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Abstract. Using block spin renormalization group techniques, we rigorously
control the functional integral of a weakly coupled critical lattice ¢* theory in
four euclidean dimensions proving the infrared asymptotic freedom of the
model. This solves the infrared counterpart of and sheds some light on the
problem of existence of continuum renormalizable ultraviolet asymptotically
free models.

1. Introduction

One of the fundamental problems of Quantum Field Theory (QFT) is the existence
of non-trivial models describing couplings of fields and scattering of particles. Such
models do exist on the level of formal renormalized perturbation series, where
renormalization removes the ultraviolet (UV) divergences of the naive perturba-
tion expansion. The problem of non-perturbative existence can be viewed as
equivalent to a non-perturbative understanding of renormalization. Up to now,
the attempts at a non-perturbative control of the QFT models (constructive QFT
[23], exactly soluble models [26]), although very instructive, have failed to
produce quantum field theories in four space-time dimensions.

Much of our present understanding of the existence problem for QFT comes
from the Renormalization Group (RG) approach. The RG, in its most full-fledged
version [41] cast into the statistical mechanical framework in the euclidean space-
time, replaces the static point of view of renormalized perturbation theory by a
dynamical one. We try to see, mostly also perturbatively, how the local (euclidean)
field theory may be obtained from its cut-off non-local versions in which the source
of the troubles: the short distance (UV) singularities are regularized in order to
guarantee the existence of the model. One of the crucial concepts arising from the
RG approach is that of (UV) asymptotic freedom [25, 35]: a model is UV
asymptotically free if its short distance asymptotics is non-interacting (free).
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Asymptotic freedom provides a self-consistency condition on the perturbative
approach to the local limit field theory. This is the reason behind a common belief
(not quite shared by us) that only asymptotically free models (or their transforms)
have a chance to exist in four dimensions.

Unfortunately, the simplest model of a renormalizable quantum field in four
dimensions, the A¢* theory, turned out not to be (perturbatively) UV asymptoti-
cally free for >0 [38]. This raised serious doubts about the existence of a non-
trivial local limit for this case [41] confirmed by detailed studies [2, 3, 13, 14].
Today, although not completely excluded [15], positive coupling ¢4 quantum field
theory is generally believed not to exist.

Fortunately, the four dimensional non-abelian gauge theories, pure as well as
with not too many fermion flavors (QCD) provide text-book examples of
renormalizable, UV asymptotically free models [25, 35, 27]. This gives importance
to the non-perturbative study of renormalizability and asymptotic freedom.

In the present paper, we consider the infrared (IR) counterpart of the UV
problem presented above: a massless euclidean lattice theory which is IR
renormalizable (has a dimensionless coupling constant and renormalizable IR
divergences in every order of naive perturbation expansion) and is expected to be
IR asymptotically free: its long distance asymptotics is perturbatively free
(gaussian). Specifically, we consider the massless lattice A¢; theory with 1>0. We
could have also treated a model more realistic from the point of view of statistical
mechanics: the Landau-Ginzburg theory of the uniaxial dipolar ferromagnet
[10, 29] which exhibits a similar behavior, confirmed by experiment [1], in three
dimensions.

The massless ¢4 theory presents in two ways non-trivial renormalization
problems. In perturbation theory, the A¢5 model with vanishing bare mass has IR
divergences in arbitrarily high order due to the self-energy diagrams [32]

Z(p)
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However, if we fix the physical mass to zero (the correlation length to infinity)
adjusting the bare mass appropriately (this may be viewed as IR renormalization),

then the mass insertions
2(0)

p* \/ P’ Q)
N\

will subtract the self-energy diagrams turning them to
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and will render the perturbative expansion finite. [In terms of the RG this is the
problem of relevant perturbations or the naturality problem. In UV renormaliza-
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tion it corresponds to a careful adjustment of the bare mass at large cut-off to get
an (O(1) mass at the ((1) scale.]

The other, more fundamental, question is the IR divergence of perturbation
theory at vanishing external momenta. The RG predicts that the (rescaled) Green’s
functions at large distances become those of the free theory.

The method by which we achieve a rigorous control of the weakly-coupled
© massless-¢3-theory functional integral is the block spin (BS) version of the RG
[28]. We split the integration into a sequence of steps. In step n, we fix the (rescaled)
averages of fields over cubes of size I (n'* block spins) and integrate out the
fluctuations of the averages over cubes of size I" . At the critical point, the n'™ BS
effective theory can be viewed as siatistical mechanics described essentially by a
local ¢* interaction (plus irrelevant, approximately local corrections) with the
(running) coupling constant A, changing from scale to scale. The second order
perturbative computation gives

A=y —OC3- 1) 5 Q)

1
xn~(o<ﬁ>. (5)

This expresses the perturbative IR asymptotic freedom of the massless ¢ theory.
The slow (logarithmic) decrease of 4, is characteristic for the renormalizable
models with dimensionless couplings and should be contrasted with the (super-
renormalizable) behavior of the critical ¢ theory with d >4, where 4, = O(L*“*~%).

Our aim is to show that the corrections to the perturbative analysis which
evaluates the contribution of the fluctuations on the distance scale L' by expanding
it to the second order in the effective coupling 4, of this scale are small and do not
change the qualitative picture of the IR behavior. This is not obvious since the
perturbation expansion is divergent. Note, however, that the A,-perturbation
theory should be contrasted with the usual perturbative expansion in the initial
coupling constant (on all scales) which lacks self-consistency of the latter and
exhibits very non-uniform behavior of remainders. The bounds on the corrections
are obtained by carefully weighting the essentially perturbative contributions of
small fields against the non-perturbative ones of large fields. The big help in the
analysis is provided by good analyticity properties of effective interactions of the
BS fields in the field variables for which we can trade their bad analyticity
properties in 4,. Finally cluster expansion techniques [24] are used to exhibit the
approximate locality of the BS effective interactions.

The present paper contains the proof of the convergence of the BS effective
interactions to zero at the pace predicted by the perturbative argument

[i.e. like (9(%)] In the limit n— oo, the distribution of the BS fields becomes

which results in

free (Gaussian). One can easily extend the present method to give the control
of correlation functions and of their massless decay, compare [18]. Existence of
logarithmic corrections to scaling [407] should be also confirmed by a straightfor-
ward analysis of the higher correlations. This way, we expect to bridge our work
with the UV problem, as in [2] the triviality of positive coupling continuum ¢
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theory was deduced from the presence of the logarithmic corrections to scaling in
the critical lattice theory (for all 1> 0).

However, there seems to exist a more direct UV application of our method. We
expect to be able to show the existence of the continuum euclidian nontrivial UV
asymptotically free ¢% theory for the (physical) coupling in the following region of
the complex (cut) plane

ImA

Y, ©
% Re A

On the lattice, these theories may easily be written in terms of stable models which
are perturbatively UV asymptotically free. The control of the continuum limit is
very similar to what is done in the present paper: we only have to start very close to
the free theory and study the departure of the RG flow from it. All these models
seem, however, to lack the physical positivity (i.e. the quantum mechanical
interpretation in the Minkowski space). On the negative axis, there exist two
natural proposals for the theory. It is also easy to set up a stable physically positive
lattice version of the A <0 ¢ model. The latter probably does not have the UV
asymptotically free continuum limit, however.

In conclusion, our work seems to provide a right approach to the construction
of renormalizable asymptotically free models, both in IR and UV.

The non-perturbative control of a simple IR model having been achieved, we
may ask questions about the relation of the (renormalized) perturbation expansion
to the non-perturbative constructs. This is a more difficult problem. We hope to
produce a proof of the Borel summability of the perturbative expansion for the IR
#% theory soon. The renormalon singularities [5, 30, 34, 397 of the Borel transform
of the expansion sit in this case on the negative axis and do not obstruct the Borel
summability although render its proof more complicated than in the super-
renormalizable case [12, 19, 33]. In general, we expect the renormalon singularities
due essentially to the slow change of the effective coupling 4, from scale to scale to
be much easier to treat than the instanton ones [31, 9] which encode a detailed
information about the large field behavior of the effective interactions, see [20],
where we apply Ecalle’s theory [11] of resurgent functions to the study of the
Borel-transform analytic structure for a simplified model.

These problems are not tackled in the present paper which is organised as
follows:

Section 2 sets up the BS RG formalism.

Section 3 contains the perturbative analysis of a single BS transformation and
studies its validity.

In Sect. 4, we discuss a general form of the effective interaction of a BS field
exhibiting its leading terms, approximate locality and analyticity properties.
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Section 5 describes how this form carries over from the BS interaction on scale
I" to the one on scale I**1. This is done by establishing a cluster expansion for a
functional integral over the fluctuations of the I BS fields about fixed I'*! BS
values.

Section 6 states expected bounds on the contributions of various terms to the
effective BS interactions inspired by the discussion of Sect. 3.

In Sects. 7-11, we show how these bounds carry inductively from one length
scale to the next one. This is the technical core of the paper. We estimate in turn the
local contributions to the new effective interactions (Sect. 7), the non-local small
field ones (Sect. 8), the quartic term of the interaction and the new effective
coupling constant (Sect. 9), the large field contributions (Sect. 10) and, at the end,
the quadratic terms of the interaction and mass and wave function renormaliza-
tions (Sect. 11).

The technical work is done in finite periodic volumes but with volume
independent estimates. This allows us to pass to the thermodynamic limit what we
do in Sect. 12. For the infinite volume theory, we localize the critical values of the
parameters (mass squared) of the initial theory. For the critical point of the model,
the IR asymptotic freedom follows from our inductive bounds of Sect. 6.

Finally in Appendix 1, we estimate the contributions of the second order
Feynman graphs to the change of the running coupling constant 4,, crucial in

.. 1
obtaining the ¢ " decrease of the latter.

In Appendix 2, we prove a simple fact, related to the Gleason’s problem [21]
about functions of complex variables, used in Sect. 11 to control the mass and field
strength renormalizations.

The paper is essentially self-contained. Some of the earlier results concerning
the BS formalism are, however, quoted here without proof. The general idea and
much of the technical analysis we do is close tc that of [17] (the renormalizable
case proves to be in fact not much more difficult and quite similar to the super-
renormalizable one, contrary to the gneral expectation). We try to avoid referring
directly to [17] being, however, more sketchy in arguments which were worked
out to greater detail there.

As we learn, J. Feldman, J. Magnen, V. Rivasseau, and R. Sénéor expect also to
control the critical weakly coupled ¢% theory using a version of the phase-space cell
expansion of [22] strengthened by the RG type of analysis.

2. Block Spin Renormalization Group

Let us consider a scalar field on the unit lattice ¢ = (¢#,), x € Z*. We shall define the
Hamiltonian of the system for ¢ with compact support by

HG=4 T 6= ) +ImE T8~ 64T Gonth? + 1o T 61
=4441G5 19>+ V(9). M)

where {xy) runs through unordered pairs of nearest neighbor points (i.e.
Ix—yl=1) and — Gy ' =4 is the lattice Laplacian. Note that in (1) the quadratic
contribution to the Wick ordering of the quartic term has been separated from the
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mass term. We would like to control the Gibbs state (states) corresponding to (1)
with m3 =m2,;,(4,) such that the correlation length of the model is infinite (physical
mass is zero). Our approach to the problem of the thermodynamic limit will be
pragmatic. We shall first put our system in a finite periodic box A=(Zx)* for L
even, N =0 integers, and then, only after having done the whole analysis in finite
volume, we shall pass to the thermodynamical limit. In principle other reasonable
boundary conditions could be handled too at a cost of additional technical
complications but we expect that they do not produce different states.

It is convenient to identify A with (—4IV, $I¥N]*CZ*, with the algebraic
operations taken modulo L. Let us define the finite volume (periodic boundary
condition) Hamiltonian by

HP)=2% > ($:—¢)*+38471 (% ¢x>2

{xy)
+3my Y $3—6d0 X Goubitho 3 9%
xeA xed xeA
=3{4|Gol¢> +V(4), ®)
where the periodic boundary condition inverse covariance is
(G(/)\)x—yl = 2d5xy - Z 5x+ vy + éA_ ! ’ (3)
Iv|=1

X, y € A (A denotes also the number of points in A). For convenience, we have also
regularized the zero mode of the periodic Laplacian by introducing & >0 to make
(Gg)~ ! strictly positive (in the thermodynamical limit the ¢ dependence is wiped
out). Note that for ¢ with compact support, #"(¢)— #(¢). In the periodic volume
A, we define the Gibbs measure as

7L —# " HID"4, @
where
D=T1dp. ©

and Z, is the partition function in A normalizing (4). In what follows, we shall stay
inside finite volume doing nevertheless volume independent estimates. This will be
crucial for the final passage with A to Z*. To simplify the notation, we shall drop
the superscript A on the finite volume expressions.

