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Abstract. Based on previous work we show how to join two Schwarzschild
solutions, possibly with different masses, along null cylinders each representing
a spherical shell of infalling or outgoing massless matter. One of the
Schwarzschild masses can be zero, i.e. one region can be flat. The above
procedure can be repeated to produce space-times with a C° metric describing
several different (possibly flat) Schwarzschild regions separated by shells of
matter. An exhaustive treatment of the ways of combining four such regions is
given; the extension to many regions is then straightforward. Cases of special
interest are: (1) the scattering of two spherical gravitational "shock waves" at
the horizon of a Schwarzschild black hole, and (2) a configuration involving
only one external universe, which may be relevant to quantization problems in
general relativity. In the latter example, only an infinitesimal amount of matter
is sufficient to remove the "Wheeler wormhole" to another universe.

1. Introduction

In a previous paper [1], we showed the existence of a spherical gravitational shock
wave at the horizon of a Schwarzschild black hole due to a massless particle
located there. We show here how to generalize this result to a spherical shell of
matter which joins two Schwarzschild regions, possibly of different masses. We
give an exhaustive treatment of the ways of joining four Schwarzschild regions
(possibly flat). We then discuss several examples of special interest, including the
scattering of two such shells of matter, and a model for a black hole with only one
asymptotic region.

It is particularly important to notice that by gluing Schwarzschild solutions
together this way one finds solutions of the Einstein field equations with energy-
momentum Tμv corresponding to a pressureless dust cloud moving with the speed
of light at the boundary. Attention is given to the physical requirement that the
energy density of this matter distribution be positive. The "cloud" then consists of
ordinary massless particles moving parallel to each other. It is this result that
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makes our solutions highly nontrivial. It is believed that the solutions given here
may be relevant to a better understanding of the quantum mechanics of black
holes [2].

The paper is organized as follows. In Sect. 2 we show how to join two
Schwarzschild regions, and in Sect. 3 we extend this to four Schwarzschild regions.
The (straightforward) extension to many Schwarzschild regions, as well as several
examples, are discussed in Sect. 4.

2. Two Schwarzschild Regions

It was shown in [1] that a massless particle at the horizon of a Schwarzschild black
hole causes a spherical gravitational shock wave at the horizon. This is described
by the metric1,

where Θ(u) is the usual step function, f(θ, φ) represents the shift due to the shock
wave, dΩ2 is the standard 2-sphere metric, and r = r(u, v + Θf). The only nonzero
component of the Ricci tensor is

Ruu=--e(Δf-f)δ(u), (2)

where A is the Laplacian on S2 and δ(u) = Θ\u) is the Dirac delta "function." The
only nonzero component of the stress-energy tensor for a massless particle of
momentum p located at the horizon (u = 0) at θ = 0 is

2 ^ , (3)

where the first delta function is the (2-dimensional) delta function on the 2-sphere.
The Einstein field equations can now be solved for /.

Here we instead consider a spherical shell of matter located at the horizon with
stress-energy tensor given by (all other components are zero)

where 0 S K = constant, and the normalization is chosen for convenience. The
Einstein field equations now yield

/ = * ; (5)

note that the metric (1) is now C° in the coordinates given.
Summarizing the above, a spherical shell of matter at the horizon of the

Schwarzschild black hole is described by the metric

ds2= e-rl2mdudυ + r2dΩ2, (6a)

1 There exist coordinates in which this metric is C°
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where

Wί ( M = 0 )
iWί (6b)

2m ) \u(v + κ) (u^O). κ '
The only nonzero component of the Ricci tensor is

* „ „ = — δ(ύ) (7)
e

which, as stated before, corresponds to a cloud of massless particles moving
parallel to each other if K > 0.

