contribution of the massive regulator fields in (20)
is a local functional of the metric tensor. This functional, if not zero, is never
generally covariant since there is simply no generally covariant functional of the
metric with the right dimension and quantum numbers. It is precisely from this
functional that perturbative anomalies are extracted; the connection has recently
been discussed in detail [28]. The induced functional due to the massive regulators
hence vanishes precisely when the matter determinants, after summing over all
matter multiplets, are free of perturbative anomalies. When anomaly cancellation
depends on the local terms introduced by Green and Schwarz, the regulator
contribution does not vanish and must be included.

4 Identically, a zero of deti$ in 8/c + 2 dimensions is typically a fourth order zero, since the
number of zero modes of the Dirac operator is a topological invariant mod 4 in 8/c + 2
dimensions. In passing through such a zero, (detL0)1/4 would change sign. In 8/c4-6 dimensions,
one always has complex chiral fermions, so the object encountered is (detz|))1/2. In 8/c + 6
dimensions, the number of zero modes of the Dirac operator is only invariant mod 2, so detz$>
has double zeros at which (detΐj0)1/2 changes sign. In either case such zeros do not generally
appear as a function of one real variable
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From (20), we see that when the regulator contribution is absent, the total
change in the action between t = 0 and t = 1 , after summing over all multiplets Q, is

(21)
Q j o j

We must reduce (21) to a manageable expression.
Equation (21) involves eigenstates of the Dirac operator on a manifold M of

dimension n = 4k + 2. The right-hand side of (21) is expected to depend only on M
and the diffeomorphism π, not on the interpolation ̂ v, though at this point that is
not obvious. Usually, the only simple way to study a diffeomorphism π is to
investigate the associated manifold (M x S1)π discussed in Sect. II. The simplest
properties of (M x S1)^ are invariants of a manifold B which has it for boundary.
The only evident connection between (M x S1)π and B in which spinors play a role
is the Atiyah-Patodi-Singer theorem concerning the ^-invariant [29]. The η
invariant can be defined as

η=tim Σ (signEJexp-εlEJ, (22)

where EA are the eigenvalues of the Dirac operator on (M xS1)^ The Atiyah-
Patodi-Singer theorem asserts (for the spin 1/2 case) that

^indexβ(^)-UW, (23)
2 B

where indexβ(iί>) is the index of the Dirac operator on B and A(K) is the
polynomial in the curvature tensor R that enters the index theorem for manifolds
without boundary. /Thus, if B has no boundary, indexβ(z Jfϊ) = J ^I(Λ)Λ A(K) is

n + 2 V '
also the — — — form that is related, formally, to perturbative anomalies in n

dimensions. A very natural strategy is to try to relate (21) to the η functional of
(MxS\.

On (M x S\ we take the metric tensor

ds2 = dt2 + εgt

fιv(xa)dxμdxv , (24)

where xμ are coordinates on M, and ε is a real number chosen so that the Dirac
equation on (M x S1)π can be solved adiabatically in ί. This is so if ε is small enough
so that the Dirac operator on M with metric sgμv has widely enough separated
eigenvalues. By absorbing ε in the normalization of g*μv (which has hitherto been
arbitrary) we may assume that this is true at ε = 1. It should be pointed out that the
simplicity of (24) is deceptive since (xμ, ί = 0) is to be identified with (π(xμ), t= 1),
where π is highly non-trivial.

To formulate the Dirac equation on (M x S1)π we need an extra gamma matrix
in addition to the gamma matrices Γ1, Γ2, . . ., Γn of M. We can take it to be Γ, so
that the Dirac equation in (M x S1)π is

. (25)
dt
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This equation will be solved in an adiabatic approximation, in terms of the
eigenstates \p*n and eigenvalues Xn of the hermitian operator ity1.

To solve the Schrόdinger equation in an adiabatic approximation, one usually
picks a time dependent eigenstate of//, tp0(0> and writes Ψ(f) = A(f)ψ0(f) (the xα

dependence is being suppressed). In the case at hand, by writing (25) in the
dΨ

Schrόdinger-like form i -γ~ = Xψ with X = (EΓ — IΓ f>), we see that the analogue is
CIL

to work with an eigenstate of X. If ψ0 is an eigenstate of i ]/>, so is ψ0 = Γψ0 (with
opposite eigenvalue; if i f>ιp0 = λ0ψ0, then i f>ψQ = — λ0ψo). Eigenvalues of X can
be found as linear combinations of ιp0 and φ0. Instead of explicitly diagonalizing
X, it is easier to write Ψ(t) = A(f)ψ0 + B(t)ψQ and solve for A and B.