In order to study the contributions of various distance scales to (4), we
introduce the block spin (BS) fields [28,16] ¢"=(¢"), xeA,=(L "A)nZ*,
n=1,...,N, by

$i=z, '2L7>" 2 Proxty =2, 2(C"P)s, ©)
—1/2Ln <);:u§ 1/2L»
where by C we have denoted the lattice operator with the matrix elements
ny = L_ 3 Z 5Lx+ vy"* (7)

v
—1/2L<vH<1/2L
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The factors z, giving the (finite) wave function renormalization will be determined
later. The block spin fields are distributed with Gibbs measures given by effective
Hamiltonians

exp[ —#"(¢"]=exp[f, A1 exp[ — H($)10(¢"—z, '*C"$) D¢
=exp[0f,—, L™*"" VAT fexp[— "~ }(¢" )]
8(¢"~L,22Ce" D" )

Here #™s are normalized so that #"(0)=0, {,_,=2,/2,—1, {o =2, and f, stands
for the free energy up to the distance scale L,

1
Jo=— Zlogfexp[—éf(tﬁ)]fs(%f 2C"$)D¢. )
It is a sum of contributions from scales I¥, 0<k<n,
n—1
f= Z L™%6f, (10)
= e log | exp[ — ()13 C# DY, (1)
If the interaction V'=0 in (2) then (for z,={,=1),
H"(¢")=3{¢"IG, 14", (12)
where
G,=C"G,C*" (13)

(* denotes the transposition). All the covariances G, are versions of a massless one
(see [16]) and in the thermodynamic limit A—Z* converge with n to

Goxy= | dz | dy(—Aeon) (@—»), (14)
O. O,

where 4, is the continuum Laplacian and [J,, (J, are unit cubes centered at
x,yeZ’

H e ) =3{$1G2 9> (15)

is the limit Hamiltonian, the massless Gaussian fixed point of the BS
transformation.

Still in the case V=0, it is convenient to realize the random field ¢ distributed
with the Gaussian probability dug (¢) (G, is the covariance of ¢) as a sum of
independent contributions from different scales.

One can write for n=0,1, ..., N (see [16, 17] for the details)

n—1
GOxy =L 2n'(gnL‘"xL“"y + Z L 2k'g;cL‘ka"‘y » (16)
k=0
where 4,=(9,,,), z,ye L' "A,and I, =(J,,), =, y € LA, are positive but not

strictly positive operators (kernels). ¢, has massless decay whereas 7, have
massive ones (uniform in k). The decomposition (16) corresponds to the one used



204 K. Gawgdzki and A. Kupiainen

in the heuristic momentum space RG, see [41], where one splits the momentum
region |p| <K into layers and scales:

J’ eip(x—y)p—2d4p=L—2n j’ eiL‘"p(x—y)p—2d4p

Ipl<K Il <K
n—1
+ XL [ eIy (17)
k=0 L-1K<|p|<K !

The degeneration of ¢, and 7 is easily visible from the representations (see [16])

any = x,EAn ‘MMJ’any&l”w = (‘%nGn&[: )wy > (18)
T kay = ”ZM A ks Qe iwQyo 1y = (A QLQ ™ )., » (19)
u,vedy
where A, = A,\LZ* and
5. if x¢LZ%,
Q.=49—1 if xeLZ* and —3L<x*—u'<iL, (20)

0 otherwise .

(Notice that CQ=0.) Kernels .27, are independent, translationally invariant by
unit lattice vectors and have uniform exponential decay. G,-and -I;-are strictly
positive operators. I, do not depend on &, are translationally invariant by vectors
of LZ* and also have uniform exponential decay. Moreover, there are two useful
relations, see [16],

g dzsl ,,,=0y,, X, yEA,, 21

where the integral stands for the Riemann sum on L™ "Z* (here over the unit cube
O, centered at x) and

2 A nex=1. (22)

xedyn
The decomposition (16) can be used to realize ¢ distributed with du, as a sum of
independent contributions
n—1
¢x=L_nlpZ‘"x+ Z quglz,"‘xa (23)
k=0

where p"=(y"), ze L "A, *=(ZY, ze L *A, are centered Gaussian fields
distributed with covariances %, and J, respectively.
By (18) and (19) we can write

Y= ZA A o = (A "), (24)
and
g,; = Z Lkame.xul—l‘c}J{)Z Zu = (‘Q{kQI;cl/ZZk)m = (Mka)a: s (25)
xedy
u,vedy

where ¢" is a A,-lattice field distributed with covariance G, and Z* is a A,- one with
covariance 1. In fact substituting (24) and (25) in to (23) and using (20) and (21) one
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can easily show that in the realization (23), ¢" as given by (24) coincides with the BS
field (6) (for z,=1) so that our notation is not abusive. As a byproduct, we obtain a
relation inverse to (24):

= | dayl. (26)
Dx
From (23) it follows that
w L—l n+1 +gn (27)

and, since v"*! and 2" are independent as well as ¢" "' and Z", that the Gaussian
measures split:

dpe, (") =dug,. ($"" ) @dp,(Z"). (28)

Now let us pass to the perturbed case when V0. We shall rescale the fields by
substituting ¢"—z,/?¢", Z"—zL2Z", ">z 2y, F"—z 2 %" Hence (27) and (28)
become

wo=L"1G Pyt + 2 (29)
and
dpe, (¢ =dl; 16, (9" H@dp,(Z"). (30)
For the first effective Hamiltonian, see (8), we obtain using (29) and (30):
exp[—#'(¢")]
=exp[0foA]1[ exp[—3<{¢|Go 14>~V (#)15(¢" — (5 >Cg) Dg
=exp[0fod +3Trlog(2nGo)1f exp[ —V(#)19(¢" — Lo 2 Ce)dpus,(¢)
=exp[6foA+3Trlog(2nG,)]
Jexp[— V(L' GPPL- +Z010(8" =4 )iy, 16,(8") dps (Z°)
=exp[dfoA+3Trlog(2nGo) —3Trlog(2nly ' G1) — 3{o<¢' G '|¢*>]
Jexp[ V(L™ wi-+Z%)1dp,(Z°). 3D

This way the first BS transformation has been expressed by the integral over the
fluctuations Z°.
From (31) we read off

exp[ —#'(¢")]=exp[—3{o<4"1G; |¢")]
Jexp[— V(LG PwE- 1+ 291du(Z9)/(¢ =0)  (32)

and

8fy=— 1 57 Trlog(2nGo) + 7 ! Trlog(2n§01G1)——log fexpl—V(Z°)]du,(2°).
(33)
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Let us define the effective interaction V! by
exp[—V'(ph)] =exp[ 2(1— Co)Zde(auw@ ]
Jexp[ = V(L (w1 -1+ Z°)1du (Z°)/(w' =0).  (34)

¢, is chosen so that the subtraction in (34) removes the marginal | (dy!)? term from
V1, see Sect. 10. Since, as was shown in [16] and [17],

X[ dx(3,w2)* =<' |G 4" —L"’f/l_l@ ¢i)2, (35
we obtain from (32) and (34):
exp[— ()] =exp[—3<4" |G 4>~V (ph)], (36)
where
G{'=E{G{'+I?z,¢E,, 37

with E, being the orthogonal projection on functions constant on 4,. G, differs
from G, only by the value of the infrared regulator £.
Upon iteration of (31)+37), we obtain

exp[—#" 1 (¢" )] =exp[—3{¢" "G Lilg" T D=V ("t D], (38)
where

exp[— V" !(y"* )] =exp [%(1 - L.)%f I GRA ]

Jexp[— V(L™ (L + 2] dp (27 ("1 =0)

(39)
G =E; G L+ 2" Yz, (LE,,, . (40)
Moreover
1
of,=— ,,)+ Trlog(2n§ 1cG,CcH)
1
- A—logf exp[— V(& ]du,(Z") . (41)

This realizes the n't BS transformation as an integral over the fluctuation field Z".
Our aim will be to show that the effective interactions V" in the thermodynamical
limit converge with n to zero in a suitable sense.

Let us stress that the expression of the interactions V" as functionals of "
rather than ¢" is not accidental. Due to the locality of the relation (29), it is much
more convenient to follow the dependence of V" on ”. In the next section we shall
also see that the y" dependence arises naturally in the perturbative approach.
Before closing this section, let us list some of the (uniform in the volume) decay
properties of the kernels o/, and I, following directly by a momentum space
analysis of their explicit form,

| o S O(1) el (42)
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| s — A sl |2 = gl SO(1) (e~ P17 e~ Ple =) (43)
0wt Vi )l SO(1) e~ Plo! (44)
(0 denotes the gradient on L™"A, V the one on A4,),
10, i — 0yl |2 — P> S O(1) (7Pl e 7Fly =), (45)
[l | S0(1) e Fle=! (46)

for an L-dependent constant . [In fact ff can be chosen L independent in (42) to
(45) whereas in (46) it is O(L™').] Expressions (42), (44), and (46) were already stated
and proven in Appendix to [16] and Appendix 1 to [17]. Expressions (43) and (45),
which we find more convenient to use here, are proven the same way (separately for
|z—y|<1 and |z —y|>1).

3. Perturbative Approach to the Renormalization Group and Its Significance

Here we shall study the effective interactions in the leading orders of the
perturbation expansion. It has to be stressed that we shall not expand in the powers
of the initial coupling constant 4, of the quartic term since such expansion is not
self-consistent already in second order. Instead we shall perform a perturbative
analysis (to the second order) of each BS transformation in terms of the effective
quartic coupling constant A, of the corresponding scale.

Let us start with an ansatz

V(") =4m} | dey))? — 6, de¥,,.(p})* + 4, da(y})*
—8A42 [ dzdy 2., (v2)*W))° M

where m2 e [— 232, A3?]1=1,, say, and

n—1
any = kZO > _k)f/—-kLn- kgLn=ky = LZ"GOL"xL"y - gnzy . (2)
The second quadratic term in (1) contributes to the Wick ordering of the quartic
one. The sixth order term corresponds to the diagram with the middle line being
the sum of the propagators of the fluctuation fields Z* with k<n. Although
irrelevant (of negative dimension), this term has to be carefully taken into
consideration because it gives an ()(42) feedback to the quartic term in the new
interaction ¥"*!, which has to be weighted against other ¢(42) contributions.
Thus for V" given by (1), let us compute V"*! to order A2 in the perturbation
calculus. We shall show that, up to a mass term and irrelevant terms with negative
dimensions which do not contribute to the | y* term in the next step, (1) reproduces
itself with A,—4,,,—a,A2, where o,=0(logL)>0. Hence the second order
computation exhibits the dynamics of the quartic coupling which does not change
under the linear approximation to the RG transformation: as opposed to the case
of higher or lower dimension, in dimension 4, | p* is a marginal (dimensionless)
perturbation. The L dependence of «, shows why the perturbation expansion in 4,
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is not self-consistent. Computing A, to the second order in A, is equivalent to
computing 4, to O(43) for L—L". Now, even for very small A,, this would give a
large and negative result for n sufficiently large due to the logarithmic divergence of
oy with L— 0.

To simplify the notation, let us drop the index n and let us replace n+1 by
prime. (2.39) gives

Vi(y)=-31-0) %f dz(0,9,)* + 3 L¥m* [ de(y,)* — 6 [*(A [ dzF 1,1 (w.)°
+ 6L A dzT;; (w.)* + O(A?) terms quadratic in v’
+A da ) =2 A% [ dody 2y 1, T 101, (02) (W)
—BLH*A? [ dedy2y,1, 71,1, W)Y,
—36L'C%A% [ ded (T 1,1,) W,)*(¥,)°
— 8L 222 [ dody T 01, T 1,1, (0P,
+A8LX? 2% [ dedy% 1, T 101, W2 W,
—8L20302 [ dzdy 2y .1, (W)’ (v,)?