Technical Comment. Had we applied instead the more standard method for joining
two regions, outlined in the Appendix, to the metric (6), we would obtain for the
Ricci tensor not (7) but

lκ fsκ2

Ruu=^δ(u)+^Θ(l-Θ), (70

with all other components zero. We take the point of view that (7) and (7") are
physically equivalent, since their difference, integrated over a test function,
vanishes. In what follows we will use the convention that 0(1 — <9) = 0 in any
expression containing a δ(u) term.

We now join two Schwarzschild regions of different (nonzero) masses, with
metrics given by

MA 3

ds2 = — e ~ rl2mdudv+r2dΩ2, (u ̂  α),

r

where U = U(u), U(a) = :β, V=V(υ), and

r

(8b)

If α = 0, then clearly r = 2m at the join. But since V cannot be constant there, we also
have β = 0, which in turn forces M = m. This is just the previous case described by
(6). We therefore assume αφOφβ. Comparing Eqs. (8b) at u = a now yields

V'(v\— m α ~ ^ +

M2β

Finally, requiring that the metric (8a) be C° forces

α _ β
m =:y (10)
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In the situation considered here, where there are only two regions, we can always
choose U = u — oc + β. Then the metric (8) is very closely related to that of Vaidya
[9], with the mass set equal to a step function. In the next section, however, we
will need a more general choice of U [but we will always assume t/'(α)>0].

In general, the Vaidya metrics [9] describe space-times with a null fluid source.
Hiscock [10; see also 11] constructed two-dimensional models of evaporating
black holes based on [9].

Calculating the Ricci tensor as in the Appendix, the only nonzero component is

yr2
-(M-m), (11)

representing a spherical shell of massless matter located at u = α and moving in the
j -dίrection. Requiring that the energy density of this matter be positive forces

γ>0

γ<0

M>m,

M<m.
(12)

This is depicted, together with the previously discussed case where γ = 0 {M = m),
in Fig. 1.

The above calculations for M + m generalize a situation previously considered
by Synge [3] in which one of the masses is zero, i.e. one region is flat. We thus

a) M>m

u\/v

b) M =

c) M <m

Fig. la-c. The location (heavy line) of the spherical shell of matter used to join two Schwarzschild
regions with (positive) masses m and M, respectively. The energy density of the shell is positive.
Three possibilities are shown: a M > m, b M = m, c M < m. Wavy lines represent the singularities
at r = 0; boundary lines at 45° represent null infinity
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consider the case m = 0. For convenience in the calculations of the next section we
interchange the roles of u and v so that

ds2=-4dudv+r2dΩ2, (via),

where U = U(u), V=V(v), V(a) = :b, and

v — u = r,

( r

(via),
(13b)

We can as before assume αφOΦfc. Comparing Eqs. (13b) at v = a yields

and requiring that the metric be C° forces

(14)

(15)

We again assume F'(α)>0, so that b>0 (for positive M).
Calculating the Ricci tensor as in the Appendix, the only nonzero component is

AM
(16)

representing a spherical shell of massless matter now located at v = a and moving
in the w-direction. Note that the total energy on any space-like hypersurface
through v = a is precisely the Schwarzschild mass M. This situation is shown in
Fig. 2a.

a)

r = 0

Fig. 2a and b. The global structure when a Schwarzschild region is joined to a flat region. The mass
of each region is given; the spherical shell of matter used to join the two regions is indicated by the
heavy line. The vertical lines labelled "r = 0" are only coordinate singularities
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a)

r=0

Fig. 3a and b. A different way to join a flat region to a Schwarzschild region than that depicted in
Fig. 2. However, the energy density of the spherical shell of matter (heavy lines) used to join the
two regions is now negative. The masses M and m are assumed to be positive; allowing them to be
negative removes the energy density problem but changes the global structure (cf. Fig. 7)

Synge [3] considered not the above case but rather M = 0. The mathematics is
entirely analogous, except that now r = U — V for v ̂  α, and M must be replaced by
m in the Ricci tensor [Eq. 16)]. This case is shown in Fig. 2b, which is equivalent to
Fig. 2 of [3], and which represents a Schwarzschild white hole which radiates all of
its mass away.