In studying adiabatic evolution in quantum mechanics, it is convenient to fix

=0. In thethe time dependence of the phase of the states by requiring ( ψ0

case at hand this implies (ψQ —7^} =0. We must note that ψ0(t=l) is to be

related to ψ0(t = 0) by means of the diffeomorphism π. In general we might find
ψ*(t = l) = elΛψG(t = 0) for some α (where τp<$(ί = 1) is the transform of ψ0(t = 1) by π).

This would imply ψ%(t=l) = eicίψ0(t = 0). This would imply for A and B the
boundary condition A(l) = A4(0), B(l) = e~ίαΰ(0). We will see that the value of α
does not matter.

The easiest way to find the right equation for A and B is probably to note that

the Dirac equation (25) is deducible from δL = Q, where L= f dt <φ| ( iΓ—+if)t

- E } I ψy. Inserting the ansatz Ψ = A(t)ψ0(t)+ΰ(ί)ψo(0>and varying with respect
/

to A and B, one gets the equation

Uφ = Eφ (26)

where

d

dt

Here σ x and σ3 are Pauli spin matrices,

Λ(f\\
(28)

and

.o(0=<VolΓ|^> = ̂ oirμ^>. (29)

It is useful to define

V0=\dtμ0(t), (30)
0
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and

, (3D

where β(t) is some function that obeys β(ί) = β(0). Now, we would like to
calculate the η invariant of 17, defined by

ηv = lim Σ signE exp — β|£| , (32)
ε-»0 E

where E ranges over the eigenvalues of U. If /I0(t) = 0, U can be exactly
diagonalized. The eigenfunctions are

φί = exp(-2πint±i]S(f)) , (33)

with energies

(34)

Inserting (34) in (32) gives

2
ηv = - V 0mod2. (35)

π

(The "mod2" is needed if |v0|>π.) If A0(ί)Φθ, (34) is no longer exact. But (32)
shows that ηv only depends on the asymptotic behavior of the eigenvalues for
large E. Even if /I0(ί)φ0, the A0(ί)σ3 term in (27) only shifts the En by an amount
of order l/n (since σ3, acting on a state ψ* of unperturbed energy ±2πn + v0 gives
a state ψ+ of unperturbed energy +2πn + v0; the energy denominator is hence of
order n for large ri). Such asymptotically small shifts do not modify η, so (35) is
exact for any A0(ί). (More elegant derivations of (35) have been given by S. Della-
Pietra, who also corrected an error in may original treatment, and A. Niemi.)

Now we need a technical aside whose sole purpose is to turn the mod 2 in (35)
into mod 4. [This will be essential for the O(32) and Es x E8 theories.] We recall
from Sect. II that in 8fc + 2 dimensions, there is an antiunitary operator # obeying
%)2= — 1 and [#,ΐ|)] = 0. Apart from the pair of states \p0) ψ0, we could have
performed the same calculation with the states tp1 =

 (^φ0, ψί = Γψi. Since
dwΛ , , = \dιpo\ Λ , .,
—^i} = <ιnJ r l—j^-}, the sector (ψi9 ip^ makes the same contribution as

at / I at /
the sector (ψQ, ψQ) in the above calculation. So if we refer to η in the new sector as
n^u, then

4
n[7 + %[7= — v0mod4. (36)

π

In 8/c + 6 dimensions an analogous doubling of η occurs for a more trivial reason.
The basic object in 8k -f 6 dimensions is a complex chiral field, so all our formulas
must be doubled.
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To relate our result for ηv to the old formula (21) for ΔI, let us re-examine
definition (27) of μ0(t). According to quantum mechanical perturbation theory,

= Σ π - l v j > < v j ^ l v o > (37)a jφo/, 0 — ΛJ

Hence

i }= Σ (ψol^lv/) (ψj\\—* ft } l^o) (38)αί / jφo AO — ΛJ \αί /

But

so

μ0(ί) = (ψo\Γ — 0*-P) hpo)' P^)

and hence

o 2λ0 at

Combining (21) and (40), we see

AI = i Σ v0(Pair) = 2i Σ v0(Four), (41)
pairs fours

where the sum runs over a pair of state (tp0, φ0) or a foursome of states (φ0, tp0, tp1?