8L [ dady T 1.1, (W) (¥,)* + 02%?) . 3
The third and the fourth term on the right-hand side of (3) make up
—6(A[dxF. (v,)?, @
since
Y ) 5)

see (2.16). The rest of the quadratic terms may be written as a sum of a relevant
mass term of dimension two 1(I2{m?+ 0(?)) | (y’)?, a marginal (dimensionless)
kinetic term 3({ — 14+ 0(A?)) § (6y")? and irrelevant (negative dimension) quadratic
contributions. This step, as well as its analogue for the quartic terms discussed
below, are in fact somewhat more tricky than usual since the kernels of the
expressions on the right-hand side of (3) have only Z“ translation invariance while
living on L™" A. The precise way to circumvent this difficulty in extracting the “zero
momentum” or “p>” contributions to the diagrams will be discussed later. The
wave function renormalization ¢ of y’ will be taken as to eliminate the | (8y’)? term
from V’. Hence 1 —{ = 0(4?) and can be dropped from the other terms of (3) in our
approximation. The non-local terms of the fourth order in (3) can be written as the
local marginal expression 64! | ()*, 6A* = O(A?), plus irrelevant contributions of
negative dimensions,

611 = —72L4},2 j d$ _[ dyQLmLijmLy_48L4AZ j d$ f d%"@LwLyg—LyLy
Oo Oo
- 36L4A«2 .‘. dd}‘j d%('y—l‘z[‘y)z _48L4lz j d$ J‘ d%g—LxLnyyLy
Oo Oo

+48L4A,2 ‘j[ d$dyg-LszgLyLy . (6)
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In Appendix 1, we show that the main contribution to the right-hand side for L
large comes from the third term corresponding to the bubble with two J lines. The
bubble diverges like O(logL) for L— oo. This term dominates for L= L the other
ones corresponding to the bubble XX with one 4 and one “harder” line or to

with 7 or a “harder” propagator on the open line (the latter terms vanish

in fact). Hence 4CT2< —sat<icTie @)

for some n-independent (but L dependent) constants C_, C, > 0. Altogether the
fourth order terms on the right-hand side of (3) may be written as

(A+064Y) [ dx(p)* + irrelevant terms of order A2+ @(A>?), ®)
with 84! satisfying (7).
Finally, since by (2)
2, =L, + T 1, )
the sixth order term of (3) is
—82% [ dody 2, (v.)* ;). (10)
Summarizing,
V() =3(Lm? + 0((X)») [ dx(y},)* — 62 [ dxF., ()’
+ irrelevant quadratic terms of order (1')?
+ A’ [ dx(p.)* + irrelevant quartic terms of order (1)?

—8(A)? [ dzdy 2, (.)*(v,)* + O((X)*?), (11)
where
N =401+ 0(A5?). (12)

It is clear that we could have added to V irrelevant quadratic and quartic terms of
order, say, O(4%?) and O(A7'*) respectively and six or higher order O(1!%/6) terms
without essentially changing the result of our analysis. From the form of the new
mass term in (11), it is obvious that we can find a closed subinterval J C I such that
for m* going through it while other entries of V" change continuously,
m'? = 2m? + O((1)?) sweeps I'=[ —(1)3/2, (A))/?]. This will allow us to choose in
an iterative procedure a sequence 1,2J,2J¢D...DJ$ D ... of closed intervals such
that for m¢ running through J§, m2? sweeps I,,. Following [6], we locate the critical
mass of the infinite volume theory, m?%;,(4,), as the point of NJ%. For m2 =m2,(,)
we can iterate our perturbative analysis. From (7),

1 1

1 1 _
— < - < _ —_ 1
l+3C =/1+5/11=/1+3C_ (13)
for small A, so that the assumption
c- A= €y (14

no+n no+n

carries through: the effective fourth order couplings 4, should decrease like ¢ (%) .
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This shows the perturbative asymptotic freedom in IR of the critical ¢5 theory.

Summarizing: Our perturbative analysis carried over to the second order of the
effective coupling constant at each distance scale (to be distinguished from the
second order analysis in A,) tells us that the effective interactions vanish in the limit
of long distances. The purpose of this paper is to prove this rigorously by providing
appropriate estimates for the perturbative and non-perturbative corrections to the
above arguments.

The problem with the perturbation expansion is that it is based on expanding
the right-hand side of (2.39) (or of its logarithm) into powers of ¥V which, even if
given by (1) with small A, becomes arbitrarily large in certain regions of the
functional space of the fields =L (/%y} -. + Z, namely, where || > O(A~ /4.
Let us consider first small BS fields v, [y’| < O(4~ /%), Still ¥ becomes large if | Z| is
large and the perturbation expansion for 7’ in terms of powers of A would diverge
[we may expect the behavior of the type of O(n!) for large order n, typical for ¢*
integrals]. If we limit the functional integral in (2.39) to fields Z [and hence, by
(2.25),(2.42), and (2.46) also fields 2] with absolute value smaller than O(4~ /%), we
may easily bound small corrections to the first perturbative orders using more or
less standard cluster expansion arguments to control the volume dependence of
the expressions. The corrections coming from the large values of Z will be shown to
always carry non-perturbative small factors O(e~**""?) due to the small
du,-probability of |Z,| = 0(4.~'/*). However, we have to know that as well as the
contributions of large fluctuations Z to V'(y"), also the ones to the first Taylor
expansion coefficients of V" around v’=0 (e.g. to A') are small. We shall guarantee
this by passing to fields y and vy’ with small imaginary parts, [Imy)|,
[Imy’| < O(A~'/*)(i.e. in strips) and proving together with the bounds for small and
large Z contributions to V'(y") their analyticity in y’. Then the bounds for the
contributions to the derivatives of V'’ at y’=0 will follow by Cauchy estimates. As
far as the properties of V () for large y are concerned, we shall assume inductively
stability bounds for the large y contribution to the Boltzmann factor e "), They
will guarantee the strip-analyticity of e """ and will assure that the small du,-
probability of large fluctuations Z is not affected for small v’ by the interaction.

Of course small or large field values may occur simultaneously in different
space-time regions and our analysis has to take into account the space-time
relations ignored in the above discussion. Here we shall follow the spirit of [4]. The
crucial fact is that, although the recursion (2.39) does not preserve the locality of ¥
it may be expected to preserve its approximate locality because the only new non-
locality present in (2.39) is due to the approximately local relation (2.25) between &
and Z. Hence we expect coupling of different space-time regions in (2.39) to be
exponentially decaying [with the correlation length being O(L)] and shall use
cluster (high temperature) expansion techniques to exhibit the decay. The
expansion will allow us to perform the small field-large field analysis in an
essentially local way. This will be the topic of the next section. Let us stress the
contrast between (2.39) and the complete functional integral of a critical theory
with infinite correlation length. The success of the RG lies just in the reduction of
the latter problem to a sequence of high-temperature ones with bounded
correlation lengths.
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4. General Form of Effective Interactions

In this section the inductive assumptions concerning the analyticity properties of
V™" are stated. Let us start by describing the sets of small fields y”. As introduced,
"=/ 0" ¢" being the independent variables. Since the above relation is non-
local and it will be essential to trace the local dependence (and analyticity) of V" on
" rather than on ¢”, we shall enlarge the space of small fields to a certain space of
complex y"s not necessarily of the form </ ,¢".

Let us pave L™" A with the lattice of blocks 4 of size L¥° centered at points of
INoZ*, IN° will later appear as the scale of the cluster expansion. A subset of L™" 4
being a union of blocks 4 will be called paved. For a paved set X CL™ "4, let

A (X)={complex yp"=(yp"),ze L""AnX:
lp|<Ci(ne+m'* for zeX,
Iwi—le/w—yl<C0C1(n0+n)”4 for w#y,x,yex,
|auw;—auw;|/|w—%|2/3<C0C1("0'*‘”)1/4 for z=+y,
z,y,z+L "e,,y+L "e, € X}. )

This will be the set of small fields on X. As we see, we have bounded not only the
values of " but also those of its derivatives and of the exponent 2/3 Holder
derivatives of the derivatives of y". Let us notice that for ¢" =7, ¢", the first bound
of (1) with X = L™" A would imply the next ones [for C, = C,(L), as we assume] due
t0(2.26),(2.43), and (2.45). For more general small fields, we postulate these bounds
in order to guarantee the smallness of irrelevant terms of ¥, in which derivatives of
y" will appear, see below.

We shall inductively assume V"*(y") to be an even analytic functional on
A (L™" A) vanishing at zero. We shall also assume V" to possess all the euclidean
symmetries of the unit lattice.

Let us denote by V() the k' order of the Taylor series for V" at zero and by

2.(v") the remainder of the expansion up to order k—1. We shall take the

quadratic term of V" of the form:

V") =3m; | dz(yh)? — 64, f d2 G, (w2)* + Z [ dedy K (0,0l —0,4}) 0%,
2
This specifies the form of the second order irrelevant terms. Notice the absence of
the | (0y)? term entirely absorbed into the Gaussian measure by wave function
renormalization, as discussed in the previous sections.
For the quartic term in V", we put

Vay") =, da(yl)*+ Z Vi, 3)

where V4Y(1p") is the restriction to the diagonal of a quartic nonsymmetric form
V;Y(ip 1, v5, w5, v}) depending on the fields y? defined on the paved set Y. v enters
(W, ..., ph) only through its differences at pairs of points. This guarantees the
1rre1evant character of Z ("), to be contrasted with the marginality of
Ao § "%
We could have written the irrelevant contribution to V' in a more transparent
way as | dod¢dudady N ndtﬂzyw:wﬁwZ(w;—w;). The other form is preferable since
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we would not be able to extract satisfactdry bounds for the kernels N,. The twidle
in V,y signals that these expressions do not contain the whole quartic contribution
to V™.

Finally, for the sixth and higher order contributions to V", we assume

26w = =823 [ dzdy 2, (W2)*(v))* + 2 V2 6,w", Q)

see (3.1) and (3.2). Even functionals I7§ or(¥") are assumed to depend only on "
restricted to the paved set Y, to be analytic on 32#°(Y) and to have the Taylor series
starting with sixth order terms.

In the next sections, we shall formulate inductive bounds for the building
blocks of the interaction V" introduced here. For the time being it is enough if we
keep in mind that m2, K,, 4,, A2, Q,, V2, and V2, are small and exponentially
decaying with the separation of the points of the kernels or of the points of the sets
Y, the second property expressing the approximate locality of V"

Now let us discuss the large field contributions to the Boltzmann factor e ¥,
First, notice that we may write
24" =A[ d(l)* + 2 V2 (W) =4[ de(i)* + V24", ©)

where
M@ =Vh@"—812 ¥  [de[dy2,, W)W+ Vie@™. (6)

(41,42) 4, A4
A1v4,=Y’

This implies for the Boltzmann factor

exp[—Vz4]=11(exp[~ V2ayl=1+Dexp[—2,f (v")*]

= {YZ} IT(exp[— V2arJ—Dexp[—4,f (p")*]. ™

Let us introduce the following convenient terminology. A paved set X will be
called connected with respect to a collection S of paved sets if each set of S lies
either in X or outside X and if X cannot be divided into two proper paved subsets
without dividing some of the sets of §. X will be called connected if it is connected
with respect to pairs of nearest neighbor blocks 4, 4, in X.

Now let D be a paved setin L™" A. Let S be composed of connected components
(c.c.)of D and of sets of { Y,}. Let { X} be the collection of the c.c. with respect to S of

Du (U Ya> intersecting D. Let us fix {X;}. It is clear that the sum over {Y,}

o

factorizes now to the sums inside each X; and the outside sum. Thus we obtain
from (7)

exp[ = V2] = X TIoRGexp[ —4 § delv)*= | 5 Poal]. ©

YC~uX;

where the sum over { X} runs through collections of paved disjoint sets such that D
C U X, and each DnX; is a non-empty union of c.c. of D. In (8),

0= 2 TP 0] -Dexp[ =2 [ daty)). )

Df\Xi
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with {Y,} running through collections of paved subsets of X; such that X, is
connected with respect to the c.c. of D and Y,’s. Notice that g (") depends only on
VX,

The main point of the partial resummation of the Mayer expansion (7) inside D
is that (8) remains valid also for fields which become large inside D. Given
y"=./,¢" for a real BS field ¢", define D(y") as the smallest paved set such that

[yl <2Cy(no +m)'"* exp[{50d(, ~D(y")] (10)

for o =¢p [for f see (2.42) to (2.46)] with some sufficiently small ¢ >0. Thus D(yp") is
the set of points, where y" becomes large but only exponentially fast with the
distance from ~ D(y") (the last condition will take care of the exponentially
decreasing tails in the interfield coupling). The set of the large fields will be defined
as

20, X)= U @"x+A(X), n

Y=L np"

where the union is taken over real fields ¢” such that D(y") is a subset of the paved
set D. Notice that although we have admitted arbitrary small fields y”, the large
fields have the original form "=/ ,¢", ¢" real, up to a small field correction.
Notice also that

2D, X)|x\pC3A(X\D). (12)
Indeed, for v"=.7,¢" with D(y")CD,
[ <2Ci(no+m)'"* if 2¢D (13)

by (10). Moreover

SO (e e ™) | dalyl
X Ox

Lazd(x, ~ D)

SO(1) Cy(no+m)1* X (e Fle ™ e~ Plr =) el0

SO(1) Cy(ng+n)* <2CoCy(ng +n)' (14
for z, y¢ D and C,= C,y(L) by (2.43), (2.26), and (10). Similarly
10,95 — 8w l/lz — yI** <2CoC, (ng +m)'* (15)

for x,y¢D and C, large enough. Hence y"e€24°(~D) [or more precisely
Y"|.pe24 (~D)] and (12) follows from (11).