There is another, inequivalent way to join a flat region to a Schwarzschild
region. This is done by replacing the first of Eqs. (13b) by r = u — v. The resulting
space-time is shown in Fig. 3a. However, the sign of Rvv is changed by this
procedure, so that either the energy density at the join is negative (the case shown)
or the mass M must be negative. An analogous procedure applied to Fig. 2b leads
to Fig. 3b, which can be thought of as a classical picture of black hole evaporation.
Note that the boundaries of the Penrose diagrams in Fig. 3 are no longer convex.
As a rule of thumb we find that the boundary is always convex if the shells have
positive energy density.

Finally, for the sake of completeness, we consider joining two flat regions.
However, there are no spherical shells of matter in flat space analogous to the ones
at the horizon of a Schwarzschild black hole discussed at the beginning of this
Sect. [1]. Thus, the only way of joining two flat regions that will be considered here
is given by simple identification, i.e. with no shift at all.2

2 However, Penrose [4] gives a different way of joining two flat regions along a spherical,
sourceless shock wave. One could also consider planar shells of matter analogous to the shock
waves in flat space discussed in [1]
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3. Four Schwarzschild Regions

We can use the results of the last section to patch together several Schwarzschild
regions. In this section we investigate the situation shown in Fig. 4, where spherical
shells of massless matter at u = oc and v = a are used to join four Schwarzschild
regions. The continuity requirements of Sect. 2 at each boundary are sufficient to
yield a "reasonable" space-time. However, if no coordinates are given in which the
metric is also C° at the point common to all four regions, then one runs the risk of
having a conical singularity there. We wish to avoid such singularities, and thus
require the metric to be C° everywhere. This will, in general, impose one constraint
on the regions to be joined.

There are 17 inequivalent ways of arranging four masses in a pattern such as
Fig. 4b, bearing in mind the fact that we must treat flat regions, as well as two
adjacent regions with the same mass, as special cases. However, only 7 of these
need to be calculated explicitly. The others are either ruled out completely by
elementary considerations, reduce to a case discussed in Sect. 2, or are special cases
of these 7. The 7 "fundamental" cases are shown in Fig. 5.

r = 0

u\Λ

Fig. 4a and b. Four Schwarzschild regions are joined together in a C° manner by adding spherical
shells of massless matter (heavy lines) at u = α and v = α. The global structure as shown in a is not
correct in general. A schematic representation of the same situation is given in b
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Fig. 5a-e. The seven basic ways of arranging four masses. A calculation of these seven cases
enables one to calculate all possible cases
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The first of these, shown schematically in Fig. 5a, is the case where all 4 masses
are different and nonzero. This is described by

ds2 = _ -^Le-^dUidVi + ̂ dQ2, (17a)

^ ' ( 1 7 b )

where w ^ t φ ) , υ^vlv),
z= 1 o ^ , ^

v<a
(18)

as indicated in Fig. 4, and where u = uu v = vί. Evaluating the continuity
conditions (9) and (10) at the point (w = α, v = a), we obtain

m ί ^ = m . ^ = : _ L 9 (19b)

for(i,/) = (l,3)or(i,/) = (4,2),and

^ = ̂ y~-/°W 7̂/, (20a)
Ui(a) mpj(ά)

™^ = ™r^--> ( 2 0 b )

for (/,/) = (2,3) or (/,;) = (4,1), where r0: = r(u = a,v = a).