ψi). [In going from (21) to (41), one must remember that (21) was written as a sum
over states, not a sum over pairs or foursomes of states.] Looking back to (35), we

n
see v0(Four)= — (wr + n^modπ, so

4

ΔI-— Σ O7i7 + %ι;)mθ(i2πi. (42)
£ Fours

Finally we may drop the "mod2πf' since we only want to know zl/mod2πί'. Also,
Σ (nυ + n<βυ)= n> where η is the η invariant of the full-fledged Dirac operator on

Fours

(M x S1)π. Hence (mod2πz)

(AI)Όirac=-ηD, (43)

where ηD is the Dirac η invariant on (MxS1),,. For Dirac fields in 8k+ 2
dimensions, this is the end of the story. For Rarita-Schwinger and self-dual anti-
symmetric tensor fϊels, there are some additional technicalities, however.

The Rarita-Schwinger operator on M has a vector index with 8k + 2
components, while on (M x S\ the vector index has 8k -f 3 components. The extra
component is a scalar as seen on M. To carry out the construction above we have
to consider on M a multiplet consisting of a Rarita-Schwinger field and a Dirac
field. They combine nicely into the Rarita-Schwinger field on (M x S1)^ and the

above discussion goes through, giving (^/)Dirac + (^^)R.s.— ~^n^ where ηR is the
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Rarita-Schwinger η invariant on (M x S1),. In other words,

(Λ/ks.= yO/*->/ι>) (44)

For self-dual tensor fields matters are trickier, unfortunately. First of all, there
is not a convenient Lagranigan for this field. For that reason, in [4] the
normalization of the anomaly for this field was found by examining Feynman
diagrams; this gave an unexpected numerical factor (see footnote 6 of that paper).
To try to normalize the contribution to the global anomaly in this way would be
tedious, to say the least. For this reason, we will here follow another method [4],
which is very efficient and almost certainly correct but not quite rigorous (because
the connection between the effective action of the self-dual tensor and the
determinant of the operator we are about to introduce has never been deduced
from first principles).

Consider in 8/c + 2 dimensions a field φaβ where α is a chiral spinor index and β
is a spinor index that may have both chiralities. Actually, φ is equivalent to a
certain collection of antisymmetric tensors. Let Q be the chiral Dirac operator
acting on the α index; that is, (Qφ)a'β = Da,aφΛβ. The equation Qφ = 0 is easily
studied in Minkowski space. It describes propagation of two real self-dual
antisymmetric tensors (one comes from each chirality of β) and various anomaly
free fields. It is thus highly plausible that for the sake of computing anomalies, the
effective action oϊone real self-dual tensor can be taken to be —1/4 In det Q (the sign
differs from the Dirac case because of opposite statistics).

The change of In det Q in interpolating from a metric g to gπ can be computed as
we have done for the Dirac operator. Indeed, Q is just a Dirac operator acting on a
field with an extra index. Hence the change of —1/4 In det β is — ίn/4ηs; here ηs is
the eta invariant of an operator S that was introduced in [29]. It is the operator *d
acting on the even degree differential forms on (M x S1)π. [The restriction to even
or equivalently to odd degree arises because a field φΛβ with two non-chiral spinor
indices α and β is equivalent to the whole de Rham complex of M, but to only half
the de Rham complex of (M x S1)π.] So we arrive at the result

AIs=-^ηs. (45)

This result must be treated with a certain degree of caution. First, we have
already noted that use of the operator Q is not quite rigorous. Second, and perhaps
more essential, the operator Q will have zero modes, and this raises the question of
what we mean by detβ, which appeared at intermediate stages of the discussion.

If M has dimension 8fc -f 2, the self dual tensor on M is a 4k +1 form. If the
4fc+1 Betti number of M, b4k+ί(M) is non-zero, then the self-dual tensor has zero
modes on M, and its effective action on the compact space M could be treated only
with much more care than we have given. We hence assume that b4k+ί(M) = 0.5

5 In case /?4fc+1Φθ, I believe the contribution of the self-dual tensor to a possible global
anomaly depends on the action of π on H4k+1(M; R). Consideration of this point would carry us
far afield. However, the analogous question arises in connection with modular invariance in string
theory
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Even so, other spin fields descirbed by Q have zero modes [since, for instance,
fr0(M) = 1], and this means our manipulations involving detβ were naive.

As long as b4k+ί(M) = 0, the zero modes of Q are probably just a technicality.
They arise for wrong spin components of φΛβ that were introduced just for
convenience and have no anomalies. Dividing detβ by the determinant of a
suitable operator that describes the wrong spin fields (for instance, the Klein-
Gordon operator for scalars), one should be able to eliminate the unwanted zeros
of det Q. Our starting point - the self-dual tensor effective action - is well-defined as
long as b4k+1(M) = 0, and the answer (45) is also well-defined and presumably
correct.