For large fields, we shall not insist on the analyticity (or even on the existence
for complex y") of V"(y") but will simply assume the analyticity of the Boltzmann
factor exp[ — V*(v")] on 2(D,L™"A) together with the representation (8) for
exp[— V2 ,(p™], where g5>(y") are even functionals depending on y"|x,, analytic
on 2(D, X;). The precise stability bounds on g3> will be stated in Sect. 6. Here we
mention only that g% decays exponentially with the separation of points of X; and
is bounded but not necessarily small.

For large fields, the relation (9) does not make sense any more but we shall still
have a relation between g% and g% for D> D, easily following from (8). Namely,
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on 2(D,, X),
=3 ng';:?lI;I(exp[—ng]—l)exp[—zn f X(w")‘*], (16)

X, {¥a i (D\D)A
where we sum over collections of disjoint sets X;CX, D;nXCuX,;, D;nX;is a
non-empty union of c.c. of D; and Y, C(X\uX;) with X connected with respect to
cc. of D, X;, and Y,. Notice that (9) follows from (16) (and analytic continuation)
if we put D; =0. Equation (16) also implies that if DnX =D,;nX then g% and
g% coincide on 9(D,, X).

5. Local Analysis of the Renormalization Group Recursion

The proof that the general form of the effective interaction discussed in the
previous section is preserved by the RG transformation is based on a cluster
expansion argument for the fluctuation integral of (2.39).

Again in order to simplify the notation, we drop the sub-(super-) script n and
replace n+ 1 by prime. Define

exp[— W)= fexp[— V(L™ 'yr-+.+2)]dp(2). M

As compared to V7, see (2.39), W’ contains a constant term as well as a | (0y’)? one
and the field strength has not been renormalized in it.

The first step of the expansion for the right-hand side of (1) consists of localizing
the regions in which & field is large. This is done with the help of a partition of
unity

1= %)@(Z), @

where p=(p,), ue A,=A,\LZ*, p,=0,1, ..., and y; is the following characteristic
function

1(Z)= 1} Xitno+n)1/4pu < |2l < (no+n)1/4(py + 1)} 3)
ued,

Notice that p =0 selects small Z and hence (due to (2.25), (2.42), and (2.46)) small Z.
Given p, let us define the large & region R by
R= ) {LA:ACL™®"*YA,d(LA,u)<10a *log(p,+1)}. 4
ued,
Thus Z can become large in R but only exponentially fast in the distance from ~ R.
Given set D’, where the BS field y” may get large and the set R of large
fluctuations Z, let us define the set D of large fields =Ly} -.+Z:

D=LD'UR. (5)
Notice that if v’ €3L9(D’, L "* Y A) and Z is in the support of x; then
we2(D,L"A). 6)

Indeed
L™ 'y;-1.€39(LD, L "4)C39(D,L"4). )
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Moreover, by (2.25), (2.42), (2.46), (3), and (4),

2= (I Z) ) <0(1) 3 ¢ 47

ued,

|1Z,|

g@(lxno+n)”42e7”"““'<pu+1)

Blz—u| + ad(u ~R)

3
<0(1) (n, +n)1/42e 4

§(9(1)(n0+n)1/4gﬁ d(, ~ _12C T load(m ~R) ®)

for C;, = C,(L) so that Z € 52(R, L™" A1) C 152 (D, L™ " A). Thus after inserting (2)
under the integral of the right-hand side of (1), we may express the integrand
exp[ —V(y)]=exp[— Va(w)]exp[ — V5 4(w)] using (4.2) and (4.8) with D given by
(5).

This way we obtain

exp[—W'w)]= Z{XZ}I ITg%.(w) eXp[ —3m? [ dapl+6A[dzG, 2
J AR i
- Z [dzdyK® (0,9,—0,p,)0,p,—4 jD dxy?
- > 4y(w)J 1(Z)dus(Z) - ®
YC~UX,
Let us localize the irrelevant quadratic term of ¥, Z fdzd yK2 (0w, —0,p,)0,p,
by writing it as Z V,y(p), where Y is the smallest paved set containing

z,y,z+L"e, and y+L "e,. Mayer expanding
YZX, -

YC~UX;
under the integral of (9), we obtain

exp[-W )= 3 ¥ ¥ [TIg7 W)

p (X (Yo} {Yp} @
-exp [ —3m? [day2+6Afd2¥, w2— 3 Ycz;(~ V() — A deampi]

TI(exp[—Vay,(w)1-1) l;[ (€xp[—Veuay, W] D1p(Z)dps(Z),  (10)

where Y, are not contained in a single X; and Y; do not intersect UX.

We still have to decouple the non-locality of the right-hand side due to the
kernels ./ QI''/? = . relating the fluctuation fields 2 and Z, see (2.25). Let {U,} be
the partition of the volume L™"A into unions of blocks LA(4CL™®*VA)
connected with respect to X;, Y,, Y; and the pairs of the nearest neighbor blocks
LA,, LA, such that LA, CR. The reason for taking this “collar” around R will
become clear in a moment. Define

Y=Ly, +MZ=L""yp} . +2Z*, (11)
where (for x;, being the characteristic function of Uk)

M= ; Xue Ku,+ k<2k, Sk v Y + Xve M X, - (12)
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Notice that for (s,;.) =0, #° does not couple different U,. We shall admit complex
Sper With

Isiel <2r exp[38d(Uy, Up)], 13)
where r will be chosen later. Notice that for xe U,,
gsz = (ﬂkaz)w +k§kskk'(ﬂka'z)m = glx + gSZﬁ > (14)

where for k' < k, we have put s, = s;,. Following (8), we show that the first term on
the right-hand side is in 5 2(R,, U,), where R,=RnU,. Let us consider the
second term. Proceeding again like in (8), we notice after the fourth step that for
ue U,

3Bl —ul= f5ud(u, ~R)+3Bd(Us, Uy), (15)
(since for ue R |x —u|=d(u, ~ R) by the construction of U,’s) and conclude that
1251 £2Ci(no +m)'* (16)

for C; =C,(L,r). Similarly, we show that
125, — 25 /le—y|=5CoCilng +m)''* for =z, yeU, 7

and )
10,25, — 0,25\l —y** <5 CoCi(no +n)'*
for z,y,z+L "e,y+L "e,eU, (18)

[note the crucial character of the limitation of the points to a single U, in (17) and
(18)].
Altogether, we infer [using also (7)] that for v eiI2(D’,L "*YA) [or
v e3sLP(D, L7'UY],
Z,e52(R, Uy, Z5eiA4(U) and y'e2(LD'UR,U)). (19)
We shall use the following formula [24] interpolating between s=0 and s=1

expressions:
F()=3[ds;0, 7 (s), (20)
r

where the sum runs over graphs I' (collections of pairs k < k’: called in what follows
lines), dsp= T1 xqo,13(s0)dss, 05, F (s)=11 %5’ (s) and in the argument of &
¢er ¢ell U3y

on the right-hand side of (20), s, are set to zero for £/ ¢TI
Splitting I' into the connected components, we may rewrite (20) as

F(1)= WZ}H;[S(%)«?(S), 2y

where {%,} is a partition of {U,} and
S(u,)= TZI dsr 05 » (22)

with the sum running through the connected graphs on %, S(%,)=1 if %, is
composed of one U,.
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Applying (21) to (10), with s-dependence introduced according to (11) and (12),
we obtain

exp[-Wp)]=X Y > > X l;[S(%)l:[gi(tps)

P X3} (Yo} (Yp} {%y}

- €Xp [ —3m? [ dx(3)* +64[de %, (w2~ 3 3 Voy(y’)—4 ~5D dﬂ&(wi)“]

i YCX;

‘TI(exp[— Var (w1-1) I;I (€xpL—Vsay, )1 - D2p(2)dps(Z) . (23)

But the integral on the right-hand side of (23) decouples and the sums factorize

over the sets %, = U U,. For the later, one of the crucial observations is that for
Uyl i .

X,cU, we may reI;Iace g2, (y®) by g5>vRx(y®), since y*€ P(LD'UR,, U}) and D

NU,=(LD'UR,)nU,, see the remark following (4.16). Also, for the factorization of

2 over %, itis important that together with L4, CR,, we have included into U, all

tﬁe nearest neighbor blocks LA,. Otherwise we would encounter the non-
factorizing condition that %,nR is a c.c. of R.

Let us introduce paved sets X;,C L™ """ A such that LX’, =%, but admitting
X', =4 only inside D’. We can rewrite (23) as a partition function of a polymer
system with (disjoint) polymers X :

exp[—WW)]= T TTe%;, ) CXP[— > Wj(w?] 24
X3} v A4C~D'
The polymer activities are given by

xW)=X Y 3 3 [S@T19z.w)

P X} {Ya} (Y} j

e[ ~dn [ da(p) 461 | da WP =% % Pulp)=2 ] de(y)]
: 1:[ (exp[— sza,(ws)] -1) 1;[ (exp[— 17; 4Y,,(1Ps)] - 1)X§(ZLX')dﬂ1(ZLx')
el 3 W) 5)

where p=0 outside LX’, R= R(p) C LX" together with all blocks L4 having nearest
neighborsin R, D= LD'UR, X, are disjoint subsets of LX”and each Dn X is a non-
empty union of c.c. of D, DNLX’'CuX;, Y,CLX’but notin a single X;, Y;CLX"
(UX;) and % is the partition of LX"into unions of blocks L4 connected with respect
to X;, Y,, Y; and pairs of nearest neighbor blocks L4,, LA4,, LA;CR. In (25)
Y=L, 1. +.M°Z,x, where Z, . vanishes outside LX’. We recall that X’ can
be equal to a single block 4 only of it lies inside D’.
The contributions of the single 4 clusters outside D’ are gathered in

exp[— Wi(y)]= [exp [ —im? LIA da(p2)?+ 61 LIA dz9.,,(w2)*

- > I721/(‘»00)‘/1 I dﬁ(‘l)g)‘t" 2 17;41/(1/’0):' Xo(Zra)duy(Zy ).
YCL4 L4 YCL4A
(26)
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It should be clear (see the precise estimates in the next sections), that W(y") as well
as the polymer activities %.(y") exist and are analytic for y €3LA(4) and
v e3LP (D', X) respectively.

For y’small (D'=0) in 1 LA (X") put 0% (v") = 0x (). In this case the activities
ox- Will be small and exponentially decaying with the separation of points of X".
We may exponentiate the right-hand side of (24), see e.g. Sect. 1.3 of [37], obtaining
for ' eiLA (L" ™V A)

W)= ; Wy (), (27
where for Y bigger than 4,
1
Ww)=— % =3 I1AOTex®). (28)
(Xxé‘)l;-j; = yc feyc 4
v =

In (28) 7. runs over connected graphs of lines ¢ joining vertices {1,...,E},
A@)=—-1if X, nX,, +0, where/=(/_,¢,)and zero otherwise. The sum in (28)
will be shown to converge and give again small Wy(y") with exponential decay in Y.
Using the Taylor expansion, we write

W) =W(0)+ W)+ Wiw)+ Wie(y) ‘
=2 (Wr(0)+ War(w) + Wiy () + Wz er(v)) (29)

For a general set SCL™" A, denote by § the smallest paved set containing S. Let us
write for the quartic terms of W’

W)= 3 Alde)*+ 5 VL '9-0) + Wir ()

(L-1Y)- =Y
= T il de()*+ Wik @)+ Wiy ). (30)
ﬁ/{(tp’) contains the O(Vy,) and O((V)?) contributions to W,y(y"). As we shall
show below, 5 .
; Wiy(y) =04 [ dz(y,)* + ; W), (31)

where W2, as W,3}, possess the expected properties of ¥;,(1") (in particular, they
are irrelevant).

The extraction of the marginal term 64 (y")* will be described in detail in
Sect.9. Here let us only mention that (31) cannot be written as
Wiy = § dzdiy(z) (w.)* + Wii(y"), if only this still holds approximately up to
exponentially decaying tails.

Let us come back to (24) for vy’ € 3L2(D’, L~ "* V) A). We shall now extract from
W'(y’) the constant and the quadratic term as well as the part of the non-local
quartic one. The latter, after reshuffling it according to (31), will be reinstated back
in a moment.