There are now two ways to use Eqs. (19a) and (20b) to obtain an expression for

e.g. v'2, which are

Comparing the right-hand sides of these two equations and using Eqs. (17b), we
finally obtain

(r0 - 2mJ (r0 - 2m2) = (r0 - 2m3) (r0 - 2m4). (22)

Other combinations of Eqs. (19) and (20) yield expressions for the various w (α) and
v&a) but no further conditions. Equation (22) is thus the only additional condition
[other than e.g. Eqs. (9) and (10)] which must be satisfied so that a C° joining of
four Schwarzschild regions is possible.3

3 The coefficients of the delta functions in Ruu and Rvv are now automatically C°
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We will not explicitly present the analogous calculations for the cases depicted
in Fig. 5b and 5c. The result is the same: Eq. (22). Furthermore, Eq. (22) is trivially
satisfied for the remaining four cases shown in Fig. 5. We thus conclude that
Eq. (22) must always be satisfied at the point where two shells of matter cross, and
that it is also sufficient to guarantee the existence of a C° metric in a
neighborhood of such a point whenever it is a nontrivial condition.

We now turn to the case shown in Fig. 5d, where three of the masses are equal
and the fourth is nonzero. This situation is described by Eqs. (17) and (18), where

J (23)

and

uί=UΛ-\-λ; VX=VA,
(24)

u2 = u4; V2 = VΛ. + K.

Evaluating the continuity conditions (9) and (10) at the intersection point
(w4 = 0, t?4 = 0), we obtain

•?..„*§ -±, (25b)
λ u3(λ) y13

( 2 6 a )

(26b)
y23

where we have used r0 = 2m. Substituting e.g. Eq. (25a) into Eq. (26b) and using
Eq. (17b) leads to

Note that if the shifts K and λ are positive, then M>m. This, then, is the additional
condition which must be satisfied so that a C° metric describing Fig. 5d exists.3

The situation shown in Fig. 5e can be considered as a limiting case of Fig. 5d,
and we could therefore derive the additional condition as the limit as M->0 of
Eq. (27). However, because of its importance, we give the calculation explicitly.
The metric in region 2 is now

ds2 = - 4du2dv2 + r2dΩ2, (28a)

with

υ2-u2 = r. (28b)

Elsewhere the metric is given by Eq. (17) and (18), where

m3 = mί=m4 = :m, (29)
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and

The continuity conditions (14) and (15) evaluated at the intersection point
(w = 0,ι; = 0) yield

1 1

(31a)

(31b)

e, (32a)

(32b)

u'2(0) 2mκ '

1 _ K

v^) ~2m'

1 1

Ό2(0) 2mλ

1 λ

u2φ) 2m'

where we have again used r0 = 2m. Comparing, e.g. Eqs. (31a) and (32b), we obtain

κλ = e, (33)

which is indeed the limit as M->0 of Eq. (27)4

We now turn to the situation shown in Fig. 5f, where precisely two (adjacent)
masses are equal and the others are nonzero. This is described by Eqs. (17) and (18),
where

m1=m3 = :m, (34)

and
u3 = u1; v3 = v1 + κ. (35)

Evaluating the continuity conditions (9) and (10) at the intersection point
(M = 0, v = a), yields

a + κ v2(a) > 2 3 '

(37a)

_L, (37b)
γ4ι

( 3 8 a )

«.ψ ±, (38b)4 w(0) γu2(0) 4w4(0) γ42

4 λ has to be replaced by — λ in going from Eq. (27) to Eq. (33) in order to compensate for the
different roles of the various regions
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where we have used ro = 2m. Substituting e.g. Eqs. (37b) and (38a) into Eq. (36b),
and using Eqs. (17b) leads to

K="^a, (39)
m —ra4

and this is the additional condition for continuity in this case.3

Finally, direct calculation for the case shown in Fig. 5g yields

^ (40)
m — m4

which is just the limit as m2->0 of Eq. (39), as expected.

4. Discussion

The results of the last two sections can now be used to join as many Schwarzschild
regions as desired. It is only necessary that the continuity conditions of Sect. 2 be
satisfied at the boundary between any two regions, and that those of Sect. 3 be
satisfied at the intersection points connecting four regions.