In sum, for a theory with ND, NR9 and Ns chiral Dirac, Rarita-Schwinger, and
self-dual tensor fields, the change in the effective action under a diffeomorphism is

(46)

This is the answer to our problem only in a very limited way. To calculate ηD, ηR,
and ηs explicitly would hardly be feasible. From (46) it is not even obvious that A I
is a topological invariant (i.e., depends only on the topology of M and the
topological class of π). Happily, the Atiyah-Patodi-Singer theorem gives a
practical method to evaluate (46) in terms of properties of a spin manifold B whose
boundary is (M x S1)^ if such B exists. Assuming B exists, the theorem asserts that

iί?J{=index(K)-index(|>)+ f (K(R)-A(R)) , (47)
B

ηs = σ-fL(K),
B

where index( Jjf) and index(K) are the Dirac and Rarita-Schwinger index on B and
σ is the signature of 5; A, K, and L are the polynomials in the curvature tensor R
whose integral over a closed twelve manifold B would give index( |>), index(.R), and
σ. The second equation in (47) involves the combinations (index(jR)-index( ft)) and
(K(R)-(Ά(R)) for the same reason that (ηR — ηD) appears in (44); a vector field on B
restricts to a vector plus scalar on dB = (Mx S1)π.

Combining (46) and (47), the change in the action under a diffeomorphism is

AI = 2πι(i ND index( Jf> ) +% NR(mdex(K) - 2 index( J/> )) — | Nsσ)

- 2πi f A(K) + (K(K) - 2A(K)) -%NSL(R) mod2τri . (48)
B\\ 2 / 2 /

It may still not be immediately apparent that A I depends on M and π only.
However, precisely in a theory that is free of perturbative anomalies, the curvature
integral in (48) cancels, because the combination of characteristic classes that
enters is precisely the one that enters in evaluating perturbative anomalies on M.
Thus, consider in 10 dimensions the anomaly free N = 2 supergravity theory with
ND= — 2, NR = 2, Ns = 1. The curvature integrals cancel, and the index (|>) and
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index(R) terms can be dropped mod2πi. Hence (47) reduces to

AI= -2πz^—-mod2πi, (49)
o

which is our final result for this theory.
AI is a topological invariant, because we have seen in Sect. II that mod 16, σ(E)

depends only on the topology of dB = (M x S1)^ It should be recalled that (49) is
only to be believed if (for M of 10 dimensions) 65(M) = 0; and even so, the
derivation involved some highly plausible but unproved assumptions about
antisymmetric tensor fields.

We can now readily see that the N = 2 theory has no anomalies if formulated on
S10. As explained in Sect. II, every exotic eleven sphere S*1, and every space (S10

x S1)π = (S1G x S^ + S*1, bounds a manifold B of signature divisible by 8. Hence
AI = Omod2πi.

To discuss reduction to four dimensions, one must evaluate (49) with M = S4xK
for various K; we will not explore this here.

V. The O(32) and £8 x E8 Theories

With relief we now leave the mathematical complexities of the antisymmetric
tensor field, and turn to the phenomenologically more promising cases of O(32)
and E8xEs. We temporarily ignore the gauge fields and consider only the
gravitational contributions.

In these theories, the only fields with anomalous determinant are the Dirac and
Rarita-Schwinger fields, with ]VD = 495, NR = ί. From our results in the last
section, we can immediately write down the change in determinant under a
diffeomorphism π of some ten manifold M:

i = τri(494 indexβ( ty)+indexβ(jR)) - πi f (493 A(R) + K(RJ).

(50)
B

Here B is a spin manifold whose boundary is (M x S1)π; indexβ(^) and indexβ(#)
are the Dirac and Rarita-Schwinger index on B; and we have used the Atiyah-
Patodi-Singer theorem as in Sect. IV. Now, we saw in Sect. II that in twelve
dimensions indexjg(^) and indexβ(β) are always even, so - since we only want A I
modulo 2πi - we may drop these terms in (50). However, we must discuss the
curvature integral in (50), which is not a topological invariant since B has a
boundary. This curvature integral - the only surviving term in (50) - is

Now, |TrK6 has no generalization which is a topological invariant, as we
B

discussed in Sect. II. Luckily, for entirely different reasons the analysis of Green
and Schwarz singles out the case ND = 495, NR = 1 for which there is no Tr R6 term.