Let us then introduce

exp[— Wi ]=exp[— W exp [W’(O) + W;+ ; ﬁ"{y] . (32)
By (24) and (29),
expl~iid= 2 [lek,oxp[ — 3 Wit ZOKO+Win)+ 3 W] (33)
X3} v AC~D Y Y
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Let us define the interior X of a paved set X as the union of 4CX which do not

touch blocks 4 C ~ X. Mayer expanding exp [Z WO+ W+ W‘{y] , the sum
Y Y

running over the paved sets Y which do not lie entirely in the interior D] of a single

c.c. Djof D’'nX and resumming the clusters of this expansion outside the large field
region D’, we obtain

eXP[_Wéﬂ: {;}I:ng, 2 ITex,

X3 v

exp[ =4 J @)= E Wik B KO+ W S Wl (4

c~uXy YC~uX,
Here X, runs through the collections gf disjoint paved sets such that D'nX,isa
non-empty union of c.c. of D', D’'CuX,, X, are disjoint and X;,nX,=9.

g#=3 ¥ Y Tlek TT(exp[Wy,(0)+War,]1—1)

X5} (Yo} {Yg} v

-n(exp[vz;yﬁ]—l)exp[— > Witd { W)

B ACX\D' X\D’

+3 3 (WO0)+ Wy + W;y)], (39)
D; YCD}

where X, are disjoint, & D'nX CUX], no Y, and no Yy(CX) lie entirely in the
interior of a single c.c. D; of D'nX and X is connected with respect to X’, Y,, and
Y,.

In (34) we may exponentiate the sum over {X}:

>z HQX.,exp[ I Wa] =6Xp[— > Wy’], (36)

X3 » AC~uX; YC~uX;

see (28). Inserting (36) to (34) and using (29) and (30), we obtain
expl- W= ZI1a8 exp[ =2 | W)*= T Wid— § Wie0)

YC~uX 1 YC~uX l
Now, using (31), we shall reinstate the factor exp [— > VI/;y(w’)] removed in
exp[— W2 ,], see (32). Y
exp[— Wi d=exp[—W3,] eXp[—Mf ((POAEDY Wﬁ]
=3 > 3 S TI14% Tl (exp[— Wi, 1-1)

(X (v (rp) (03 1 .

: I;I(GXP[— Wer,1—1) IZI(CXP[ Wi, 1-1)

-exp[—,l | @) =Afw)-% 3, Wﬁ], (38)
~D’ D} YCD;

where we have partly Mayer expanded the non-local terms in the exponential. In
(38), Y, Y;C ~uUX,and no Y, lies entirely in the interior of a single c.c. of D". Fixing
the clusters of the expansion on the right-hand side of (38) intersecting D" and
exponentiating the outside sum, we shall obtain

exp[—W:i.]= ZHJS? eXp[ ()'+5l)~.‘;)’(w,)4_YCA’ZX'(M%"FVW%"'W_&GY):I’
(39)
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where { X ;} runs through the collections of disjoint paved sets such that D'n X ;is a
non-empty union of c.c. Dj; of D" and D'CX ;.

=X 33 >TId% [T(exp[— UARS 1)I—I(GXPE Widd-1)

(X1} (Yo} (Yg} (Yy} 1
-TI(exp[—Wi7,1-1) CXP[ 64§ W)-3% 3 Wéﬂ (40)
y D'X D;

’
i

with X, Y,, ¥}, and Y, asin (38) except that they liein X and X has to be connected
with respects to them.

We still have to deal with the second order contributions to W,. In fact we shall
show that for v'=./"¢/,

Wi()+6(A+0)L | dx¥, (v,)* = 3(Lm® +om?) [ dz(y,)* + 3¢ 2| de(0,1.)°
+ EVI dzdy(L*KY,, +0KE) (0,9, —0,v,)0,p,,. u (41)
Now choosing the wave function renormalization
{=(1+dc)* 42)
[as will be shown |d¢| £ O(A7'*) and hence |1 —{| < O(A7'*)], we may rewrite (41) as
W, (1) =3(LPm® + om*)( [ d=(y,)?
—6(A+0)(*[de ¥, (p,)* +3(1— C)% Jdz(0,1.)
+{ Z [ dedy(L* K, 1, +0K%) (09, —0,w,) 000, (43)
Now for V,(y") with v'=./'¢’, we shall get from (2.39) and (1),
Vi) =3m* [ de(y,)* — 61 [ do¥, . (v,)* + uZ §dedy K2 (0,9, —0,v,) 0.,

(44)
provided that we define
m? =(L*m? +oém?){, (45)
V=(A+N), (46)
K% =(L*Kfp, +0K%)(. 47)

By definition, we shall extend (44) to any L™ ®* 1) A fields y’ obtaining this way (4.2)
with nn+1.
For the quartic term ¥V, we obtain from (2.39), (1), (30), and (31)

Vi) =W 29)=(A+1) [ de(y,)* + Z ()
+¢2 2 Wiz(w)=2[dz(w.)* + 2 Vir@w), (48)

where we have set
Viy =PV + Wi =W,y (49)
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Equation (48) reproduces (4.3) for nt—n+ 1. Similarly
Vie)=Wso((P9)=—8(1) [ dzdy 2, (v,)*(y,)* + ; VLer@), (50)

where
Viey(W)=Wer((Pp)+8(1)* ¥ [ de Af dy 2., w.)*w,)*.  (51)

(41,42) 4y
A1udr=Y

This gives (4.4) for n—n+ 1. As we shall see, (49) holds e.g. on 3#°(L™®* Y A) and
the contributions on the right-hand side have the desired analycity properties
(which should be clear already now).
For large v’ e.g. in 2(D’, L~ "*1 A), (2.39), (4.6), (1), (39), (49), and (51) give
exp[—V2.w)]= X T19%, W) CXP[—W | de(y))*~ X V;u(w?}
x5 ~D' YC~UX;

where (52)

g% W) =g% (). (53)
(52) is (4.8) for n»n+1. Again g% are analytic on 2(D’, X).

Equations (44), (48), (50), and (52) show that the general form of the effective
interactions described in Sect. 4 reproduces itself under (2.39). It is a straightfor-
ward exercise left to the reader to show that (4.16) also holds for n—n+ 1, compare
Appendix 2 of [17]. In the following sections, we shall see how inductive bounds on
various contributions to the effective interactions carry through (2.39), and shall
show that they behave in accordance with predictions of Sect.3 [e.g.
Jn=0((ny+n)~1)]. This will establish the IR asymptotic freedom of the weakly
coupled lattice critical ¢ theory.

6. Inductive Bounds for the Effective Interactions

Small Fields

For a paved set X, by .#Z(X) we shall denote the length of the shortest tree on the
centers of the 4 blocks building X and, possibly, other points of the (periodic)
continuum.

The quadratic irrelevant term of the effective interactions will be controlled by
means of the estimate

Afdwdf dy|Kh |z — g1 < (no +n) > exp[ -0l (4,04,)], )

nzy

where a=¢f is the same constant which appeared in (4.10).
The effective coupling constant will be bounded by

C_(no+mn) '=4,=Ci(ng+m)~" @

fOI' 0< C... < C+, C+ = C+(L).
For the irrelevant quartic contributions, we assume

[V (W, 3, wh WIS (no +1) "> exp[—a ()] ?3)
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for w1, 5, w4 € A (Y) and v} satisfying the bounds defining o (Y), see (4.1), except
the first one for its absolute value [we recall that ¥,,(y", ..., y%) depends only on
the differences of yj at pairs of points of Y.

Finally ¥, ¢,(y") are analytic on 3¢ (Y) satisfying

V2 6y < (o +1) "2 exp[ —aZ(Y)]. )

The choice of powers of (ny +n) ~* = O(4,) in (1), (3), and (4) has been dictated by
convenience. We could have respectlvely chosen O((ny+n)~2), O(ny+n)~ 2),
0((no+n)~ 1), and O((ny+n) ') as well since the main contributions to K, and 77y
come from the second order graphs —5— and XX and to Vgey from the third
order graph —H—. The factors exp[—a.#(Y)] in our bounds exhibit the
approximate locality of V™.

Large Fields

We assume that the large field contributions g%’(y") to the Boltzmann factor
exp[ — V2 ,(y™)] are analytic on Z(D, X) satisfying there

lg’ (w”)l<eXp[Cz|DﬁXl AP f dzlyil? +204, f dw(lmwz)“—otfl’(X)]

©®)

where C, =C,(L, N,) and for a paved set Y, | Y| denotes the number of the 4 blocks
building Y.

The choice of (5) is one of the crucial contributions into the analysis of the non-
perturbative corrections to the effective interactions (besides the idea to use the
analyticity in the field variables instead of the one in coupling constants). Let us
notice that (5) has a chance to iterate: | (Imy™* goes more or less through the RG
recursion unchanged and A1/2 [ |2 (I2AY? + 0(4,)) § ly"* |, which in the large
field region and for large C, [see (4.10)] should match the increase of the constant
term C,|DnX]| providing even a contractive factor which will be used to control
the combinatories of the cluster expansion.

At the initial step of the iteration when V(¢) is given by (2.2), K5, =0, 7,y =0,
205y=0, V5>6y=0 and

{ exp[—iOZ¢fg] ifXisac.c.of D,

XeX ( 6)

9x 0 otherwise .

Choice of n, corresponds by (2) to a choice of 4, (the bigger n,, the smaller 4,).
Writing 13/*¢. = a+ib with real a, b, we obtain

Ao Redt=a*—6a%b* +b* = La* —17b* = $(a* + b*) —20b*
—C+2(a®>+b*)—20b*= — C+32%|¢, > — 204, (Im ¢, )*, @)
so that (5) for n=0 clearly follows for C,2= C,(L*N),

We shall always assume that L>L, No=N,(L), C,=Cy(L), C,=C,(L,N,),
C,=C,(L,N,,C,)and ny=7y(L, Ny, Co, Cy, C,). The initial ¢* interaction given
by (2.2) has the form described in Sect. 4 and for small A, > 0 satisfies the inductive
bounds.
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The Main Technical Result

that we want to prove is the following: Suppose that V" has the properties
described in Sect.4 and fulfills the bounds of the present section with m2el,
=[—(no+n) %2, (ny+n)*?]. Then V"*! has again the same properties with
n—n+ 1 except for the new mass squared which satisfies

I3y — mi| S O((no +1)~7"%). ®)

7. Inductive Step: Estimation of the Local Small Field Contribution
to the New Effective Interaction

We shall start the proof of the above stated result from the analysis of W}, see (5.26).
W; carries the main contribution to V.

Let us assume that v’ e3 LA (4) and let ¥7 ,(y°) denote the argument of the
exponential on the right-hand side of (5.26). We recall that

=L 'y, ,+ Y M,Z, for xeLA. o))
ueLA
Let
dv(Z )= XO(ZLA)dul(ZLA)/.f Xo(Zra)du(Z ). 2

It is straightforward to see that for Z in the support of dv; 4, y° € 34 (L4). We
shall compute W, perturbatively. Let us denote

(== - exp[ — 17 14w°)] dv(ZLA)/j exp[— 74 w*)]1dv(Z ). 3)
Thus
W)= — IOgI exp[ — 7 .4w*)]dv(Z, ,)—log § x0(Z1s)dps(Z 14
= ] 2 log [ exp[ ~ 173, p)1dv(Zu) + Ol

t
=V 1a00— 3V 143 V1400 + %g dt(1 =02V 145V 145 Y 1aDt

+ 0™ ), )

where ¢; ...;>T denotes the truncated expectation and the subscript at O(—) points
to the order of the expression in v’ [we use the weak definition of ¢¥(—) which does
not exclude +(—)].

In estimating the expectations on the right-hand side of (4), we shall use the fact
that if % ,; 4(y) is an expression of order = k in y which is bounded on "(L4) by
C, then, since /|, € O((n, +n)‘ U4y A7 (LA),

) U 5 k1 s(MZ 1 p)|AV(Z 1 4) < < 1), .‘.dt(l —t)k ! j %> kL dEMZy 0| AV(Z 1 4)
dt(1—g)* 1
(k 1)'I ( ) u1,...,zuksLA
k 0 k u —k/4
-J il=_[1 7 UsiLatMZ 14+ i;1 il ., 1:[ Z,|dv(Z) SCO((ng+n)~*1%),

;=0 (5)
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where we have used the Cauchy estimate to bound the t derivatives. Loosely
speaking, the integral on the right-hand side of (5) contains at least k/2
contractions of pairs of Z fields and each such contraction yields an additional
O((ny+n)~Y/?) factor as compared to the bound for the expression on 4 (LA).
Let us start the estimation with the first term on the right-hand side of (4)

Y ra>o=%m? | dz(y,)> —6L°4 § dz%, .. (.,)?
4 4
+A[de(W)* +6AL 3 [ da(My,) <Z2)o(.)?
4 ueLA A

+ 2 [sz(L_ Y1)+ V(L7 -0

YCLA4
+ Y X2 Vay L v ey Moy oy Mo L

15i<js4 ueLA t J
+ <I7g srW%)>o— <I7§ 6Y(w0)>0|w'=0] —~8I22% 2“ dz £ dZ’QLzL,,(w;)S(‘P;)s
—T2L*%? EEA ZHo £ dz £ d%QLzL,'/” Loull L,u(w;)z(w;)z
—48L'A* X (Zh £ dz £ dy’@LzLy'/ﬂLzu'ﬂLyu(w/w)sw;

ueLA

“RUR S ZyZudol de [ dy L by,

uy,...,uqelA
: ‘/ﬂLﬁuz‘/ﬂLyug'ﬂLyu‘gw,mw;
—48L°2* Y (ZyZolda[dy 2, My,
V| a4 4

U1,...,U4€L.