We now discuss some of the cases shown in Fig. 5 in more detail. The situation
shown in Fig. 5d describes the collision oϊtwo spherical shells of massless matter as
described by Eqs. (6) and (7). It is remarkable that the region behind the collision
(region 3) is still described by the Schwarzschild metric, but for a different mass.
This is to be contrasted with the corresponding case in Minkowski space, namely
the collision of two plane gravitational shock waves due to massless particles
moving at the speed of light, which is much more difficult and for which only
approximate results are available [5]. However, a quite general feature of the
collision of two sourceless waves in flat space persists here, namely the presence of a
(space-like) singularity after the collision [6].5

Another case of special interest is the one described by Fig. 5e and Eqs. (17),
(18), and (28) thru (33). The global structure of this situation is shown in Fig. 6.

Γ=0

r=0

Fig. 6. The Penrose diagram for the space-time described by Fig. 5e and Eqs. (17), (18), and (28)
thru (33). Region 2 now represents a flat region inside the black hole. The other three regions are
described by the Schwarzschild metric for the same mass m. Spherical shells of massless matter
(heavy lines) sit at u = 0 and v = 0; the metric is C°. Note that there is only one asymptotic region

Note that, unlike the usual Schwarzschild metric, this space-time has only one
asymptotic region. This could be relevant for considerations of the Hawking effect
involving back-scattering [2,7]. Note further that the energy of the ingoing (and

There are no sourceless waves in the Schwarzschild case [1]
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a)

T. Dray and G. 't Hooft

b)

r=0

C)

Fig. 7a-c. The scattering of two spherical shells of massless
matter as described by Eqs. (13) thru (16). The mass
distribution shown in a can only be realized if one of the
masses is negative (assuming that the shells of matter, shown
as heavy lines, carry positive energy density). The
corresponding Penrose diagram for M < 0 (m>0) is shown in
b, while that for the mass distribution of Fig. 5c (with positive
masses) is shown in c

outgoing) matter as seen by an inertial observer in the flat region 2 is just the
Schwarzschild mass m, whereas a "physical" observer (at r = constant in Schwarz-
schild coordinates) in the asymptotic region 1 sees only infinitesimal amounts of
matter at t = ± oo. Since a physical black hole may have been formed by infalling
matter, and may end by emission of Hawking radiation, Fig. 6 may well be a better
representation of the black hole than the usual Schwarzschild metric.

Another situation which would be interesting is shown in Fig. 7a this is just
Fig. 5c with the roles of the regions interchanged. This would represent the
scattering of two spherical shells of massless matter as described by Eqs. (13) thru
(16) with flat in and out regions. However, a careful analysis of these equations (and
cf. Fig. 2 and 3) shows that the only ways of having region 3 and/or region 4 be flat
involve either a negative Schwarzschild mass or negative energy density of (one of)
the shells of matter. One possibility, with positive energy density and one negative
mass, is shown in Fig. 7b.6 For comparison, in Fig. 7c we give the Penrose diagram
associated with Fig. 5c note that this space-time has no asymptotic region.

Appendix

Given two regions {u>0} and {u<0} with C° metrics gab9 the standard [4, 8]
way of joining them is to define the full metric to be

(Al)

(A2)

where Θ = Θ(u) is the step function. Introducing the notation

[β] := lim Q- lim β,
u->0+ u-*0~

6 No attempt has been made to keep the space-time shown in Fig. 7b C° at r = 0 by requiring
that both shells of matter come in from r= oo and go out to r= oo
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and assuming

[A*]=0, (A3)

(so that gab is C°) we obtain for the Christoffel symbols and Ricci tensor

Γabc = (l-Θ)Γabc+ΘΓai, (A4)

RΛ = (\- Θ)R;b + ΘR:b + δQΓS\ - [ C ] 50

+6>(i-Θ) &rs\ [ Γ J - uz\ [r;6]), (A5)

where δ = δ(u) = Θ\u) is the Dirac delta "function."
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