As for the terms J (Tr #2)3, f (Tr #2) (Tr R4), they have generalizations which are
B B
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topological invariants if on (M x S1)π we can solve the equation Tr R2 = dH, Tr R4

= dK. Now, happily the theories in question only make sense if the equation Tr R2

= dH can be solved on M, since the theories contain a physical field H which is
supposed to obey this equation. Also, with four or more uncompactified
dimensions (the relevant cases, presumably!), we always have TrR4 = dK on M.
Now, we would be unable to solve the equations ΎΐR2 = dH, ΎrR4 = dK on
(M x S^j, if these had no solutions when restricted to M, but the existence of
solutions on M does not guarantee the existence of solutions on (M x S1)π. In this
section, we consider cases in which H and K can be extended to (M x S1^ (this is
always so if M is S10). An interesting phenomenon arises when the extension of H
and K to (M x S^ does not exist; it will be our subject in Sect. VI.

Given that H and K exist on (M x S1)^ Eq. (50) has a generalization which is a
topological invariant and is obtained by adding

' f J/-ι_\6 J . j

How can such a contribution arise? There are two possible sources. Apart from
matter determinants, we must consider the variation of the anomalous terms in the
action that were added by Green and Schwarz. As for the determinants, Eq. (50)
includes contributions of the massless fields [the l/λj in Eq. (20)] but not of the
regulators [the l/(λj 4- iM) in that equation]. We will have to include the regulator
terms.

We first consider the anomalous terms in the action. The purely gravitational
terms introduced by Green and Schwarz were

S= r ί (ττϊβB(Ύr R2)2 + 3k £ Tr R4-^ωL

3ω*}) . (52)

Here B is the antisymmetric second rank tensor of the supergravity multiplet, and
ωf and a>j are the Lorentz Chern-Simons three and seven forms. The gauge
invariant field strength of B is H = dB + ωf (recall that we are temporarily ignoring
gauge fields).

Now, recall that we represented (M x S\ with a metric dt2 + gt

μ^dxμdxv, O^ί
^ 1 t = 1 and t = 0 are identified via π. The change in S is

ΔS = S(l) - S(0) = Γ-r f (rsWBCTr R2)2

(2π)6i

<^fΛί(τ^(dB)(Trll2)2-
(£n) o M

(53)

(We have used Stokes' theorem and the fact d Tr R2 = d Tr R4 = 0.) This is clearly
on the right track; if we can replace dB by its covariant generalization H = dB + ωf,
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we see in AS the sort of terms needed to make a topological invariant out of Eq.
(51). The extra pieces must come from the regulator pieces in (20), so we must study

, (54)
Q 0 j Aj-r IIVI Oil

where Σ represents a sum over multiplets, Σ represents a sum over eigenstates
Q _ J

and eigenvalues ψj and λj9 and Γ is the chirality operator. Evaluation of (54) is
closely related to evaluation of anomalies in one loop determinants; the
connection was explained in detail in [32]. It is clear that because of the large
regulator mass, (54) equals the integral over (M x S1)π, of a local function of the
spin connection and its derivatives. It is clear, as well, that this must be a
pseudoscalar function because of the factor of Γ. It can be shown [32], in fact, that
one obtains precisely a linear combination of Chern-Simons terms [with precisely
the combination of invariants that is related to perturbative gravitational
anomalies; this is why (^/)Reg cancelled out and did not have to be considered in
Sect. IV]. By the methods of [32] it can be shown that one gets in this case

(2π)6

)2 +TΓ52 ωf Tr R4

ί dt j (yy^6 ω|(Tr #2)2 + s^ωf Tr R4 +~5jβd(ω^ωj)). (55)
o M

(The first form given in Eq. (55) comes directly, as in [32], from the formal 12-form
expression for the anomaly; the second comes by integrating by parts.) Adding the
two, we get

, (56)

where H = dB-{ ω^. Thus, the non-covariant objects dB and ω combine, as they
must, into the covariant field strength H. (AS and ΔIReg were invariant under
coordinate transformations that vanish at t = 0 and t = 1 , but not otherwise. As far
as I know, it does not make sense to identify t = 1 with t = 0 by means of a non-
trivial diffeomorphism π until these expressions are combined into a covariant
form.) Thus we finally get an expression for the change in the action in terms of
topological invariants:

ΎrR4)