: ‘%Lyuz'/”Lyug‘%Lyu"(w;)z + <’1/‘LA>0|V)’ =0- (6)

We shall estimate various terms of (6) with the use of (5). Note first that the
kernel 2 satisfies the following bound

n—1
[dz | dy|2,,|< T PO9 [ de [ dylTip-nainr,
41 42 k=0 41 42
n—1
<0(1)exp[—1pL(4,04,)] X 279 | de | dyexp[— 3L ¥ —yl]
k=0 A1 A4
n—1
SO()exp[—4pL(4,04,)] T L2070 dy e bl
k=0

<O(l)exp[— 4L (4,04,)], (7

where we have used the uniform exponential decay of 7 following from (2.19),
(2.42), and (2.46). Inequality (7) and the inductive bounds of Sect. 6 give

V2a=0((no+n)" ")+ 0,(1)+ Os6((no+mn)”~ 112 ®)
on small fields. Thus, by virtue of (5), the constant in (6) satisfies

<VLA>|w'=0=(0((nO+n)_l)‘ )
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Let us pass to the quadratic contributions to {¥7 ,>,. Using (6.3), we obtain
(W e3LA (1))

Z Z Z <Zﬁ>OI74Y(L—1w1,'1~s---"/i\%-ua'Ha%-u"-'7L_1w2‘1-)|§@((n0+n)_5/4)

YCLA i<jueLA
(10)

(one Z contraction provides additional ¢((n,+n)~*/?)). The quadratic contri-
bution from Y (V. ¢y (p°)D, is
YCLA -

1 a

2 =3
YL dt?

<I7g6Y(tL— 11P£-1~+%ZLA)>0 (11)

t=0

and by virtue of (6.4) and (5) is bounded by O((n, +n) ~>3) (there are at least two Z
contractions here). The last but one and last but two terms on the right-hand side
of (6) are, with the use of (8), bounded by O((n,+n)~>*?).

The quartic contribution from Y (7. ¢y (9°)>, is
Yca -

1 as

%, 4%,

4! yCia

<I7;6Y(tL_1‘PL-1~+ﬂZLA)>0 (12
=0

and is bounded by O((n,+n)~"°) (at least one Z contraction).
The remainder of Z P 6r©)o is

1

31,2 Idt(l—t)sd s Paoy(L™ Wi+ MZ1))o=Wiss).  (13)
Since by (6.4)

Z <V>6Y(tL_ A ML) o| S(ng+m) 2 Z exp[—aZ(Y)]

S+ D) (me+m)~23 (14)

for N, = N,(L) and since the constant, quadratic and quartic contributions to this
expressions were bounded [using (5)] by O((no+mn)~**/%), O((ny+mn)~>") and
O((ny+n)~ /%) respectively,

(W s S (L*+2) (ng+1) 7?3 (15)

(all the time for v’ e3 LA (4)).
Flnally, let us notice that {[]Z,,, are given by their gaussian values with
O(e*m ™' corrections. Denoting

> Vil -0 )=o), (16)
YCLA

> VL Y- = W@, a7
YCLA
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we may summarize the above discussion by writing
(P iavo=0o((no+1) ") +32m? | dz(y,)* — 6174 [ d=z %, .1 (v})?
a4 4

FOILE 3 [ de( M) (0P + WEEP) + Oal(no+1) ™)

+ }'i dx(w;)‘t - 72L4A‘2 j‘ d$ £ dyQLxLy’%LzuﬂLyu(w:)z(wy)2

ueLA a4

—'48L4/12 j‘ d$ j‘ dy‘QLzLy'ﬂLyu'ﬂLyu(w,)xwy

ueLA 4

+ Wi+ Oul(ng+n)~71) — 81227 £ dz £ Ay 2.1, (¥})’

+ Wa6aW). (18)

The second term on the right-hand side of (4), —3{¥4; ¥4, is treated
similarly as the first one with the additional use of the fact that ¥} (L™ 'yi-..) (i.e.
Z =0 term) does not contribute to the truncated expectation. A straightforward
analysis yields

— 3V 145 V1408 = Oo((o+1) ™2+ O0((no +n) ~*?)

- 36L4]’2 2 j diE j‘ dy‘%Lzu1%LyuI%LxuzﬂLyuz(wz)z(w?f)z

ui, quLA a4
—48L4j'2 ZLA £ dd" j d%‘%Lzu1‘%Lyu1%Lyuz'%Lyuz(wx)3
+48L47 Y [do f Ay YLy MWL) 0+ O4(no+1) 32)
uelA A
—8122% X 2 £ dz f Ay My oMy (W) (W) + 05 6((ng+1) ). (19

Equation (19) has been obtained by writing ¥7, as
O,((no+1n) ")+ 0,(1)+ O((ng +n) 1)+ Of((ng+n) " ¥*)+ Os6((ng+n)~ 12y,

accounting explicitly for some contributions involving the first two terms and
estimating the others with the use of (5) which implies that <{0O,((n,+n)");
0,((ng+n)H>T is a sum of 0,,((ny+n)P T4~ V4k+1=m)

Finally, let us consider the contribution of the third term on the right-hand side
of (4). Let us notice that since for v €3 LA (4) and for Z in the support of dv,
|#7.41 < O(1), when estimating non-vanishing terms {i;j; k)!, we may undo the
truncation and replace the { ), expectations by the t =0 ones, provided we replace
the integrands by their absolute values and multiply the whole expression by @(1).
Thus we easily see that

Va3 Vias Viad =0o((no+n) ")+ 0,5((ng+n) =)
+0,((ng+n)"2)+ 05 6((ng+n) =34 (20)

(in fact the last term can be replaced by O ¢((no+n)~ ") since the leading third
order contribution to it comes from the diagram -+~ which can be exhibited by
integration by parts).
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Gathering (4), (18)+20) and denoting
g—AzyE Z ﬂzy%yu (21)

uelLA

[cf. (2.19) and (2.25)], we obtain
Wi(0)=Oo((no+n) ™)+ $L2m* | deo(pl)? —6L2A{ do W, (L)’

+6L°A [ dorT 41,1, (0,)" + W3 4(W) + O5((no +m) %)
+ /1!; dzc(lp;)4 - 72L4/12 ;’; d$ £ d%QLzLy%LzLy(w;)z(lp;)z

— 481432 £ de £ Ay 2101y a1y, W)V,
—36L2 1{ de /{ Adp(T aro1,)* WL (W)
—48I*42 £ dx ;f' d%%LwLy%LyLy(w;)sw;
+481422 £ dz £ Ay G117 arer, W2V,

+Wis(W) +04((no+n)~7/%) —8L?2 £ dz £ Ay 21,1, ))°

—8L74? £ dz £ Ay T p1or, W) W), + Wi 64w (22)
for 9’ e LA (4). In (22)
Wé 64= ng +056((no+n)~ 4. (23)

Clearly analyticity of W; on 3L (4) also follows.
By (23) and (15),

W2 640 )| S (L*+3) (no+n) 2 @4

on 3LA (4).

This ends the estimation of W,. Let us notice that (22) contains the same terms
of the second order in A as (3.3) except for the localization of the “hard”
propagators, 7 =/ QI'Q* of * >y, A QI 2y, J12Q% o/ * 3, . We shall recover
the missing non-local parts of them in the non-local contributions Wy, Y+ 4.

8. Inductive Step:
Estimation of the Non-Local Small Field Contributions
to the New Effective Interactions

In the present section, we shall estimate the small field (D’ = () polymer activities
ox () for v eILA (X)) (CLLD(®, X)), as given by (5.25). We shall be somewhat
sketchy, since the analysis is straightforward and has been done in detail for the
(V¢)* model in Sect. 5 of [17] with comparison to which the present case is only
slightly more tedious.

First notice that for D’=0, D =R in g (y®) appearing under the integral on the
right-hand side of (5.25): y° can be large only if the fluctuation field Z, 4. is large.
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Consider the terms of the expansion with R=0. For g3 (y°) we shall use the bound

(6.5). Since we would like to bound the s-derivatives occuring in S(U) by the

Cauchy estimate, we have admitted complex values of s, see (5.13). This might seem

dangerous as the factorexp[204 [ (Imy®)*|givesa term exp[(@(Z*)] potentially
RnX

non-integrable in R. But [see (5.11): (5.12), and (5.14)]

Imyp*=L"'Imy} 1. +ImZ, 1)
and hence by virtue of (5.19) is bounded,
Imy;| S 3Ci(ng+n)~ 1%, @
Thus (6.5) implies
lgx (W) <exp[O(DIRNX | —a L (X))]. ©)

For the mass and Wick ordering quadratic terms in (5.25), we easily get
exp[[ —m? { de(i)+61 | dod. (2)7]
Sexp [@((no-l-n)‘”z)lX’l+(9((no+n)_1) 2 Zf]- “4)
ueLX’

By (4.12) and (5.19), Z* (as well as y} - .) is small, i.e. bounded by O((n, +n)*/#)
outside R. Hence

o[ —4,§  @¥] = fpxp[ =2 L @)* +OWIR

+0((no+m)~ "% LXI\R IQ”SI] = ’CXP[—Q, (w?“] exp [@(I)IR!
+O((no+n) "M X'|+ O((ne+n)~ %) “EX, Zf] . ©)
Also, by (7.22),
exp[ 5, Wi < [exp[[4 ] 0)* Jexp L0+~ HHIX T, ©)

Furthermore, since Y;CLX"\R, and consequently (again by (4.12) and (5.19))
p'e3A (LX\R),

72 4y, S O((no+n)~ *) exp[ — 0L (Y)] @)
and .
lexp[— Vzay,W)] =112 0((no+n) " '*) exp[ — a2 L(Y)]. ®)

Finally, we have to treat the ¥,,(1°) contributions under the integral of (5.25).
Since Y might intersect R, they need a careful treatment. It is convenient to use the
following general relation.

Lemma. If ye 9(D,X) and YCX, then
we(@(1)+(9((no+n>-”4> 3 exp[—pd(¥,x)] le) AO, O

xeDn
xeZ*

where, as always, (1, denotes the unit cube centered at x.
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Notice that in particular if YnD =0, (9) implies that 2(D, X)|yCO(1) 4 (Y)
which is a weaker version of (4.12).