- ί H (τA?σrΛ2)2+3iϊTrΛ4)l
i)π J

(57)

where p\ and p^p2 were defined in Sect. II.
Let us pause a bit to make sure that the right-hand side of (57) is really a

property only of (M x S1)π, and does not depend on the choice of B. The argument
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is similar to previous ones. Let X and X' be two different spin manifolds with
boundary (M x S1)π. The two choices lead to two formulas AIX and AIX for the
change in the action:

AIX= -2πiΓf (-
L*

- ί

AIX'= -2πiΠ (τ^(Ύr

- ί

In the difference, the boundary integral cancels out, and one gets an integral over
the closed manifold X = X + (-X/):

AIX-AIX'=- 2πi [(τ3W(Tr £2)3 + ̂ Tr R2 Tr R4) . (59)
x

But this can be expressed in terms of the Dirac and Rarita-Schwinger index on X:

ΔIX-ΔIX'=- πi(493 index^(D) + Index^R.S.)) - 0 mod2πi , (60)

since the Dirac and Rarita-Schwinger indexes are even in twelve dimensions.
For an eleven dimensional spin manifold M, let

(61)

As in the discussion of λ in Sect. II, μ is additive in connected sums. This is useful for
calculating it. For instance, using facts described in Sect. II, we can now settle the
important question of whether the O(32) and Es x Es theories have global
anomalies when formulated on S10. In fact, (S10 x S1)π is the connected sum of S* *
and S^S10, so μ((S10 xSί)π) = μ(S1

π

1) + μ(S1 xS10). But μ(Sί1) = 0, since any
exotic eleven sphere bounds a parallelizable manifold of R=pι =P2 = 0 (that is,
R = 0 for some connection with torsion, and p^ = p2 = 0), and μ(S1 x S10) = 0, since
S1 x S10 bounds D2 x S10 (D2 is a two dimensional disc), and D2 x S10 has pl=prf2

= 0 (since, for instance, the standard metric on D2xS10 has TrΛ 2 = Tr.R4 = 0
everywhere).

It is noteworthy that μ is quite reminiscent of the invariant λ that characterizes
exotic spheres. But μ fails to detect the strangeness of exotic spheres because the
signature term is absent in (61).

It is not difficult to generalize these considerations to gauge anomalies. Here we
begin with a ten manifold M on which an O(32) or E8 x E8 bundle V is given. For
the theory to be consistent [31], M and V must be chosen so that Tr R2 — y^Tr F2

= dH for some globally defined three form H (F is the curvature in the adjoint
representation of O(32) or E8 x E8). Now we consider a gauge and/or coordinate
transformation π, via which we build a manifold (MxS1)π with bundle Vπ.
Assuming H can be extended to (MxS1)^ the modifications in the above
derivation are relatively trivial. [The variation of the Dirac determinant, for
instance, is still (iπ/2) ηD, where now ηD is the eta invariant for fermions interacting
with the metric and gauge field on (M x S1),,.] The change in the action can be
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expressed in a simple way in terms of a twelve dimensional spin manifold X which
is bounded by (M x S^}π and to which the bundle Fπ can be extended. It is

AI=-2πiμ((MxSi)π), (62)

where

μ((M x S1),) = -L, afe J (tτR2 - ± TrF2) β(tr£2)2

Tr F2 -^o(Tr F2)2 +|Tr F4]

ί #α(trK2)2+trK4

(Mxs1^

Tr F2 - ̂ o(Tr F2)2 +^Tr F4) . (63)

This can, of course, be reexpressed in terms of Pontryagin classes. The condition
for invariance of the theory under π is that μ = 0 mod 1. In the future, this formula
may have many applications in restricting compactifϊcation to four dimensions. A
special case is the subject of the next section.

VI. Dirac-Like Condition for Antisymmetric Tensor Fields

Since antisymmetric tensor fields were first intorudced [33], their analogy with
Abelian gauge fields has been striking, and it has been natural to ask whether they
might obey an analogue of a Dirac quantization condition [35]. Thus consider a
second rank tensor field B, with gauge invariance B-+B + dλ, and suppose that the
gauge invariant field strength H is H = dB, so dH = 0 [this is not quite so in the
O(32) and E8 x Es models, which we will come to shortly]. Let S be a closed three
surface in the (compact, Euclidean) space-time manifold M, and let

Q(S)=\dΣ^Hijk^lH. (64)
s s

Then Q(S) depends only on the topological class of S; if S can be deformed into S',
then β(S) — β(SO = ί dH = 0, where F is a four surface in M whose boundary is

v
S—S'. A Dirac-like condition would be that for all S, Q(S) = nq0, where n is an
integer depending on the topological class of S and q0 is a basic flux quantum of
some kind.