Proof of Lemma. By the definition (4.11) of 2(D, X),
py=AP+P, (10)
where D(/¢)CD and ¢ e A (X). Now for z €Y,

(L. I=01) T e Plelg|

xedy

s0(MXe Ple=l f l/Pl0(1) 3 e Pl f . ¢l

xeDnX

—Blz— x|+ azlz x|

+O() 3 e (no+n)**
=00 2 e M "’I ]+ O((no +m)''%), (11

xeDnX

where we have used in turn: (2.42), (2.21), (4.10) together with the fact that for x ¢ D
NnX, d(x, ~D)<d(x, X) and smallness of 1. Similarly we show that for =, y €Y,
(4 9),,— (4 $),|/|z — | is bounded by the right-hand side of (9) as well as |(0,.2/9),,
— (0.4 9),|/|lz— »I*? if additionally 2 + L™ "¢, and  + L™"e, arein Y. Equatlon )
follows now from the definition (4.1) of (Y)

Let us see how (9) works. Since on ' (Y)

Py ()| S O((no+m) ") exp[ a2 (Y)], (12)
see (4.1) and (6.1) and since, by (5.19), p* e Z(R,, U,) then, for Y c U,, (9) implies
PoxW IS [0t 1))+ 0o +m) ™) 32 xpl—pd(, ]

: Df stl)ZJCXP[—aS’ ()]
SO0((no+m) ") exp[—aL(Y)]+O((no +n)~*?)exp[ —a L (Y)]
- 2 exp[—pd(Y,x)—pd(Y, y)] f v’ I v 13)

X, YeRx

Now if Y, is not in a single X; (or in a simple c.c. of R), then

d(x, ~R)=d(Y,x)+ £ (Y,)+0(1) (14)

and
d(y, ~R)=d(Y,y)+ Z(Y)+0(1). (15)

Hence, since v*e 2(R,, U,),

exp[ — 150d(Y,, x) — 150d(Y,, y) — 302 (Y,)] Dfx vl I]Iylwslé(ﬁ((no+n)”“)(16)

and
oy (W) S O(no+n) " Hexp[—30L(Y)], (17
lexp[— Vo, ()] — 1| O((no+n) ™ exp[ — 3a£(Y,)]. (18)
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For other terms ¥,,(1®) appearing in (5.25), namely, those with ¥ C X, we get
from (11) applying the Schwartz inequality

ax W S O((no+m) ™) exp[— L (V)] +0O((no +n)~>?) exp[ — F0.2(Y)]
‘xanp[—ﬂd(Y,X)]Df y°l? (19)

and
ZYCZX Voy(¥%) éCO((no+n)”I)IX’I+(0((no+n)"3’2)x§ [ W

x

S0((no+n) "X+ 0((no+n) ") 2 Z:. (20

Gathering (3)~(8), (18), and (20) and using the Cauchy estimates to bound the
s-derivatives of S(%) of (5.25), we obtain
lexl=2 3 3 ¥ X [T (" 'exp[—3pd(Uy, U)])

p ) (¥2) (Y5 L= ) (6 K)eT
. exp[m(l)lRl +0((no+n) ™ 'IX—a X L(X)

—%a% 2(1@)—0(%: ,%’(}fg)] ]:I O((ng+n)~1) I;I O((ny+n)~ %)
-Jexp [(9(("0 +m)~ ) 3 Zq X5 Zx)dp(Zox) - (21)
ueLX'

It is straightforward, compare formula (5.38) of [17], to show that the sum of terms
with p+0 on the right-hand side of (21) [for r>7,(L, N,)] is bounded by

O(e™ ¥ ) exp[ —Ta.L(X)]. (22)

The non-perturbatively small factor O(e~*"*"""”) comes from small Gaussian

probability of large Z. For p=0 the integral on the right-hand side of (21) is
bounded by ¢ exp[—s(n0 +n)t2y p,,]) This allows us also to control Z and

provides a decay factor in the size of R which together with the other decay factors
allows us to extract, say, exp[ — 3% (LX")] out of the whole expression. This
factor is bounded in turn by O(1) exp[ — O(L)a#(X")], where, by taking L= L,,
we have replaced (L) by 7. Sums over { X}, {Y,}, { ¥}, and I are controlled by the
remaining decay, and other small factors.

Let us consider now the terms of (5.25) with p=0. Their analysis is very similar
to that of (7.4). The only substantial difference is that we usually stay in a big
volume, with H exp[—+Bd(U,, U,)] coming from the s-derivatives through the

Cauchy estlmates and the tree decay factors of sz or V>4Y [together with the
connectivity constraints imposed on the sums in (2.25)] prov1d1ng the desired
decay factor exp[ — 70 (X")] for the contributions to g.(y"). As in (7.22), some of
the terms of the lowest order will be listed explicitly. Thus we list
a) the quadratic terms linear in A produced by a single s-derivative (no Y,, no

Yy),

’ b) the quadratic irrelevant terms coming from a single Y, contributing
P,y (L'} 1) (no s-derivatives, no Yy’s),
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¢) the quartic terms coming from a single Y; contributing Vey ,(¥°) with at most
two s-derivatives and no Y,

d) the quartic terms proportional to 4> coming from the contributions with no
Y, and no Y; and s-derivatives hitting at most twice the exponential of the local part
of V(y®), partially cancelled by terms of a) multiplied by the terms
612 dzT,; ;. (v.)* coming from the expansion of exp [W,],

e) the quartic irrelevant terms commg from a single Y; contributing
Viy p(L Y1.-1.) (no s-derivatives, no Y,’s),

f) the sixth order terms proport10na1 to A? coming from the contributions with
no Y,, no Yy and s-derivatives hitting at most twice the exponential of the local part
of V(y°),

g) the sixth order terms coming from a single Yj; contributing Vey SL Lpl-1)
(no s-derivatives, no Y,’s).

The terms which are not listed are of higher order and we shall extract from
their sums explicit powers of (n, +n)~ ! using an analogue of (7.5) (one contraction
again produces an extra 0((n,+n)~ */?). Let us denote for i=2, 4

W)= 3 Uyl 'pi-1), (23)
Y:(L-T- =Y
compare (5.30), (7.16), and (7.17). A straightforward analysis sketched above (we

leave the details as an exercise) results in the following representation for g(y”)
into which the p+0 contribution bounded by (22) has been also absorbed:

ex (W) =0((no+m)~ ") exp[ - T (X)]
6% 3 [ deT 4.1 W) — Wi ) +0y((ne+n)~>*)

(41,42) 4,

-exp[~TaL (XV]+T2L°2% ¥ [ dz | dy21.1,T 4001, W)

(41,42,43) 41 42

+48L4j,2 Z j‘ d$ j dyQLzLy‘/A3LyLy(lpx)3

(41,42,43) 41
4 2 2
+18L*32 Z [dz | d%«/A3LILz=/A4LyLy(1P ) (wy)
(44, A4) A1 A2
A1F4
(AluA3)n(AzuA4)¢(b

+3614%2 Y [d=z .f dyJAngLyJA4LzLy(1Px)2(wy)2

(41,...,44) 41

+481432 ) § de j Ay T 4oty T aanyr, (W)W,

(41,...,44) 44

—48142 Y | dxjdyfﬁg,@./dsu@(wz)s

(41,42,43) 41 43
i (W) +0,4((no+n)~ ") exp[ —TaZ (X )]
+824% ¥ [da I dy 2,1, W) W),

(41,42) 41

+8L212 Z j dd? j d%‘/A3LmLy(lpm) (wy)3

(41,42,43) 41

—~Wesx @) +056((no+n)"**)exp[~TaZ(Y)] 24)
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for w’ e $LA"(X"), where in the sums (4,) are such that uA4;= X" [if there are none
such (4,), the term does not appear],

>6Y (')

1 1 dé . o 1
=37, D fdt(1—t)° g S Vaor(L™ "W+ MZyy) xo(Zry)dpy(Zyy) -
'yiw-h-=vo 25)

As in (7.14) and (7.15), for ¢’ €3 LA (Y), we have

” (L42)(ng +1) > exp[ 2L (V)],
oS {9y expl I,

where the factor L? is due to the presence of at most L? Y’s in the sum of (25) with
Z(Y)=2(Y).

It is instructive to compare (24) with (7.22) or (3.3) to find out that it contains,
besides the non-local terms of the second order in A missing in (7.22), also a term
corresponding to a disconnected second order perturbative diagram (the third
quartic term).

Given (24), (5.28) implies a similar representation for Wy (with Y = 4), compare
(5.54) of [17]. The difference, besides the change X'+ Y, consists of the
disappearance of the perturbative quartic term corresponding to the disconnected
diagram cancelled by the = =2 contribution of (5.28) and of replacement 7¢— 60 [a
fraction of the tree decay factors is used to bound the sums on the right-hand side
of (5.28)].

Thus for v’ e3 LA (Y),

Wy(¥)=0o((no+m)~ ") exp[ —6aZ (Y)]
+6°4 3 [ deT ...

(41,43) 44

+War @)+ Oa(no+n)~>*) exp[— 602 (Y)]
—72L4)* Z [ de j d%QLmLy«/ 4 3LzLZ,(1Pz)2(1Py)2

(26)

(41,...,43) A4y 42
— 481432 Wz, Aj de I Ay 211, T 43141, V)Y,
—36L4,12( s » Af de I Ay T ororyT auLor, W)W,
—48L‘*/12( z » Aj dz I Ay T po1o1yT 4iLyry W2V,
+481432 " z » Af de f Ay Y11, 3101, W2) W)

Wir W) +04((no+n)~ " ®)exp[—60.Z(Y)]
- 8L2/12 Y [de 5 Ay 21,1, W.)* W)’

(41,43) 44

_8L2)'2 z j dﬁU -f dy’/A;;LzLy(Wz) (wy)3

(41,...,43) 41
+ W 6Y(w/) ) (28)
where the sums over (4,) are restricted by requiring that u4;,=Y.
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Notice that the quadratic terms linear in 4, quartic ones linear and quadratic in
/. as well as the sixth order contributions proportional to A% on the right-hand side
of (7.22) and (28) are localizations of the corresponding terms of (3.3) (with {=1).
For the last term of (28), we have

Wé 6Y= W£6Y +0s6((nog+n)~ %) exp[— 602 (Y)] (29)
on LA °(Y). Thus, by (26),
(L*+3)(ng+n)~*Pexp[—aZ(Y)],
} Wg GYl = -2/3
O((ny+n) exp[—6aZ(Y)].
of course the analytlclty of Wy on1 LA (Y), and hence also of W> 6¥ follows. Since
Zz” W> ey(zy)) is an analytlc function, we infer from the maximum principle

that by restricting ourselves to ¢’ € 4#"(Y) we gain an additional factor (4L~ 1)° on
the right-hand side of (30). So, for L big enough,

|V~Vésy|§%(no+")_2/3 exp[—aZ(Y)] (31)
on 44(Y). By virtue of (7.24), this holds also for Y= 4. Estimate (31) expresses

the irrelevance of the sixth and higher order contributions to the effective
interactions.

(30)

9. Inductive Step: Extraction of the New Effective Coupling Constant

Here, we present the treatment of the fourth order contributions W’ to Wj. This is
the most important but also the most technical part of the argument.

By virtue of (5.30), (7.22), and (8.28), W,y (y") [on L (Y)] are given by the
quartic terms of second order in A on the right-hand side of (7.22) or (8.28)
respectively, plus (94(§n0+n)‘7/6) exp[ — 60 (Y)]. Let us denote these contri-
butions by W, and W% respectively. It is easy to see that

I 4y(w3|§(9((no+n)")eXp[—6a$(Y)] (1)
on 1L (Y). We have to represent ﬁ/‘{ = ; V~T/4'Y as a sum of a local quartic

interaction and of approximately local irrelevant quartic terms as in (5.31). This
will be done in several steps which might look technically complicated and not
quite natural but which guarantee good bounds on the obtained expressions. At
the begining, let us polarize W;(y"), i=1, 2, producing a symmetric quartic form

4
'(t) — I /(i)
Wiy, .. .,w4)—4! .-131 Bl A (Z w) )
By the Cauchy estimate,
Wb (W1, s WIS O +1) 1) exp[ — 60.Z(Y)] (3)
and 5
Wit W1, .., W) S O((ng+n)~ ") exp[ — 602 (Y)] “

for v, e A (Y). Introduce symmetric kernels
Ao = WO s ). ©)



234 K. Gawgdzki and A. Kupiainen

Since by virtue of (2.42), (2.43), (2.45), and (4.1),

A Jye O((no+n)~*) exp[ — fd(x, V)] A4 (Y), (6)
143, .2 £O((no+1) %) exp[ — 602 (YU {x;})] ™

and
1432, 2] S O(no+n)~*%) exp[ — 60 L (YU {x;})]. ®)

If = o/'¢’, then A are the ¢'-kernels of W;P(1p"). We also recall that in this case
¢.= | v, see (2.26). For a general y’, we shall write
Ox

Y=LV + @ —-AP), ©)
where for xe 4,
Pe= 1 v. (10)
Dx
Notice that because of (2.22)
w;—(ﬂ’tﬁ?flﬁ;—Zﬂ;xDI dyw;=2%;xuf dy(,—wv,), (11)
so that v’ — .o/’ depends on y’ through its differences at pairs of points only. We
may write

MY(U’/)= Z AYx1,...,x41p;c1"'1p;4
X1s..43X4
4
+ '=21 WL, ..., Y, w'lxﬂ’ Py’ —LP). (12)

The second term on the right-hand side of (12) will be shown to be irrelevant due to
the dependence of y’'— ./’ on differences of y’ only. The first term will be
transformed into

4
3 0y (P)* + z (Z) Ayxy,.opxaWPiey o PPy = Ve W5, - Pl (13)
x 1=2 (X

where
51&26 = Z A(Yégcxzx3x4 (14)

X2,X3, X4

Proceeding further, we rewrite the first term of (13) as
4 /4 o .
Sk [ W)+ i;(i)g_ézn T @@= (1s)
Thus, gathering (12), (13), and (15), we obtain

~ 4 ] — -, ’ 1= ’ (5
MY(V)/)—_— zaleij‘. (V")4+ '=21 [WéY(dllp/la '-‘,Vd/w;—lall)i_ﬂ PYis ooy 'P4_=9¢ 1P4)

.....