There were always many difficulties with this idea. Antisymmetric tensor fields
never appeared in the sort of non-linear structures that lead to quantization
conditions. It never was clear how to determine q0.

The recent developments [34, 5] cast a new light on this subject, for several
reasons. On the one hand, it is no longer so that dH = Q; rather, dH = trR2

— 1/30 Tr F2 [with F in the adjoint representation of O(32) or £8 x E8]. Hence for

neighboring surfaces S and S', Q(S) - Q(S/) =$dH=$(trR2- 1/30 Tr F2), which
V V

is non-zero in general. So Q(S) can vary continuously as S is varied in space-time.
This seems to disprove the idea of quantization. How can we quantize something
whose value depends continuously on the choice of SΊ
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Nevertheless, the O(32) theory does lead to a sort of quantization condition
on H. Although the argument given here does not generalize to E8 x £8, a similar
quantization law holds in that case because of multivaluedness of the Wess-
Zumino interaction. This will be discussed in detail elsewhere [36]. Depending
on M, it is rather difficult to formulate and prove the precise conditions. We will
therefore illustrate the idea with a simple example of compactifϊcation to seven
dimensional Minkowski space times S3. (Further compactification to four
dimensions would not greatly change the argument.) The Euclidean form of this
is M = SΊ x S3. We consider first a state of Fμv = 0, and the standard metric on SΊ

xS3.
Now, π7 (O(32))^Z. (It is because π7(E8) = 0 that our considerations have no

obvious generalization to £8 x £8.) Let π be the generator of π7(O(32)). We wish to
ask whether the O(32) theory formulated on S7 x S3 is invariant under π. As usual,
the basic tool is to study W=(S7 x S3 x Sl)π. In this case, π acts trivially on S7 x S3,
so (S7 x S3 x S1),, is simply the product S7 x S3 x S1 with a non-trivial O(32)
instanton field A on it. This field has the property that

J TrF 4 =l, ί (TrF2)2 = 0.
(2π)4 172,800

To use our basic formula that the action is invariant if μ = 0 [Eq. (63)], we must
find a spin manifold bounded by W to which the O(32) gauge field on W can be
extended. Here we can take this to be X = D4x(SΊ xS1)π, where D4 is a four
dimensional ball bounded by S3. In this case, with the standard metric on X, Tr R2

= Tr R4 = 0 pointwise, and all terms involving R may be dropped in the definition
of μ. We get

J H(3^(TrF2)2-TrF4). (65)
(2π)6l,152 (MχV)π

To evaluate this formula, we must first of all discuss H. On M = SΊ x S3, we
may take H = 0, or more generally any H such that dH = 0, since Tr R2 = Tr F2 = 0
for the standard metric on S7 x S3 with F = 0. To obey dH = 0 it is sufficient but not
necessary to take H = dP for some P. Let α be a multiple of the Levi-Civita tensor of
S3, normalized so f α = 1. The general solution of dH = QisH = dK + tα with some
real number t. s3

H is a physical field like any other, so the value of H on M is part of the data of
the physics problem under discussion. Equation (65) presumes that H can be
extended to (M x S1)π, and this is indeed possible in the case at hand. There is no
particularly natural way to extend H to (M x S1)π, and μ must be independent of
the choice of extension, but μ can depend on the value of H on M as on any other
physical data.

In Sect. II, we discussed the condition for formulas such as (65) to be
independent of the choice of solution HoϊdH = Tr F2. (The discussion was carried
out for gravitation, but generalizes immediately to gauge theories.) The require-
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ment is that Tr F4 = dK on (M x S1)^ In the case at hand, Tr F4 = 0 (pointwise) on
M, so this equation is certainly soluble on M. But it cannot be solved on (M x Sl)π.
Indeed, the equation ΎrF4 = dK cannot be solved on the subspace (S7 xS1)π of
(M x S1),,, much less on all of (M x S1),,, because j Tr F4 φ 0. Because of this,

the value of μ will depend on H [but only on the value of H on M, not its extension
to (M x S^J. Therefore, the equation for invariance of the theory under π, μ = 0,
imposes a condition on H, which will turn out to be a quantization condition.

It is, in fact, very easy to evaluate μ and find the restriction on H. The gauge
field on S3 x (S7 x S1)7C was the product of the zero gauge field on S3 and an
instanton on (S7 x S*)π. It can be extended to X very simply as the product of the
zero gauge field on D4 with an instanton on (S7 x S1)π. With thic choice, all terms
in μ disappear except one:

1 Γ . , 150 ,
μ= 6 J TrF4 J H=-r—τ J H(modl). (66)

\2n) 1,152 (S7χsι)π s3 (2ft) s3

Hence, the condition on H is

ΪH=(^~n, (67)

where n may be any integer. This condition indeed depends on the value of H on M
only.

This problem was unrepresentative because we took data on M such that Tr R2

= TrF2 = 0. As a result, we did not directly face the problem that J H changes
s3

continuously when S3 is varied. A more typical situation is to consider on S7 x S3 a
generic metric and gauge field with curvature and field strength R and F. One then
finds that vanishing of μ still gives a condition on H, but this condition is harder to
express. One way to express the result is that if ίΓ0 is one H field for which μ = 0, the

general one is H = HQ+H^ where H± must obey dHί = 0, | Hί= \* n.
s3 150

Another way to express the answer is that if S3* is some particular copy of S3 in S7

x S3, then an allowed H must obey J H= ... (n + δ\ where the "deficit" δ is
s3* 15U

independent of n but depends on the metric and gauge field of M and the choice of
S3*. The derivation of these statements is similar to the derivation we gave for the
special case of the standard metric and zero gauge field on S7 x S3.

Spaces such as M = S4 x S3 x S3 (where S4 can be regarded as the compactifϊc-
ation of four dimensional Minkowski space) can be treated similarly (one gets
restrictions on the integral of H over either S3). For M = S4 x S1 x S1 x S1 x S1

x S1 x S1, one gets twenty restrictions (one for the integral of if over any product
of three Sl9s). If M = S4 x K with a more complicated K, no restrictions will arise if
there are no non-trivial three surfaces in K so that #3(K) = 0. If H3(X)ΦO, then
#7(M)ΦO. The number of quantization conditions will equal the rank of the
subspace of J¥7(M) that can be realized as the pullback to M of elements of
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#7(O(32)) via mappings ^:M->O(32). It might be that in general the number of
quantization conditions is less than the number of independent three surfaces.

VII. Conclusion

In conclusion, I would like to consider a question which may have puzzled the
reader. If the O(32) or £8 x E8 theories had turned out to have global anomalies
when formulated on S10, would this have been good or bad?

If one of these theories is correct, we must sooner or later find an explanation
for the compactification which must occur. Could it have been that one of these
theories would have a global anomaly on S10 but not on some other space M = S4

x KΊ Any orientation preserving diffeomorphism π of S10 always has an analogue
in the diffeomorphism group of any ten manifold M. In fact, π (or rather, an
element of its topological class) can always be chosen to vanish outside a ten
dimensional ball B embedded in S10. B can be embedded in any M, and by letting π
act on this embedded copy of B, we get a diffeomorphism of M that we will again
call π.

Now, (M x S1^ ̂  (M x S1) + S* *. The proof of this was summarized in Fig. 4
(for the special case M = S10, but this argument generalizes). Since the invariant μ
relevant for global anomalies is additive in connected sums, and since
μ(M x S1) = 0 for any M, we get μ(M x S1)π = μ(S**) for any M. Hence if there were
global anomalies on S10, so μ(S^) Φ 0 for some π, the theory would be inconsistent
on any M; it would be nonsense.

Thus, global anomalies could not have been expected to explain compactific-
ation. Actually, rather than eliminating global anomalies, compactification might
generate them, since M = S4xK might have diffeomorphism (or gauge transform-
ation) classes that do not come from any diffeomorphism (or gauge transform-
ation) class of S10. We discussed an example of this in Sect. VI.

It is not arbitrary diffeomorphisms of S4 x K that should be investigated. Let
p e S4 be "the point at infinity," an arbitrary point. We want diffeomorphisms of
R4xK that vanish at infinity. (Here R4 is four dimensional Euclidean space, which
will become four dimensional Minkowski space after Wick rotation.) Physically,
the study of global anomalies should be concerned with diffeomorphisms of
R4 x K that vanish at infinity, and hence with diffeomorphisms that leave fixed a
neighbourhood of {p} x K.

The choice of S4 corresponds to treating four dimensional space time as
Minkowski space. In the long run, a more delicate choice will be necessary to
accommodate cosmological considerations. It may be that eventually global
anomalies will have cosmological applications, restricting the large scale topology
of space-time.
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