4 _ _
+( )g‘s/leIj[ ‘P/l---lpi—i(wft—inx_wit—w1)--'(1P:tx—wzt):|

i

» (16)

wi=
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where we have written the irrelevant quartic term as a four-linear (non-symmetric)
form restricted to the diagonal into which i, enters only through its differences at
pairs of points. The different irrelevant terms on the right-hand side of (16) depend
also on fields y; outside Y. We shall localize this dependence by writing

Vi=Pityt X Wikas an
AnY =0
AWy =odl Yy — A (Waxy) + ) ;z , Wad La— A ‘Wixs)  (18)

(note special localization of yj— /"y, which uses (2.22)). After localizing the
irrelevant terms on the right-hand side of (16), we shall gather those in which the

union of the localization squares 4 is P into W%y (W}, ...,w4) (do not get
confused about the superscripts: W}{z gathers non-local contributions from W}

= W’1 + W’Z) With W2,.(v)= W2y, ..., ), (16) becomes
MY(w/) 2 Ohyx f W)*+ Z Wizv ). 19)

It is easy to notice the x-independence of
; AP =649, (20)
Indeed since W’ possesses all the unit lattice euclidean symmetries, so does VzV‘{, and
hence Y Ay,, .. Since 3. W/} (given by the quartic 0(4%) terms of (3.3) with { =1) is
also syl;nmetric so are YZ Ay, .. But Z A= Y AP cix, Which is x
independent due to the translatlon invariance of Zx/zl::lx“xj Using also (2.22), it is
easy to show that 1! defined by (20) coincides w1th 841 of (3.6). For 642, (8) yields
042 O((no +m)~1%), @1

so that 642 is small correction to A = O((ny+n)~2) in 64 =564 +54%
Upon defining

Wiy'(‘l’ia s W)= Z 4YY W1 - W) (22)
and _
W)= Wi, ... v), (23)

(19) and (20) imply (5.31).

We still have to bound W,2.(y1, ..., w,). Suppose that 7, v, and w3 € A (Y)
and that v, fulfills all the bounds of (4.1) defining #(Y”) except the first one for |}|.
Notice that by virtue of (2.42), (2.43), and (2.45), for i=1,2,3,

: A yypie O(1)A(Y) (24)
an

A"y i€ O(1) exp[ — pd(Y, A)]A(Y) . (25)
For €Y and

0, =W (A 1y).— (' Wary)). = 2 e f d2(Wa,—W4.) s

(0.l 2 170 (e =]+ 1) f dy lWa, — Vi, l/lz— gl O((no+m)'"*).  (26)
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Furthermore, for z, y€ Y and |z —»|<1,

o, ~o\le—yl=|2 | dd AL (Woe—¥3)— A x(Wa, — L)
xeY Ox

/Iw—yl
< Zy(lﬂ;x—ﬂ;xl/lﬁ—yl) Df dxlwi, — il
+ ZY |, Wi — Wil — I < O((no +n)"/*) . 27

The same holds for |z—y|>1 due to (26).
Finally for , 4, z+L ®*Ve,, y+L "*Ye,e X, since

(0u0), = N (0u’) Df Ge(Wae= Vo) + 2 Aox0,¥ie

+LOFD xgy (0,:") 0, Wi » (28)
(0,0),—0,0) |/l — y|** < O((no+n)""*). (29)
Thus B
Wal L) = A Wary) € OOA(Y), (30)
and similarly we show that
V(L La) — ' (Waxs) € O(1) exp[— 3 pd(Y, A)]H(Y). (31)

From (3), (4), the assumptions on v}, (24), (25), (30), and (31), it follows that the
contribution to W, 2,.(, ..., v,) coming from the first term in the brackets on the
right-hand side of (16) is bounded by O((ny+n)~*) exp[ — 60.#(Y")]. From (7) and
(8) in turn, we infer that the contributions of the second and the third term in the
brackets are estimated by 0((ny+n)~*)exp[ —50.2(Y")].

Altogether ]
‘ Wity (W1, -, ) S O((no + 1)~ exp[ — 5aL(Y)] (32)
an
Wiz @hs s WIS O(no +m) ") exp[ —4a? (Y)] (33)
for pie A (Y"), i=1,2,3, and v satisfying the bounds defining #'(Y’) except the
one for |yy|.

For the other irrelevant quartic contributions to W, one has

> I~/4Y(L—11P/1L—1~>~~~aL—11P:tL-l~
v:@-)-=v
< [+ DL o) exp[ —a2(V],
= 0((ny+n) 3 exp[ —4aZ (Y]

where in the first bound we have used the fact that there are at most I#Y’s with
L(Y)=2(Y"), and for v, satisfying the second and the third inequality of (4.1) for
n+1, Ly - .. almost satisfies it for n (this produces the additional L™!). In W,
= WL+ W, the second term is a small correction. Expression (33) and the first
inequality of (34) show that the bound for W, contracts with respect to that for ¥,
if L is big enough:

Wiy (W5, s Wl S3 (o +n+1) "> exp[—aZ(Y)] (3%)

AZCZRRTAES

(34)
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for yie A°(Y) for i=1,2,3 and y satisfying the defining bounds of #'(Y) except
for the first one. This demonstrates the irrelevant character of these terms.

As for the marginal contribution, (21) shows that our perturbative analysis of
the change of the effective quartic coupling performed in Sect. 3, see (3.13),
essentially remains valid:

1 1

1 1
TR TS E R Le- (36)

10. Inductive Step: The Large Field Bound

In this section we shall show how the large field bound (6.5) iterates. Let us start
with the estimation of ¢2.(y”) as given by (5.25) with D"+ [for v’ e L2(D’, X")].
The main difference as compared to the D’=0 case treated in Sect. 8 is in the
contribution of [T g% (*), which becomes more subtle to estimate when v’ is large.

On the other hand, we shall need only a rather rough upper bound and tracing of
powers of (n,+n)~! contributed by the expansion outside the large field region
will not be necessary.

First let us notice that, since D=LD'UR,

CZZleXi|§L4C2|D’mX’|+C2|R|. €]
Furthermore
=Y [ dalyi)?
i DnX;
=LY [ dalypp- P HAPY | de| 2P
i DnX; i DnX;

) D,IX, de |y, + O(D)[R|+O((no+n)~1/?) > Zi, @

and, by (5.11), (5.12), (5.14),
04 [ de(myl)*S0L35 | da(lmy-)*

i DnX; i

+0((no+n)~ l"‘) | dz[ImZ3), (€)
LX’

where we have used the smallness of Imy’ and Im 2 =Im %73, see (5.19). Thus
2003 | (Imy%)* <204 j (Imw34+(9(1)|R| +0((ny+n)~ 14| X|

i DnX;

+(9((n0+n) a4 s 72, 4)

uelLX’
Inequalities (1), (2), and (4), together with (6.5) give
2 (W) Sexp [L4C2|D’0X 1+ O0)[R|+ O((no+n)~ 14| X|

—3BIE [ WP +0(+n) 1)

‘'nX

© X Zp+204 (Imtp?“—aZf(X,)] ®)

ueLX’ D'nX’
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which replaces (8.3). In turn (8.4) is replaced by
lexp[—%mz [ de(y})*+64 | dew(wi)Z]
LX' LX’

Sexp[ 0o+ ™) I dalpiP+0(no+m) %) X1 +0((ng
+mhH ¥ Zf], (©)
ueLX’
(8.5) by

‘eXp[—lLX[ » (ws)“] exp [(9(1) IRI+0((no+n)~ 1) X

sfw[-1 ] @]

+0(o+m)™) ¥ Zf], ()
and (8.6) by
}eXp[ 2 Wd} = ‘eXp [l I (w?“] exp[O((no+mn)~ 1) 1X]. ®
ACX'\D’ X'\D'

For 7, 4y, terms, (8.7) and (8.8) still hold since Y,C LX"\D. The ¥,y terms are also
estimated identically as in Sect. 8. Namely (8.13)-(8.20), except for the last
inequality of (20), remain valid if we change R, to D, =(LD’UR)nU, and R to (LD’
UR)NLX’. Hence (8.17) and (8.18) still hold and

> 3 Vor?) SO0no+m) X1+ 0((ne +m) "> [ |y

i YCX; D'nX’

+0((ne+m) 7)) ¥ Zy. ®

uelLX'
Substitution of (5)«(8), (8.8), (8.18), and (9) to (5.25) gives [on $L2(D’, X)],
Y=Y X XX I1 ( 'exp[—38d(U, Up)])

P (X} (Yo} {(Yp} I'c (k,k)elc

- eXp [L“CZID’mX’I +0Q1) R+ O((ng+n)~ 1) | X

—3227 | WP+204 [ (Imy)*
X’ D'nX’

D'n

——a; ,S,”(X,-)—oc§ ,?(Y;)—a%,?(}’ﬂ)] I;[ O((no+mn)™ 1) II;I O((no+n)~1/?)
-fexp [(9((710 +m)” %) . pay Zf] X6(Zrx)dp(Zx)
<exp [(L4 +1)Co|D’'nX'|—FI2AM? D,{{X’ [w'|?
+204 D’ix, (Imy)*—Ta L (X ’)] (10)
for C,=C,(L, N,), the sums being controlled as for ¢%.

Let us pass to the estimation of the large field contributions §¥ to
exp[ — W.,], see (5.34) and (5.35). By (7.22) and (8.28),

[WH0)| = O(no+m) ™) exp[ —60ZL(Y)], 1D
IWay| S O((no+n)~!?) exp[ —6aL(Y)], (12)
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the last on #°(Y). Proceeding as in (8.13)(8.20), we show that for v’ e 1 L2(D’, X),

[Way ]S O((no+n)~ ") exp[ — 50.2(Y)] (13)
for Y, not in the interior of a single c.c. D; of D’nX and
l‘)iyg Wi SO((no+n)~"?) [X|+0((no+n)~ 1) f lw . (14)
Now, on A4(Y),
(Wil S O((ng+n) ™ exp[ - 622(Y)]. (15)

Hence by virtue of (8.9), on $L9(D’, X),
Wiyl < O((no +n) ™) exp[ — 60 L(Y) ]+ O((ng+1) ") >

-exp[— 6°€$(Yu{x.})]ﬂ I . (16)

U,
Again for Y not in the interior of a single c.c. of D’n X, the exponentially decaying
4

factor exp[ —30.Z(YU{x;})] can be used to match the growth of [T | |y, and
. i=1 Ox,
another one to bound the sum over x;. Thus on 1LY(D’, X), '

Wiy, | S O((no+n)~ ") exp[ —5a.2(Y)]. (17)
Using (8), (10), (8.24), (13), (14), and (17), we immediately infer from (5.35) that on
1L9(D, X),
lg¥ |<exp [(E‘+2)C2|D’0XI —$CA7 | [y
D'nX

+204 Di X(Imlp/)4—4oc$()?)] ’exp [; %g VzV‘{YJ . (18)

We have not estimated the quartic contributions W}y with Y within I; since their
main part will be canceled in the next step reinstating the quartic terms of W’
missing in Wy ,.

Let us then pass to the estimation of §¥ given by (5.40). Since Y, and ¥} lie
outside D,

Wit | S O((no+n)~>*) exp[—40.2(Y)], (19)
[see (9.34)] and [see (7.8), (7.22), (7.44), (8.28), and (8.30)]
W2 63, S O((no +m) ™) exp[ — 602 (Yy)] (20)
on 1L9(D’, X). Furthermore, (9.33) implies
Wiz | S O((no+n)~ Y exp[—30.2(Y)], @1
again on1L9(D’, X), in the same way as (15) implied (17). Finally, we shall have to
estimate . -
Z Wiy — oA f W)'— X Wiy (22)
YCD; YCD;

on 3LY(D’, X). Let @=L ¢+ 7L9(D’, X) with ¢’ real, DQL '«/'¢")CD’
and ¢ eiLA(X), see (4.11). Via multiplication by an appropriate smooth
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function bemg 1 on D and zero outside D;, we - may replace 1y’ by a globally defined
function y’e O(1)A (A,,+ 1) coinciding with ¢’ on D;. Clearly

o' =G+ € O)DD', Ay ), 23)

and coincides with ¢’ and D;. Thus the values of (22) on ¢’ and ' are equal. Now,
by virtue of (9.20) and (9.22),

22) (@)= Z Wiy(@)— 2 Z Ohys f @)= 3 Wip(o). (4

Ycbi xeD; Yy’ cb;
Insertion of (9.19) into (24) gives
(22) ()= Z Z Olyx f (@)= X 3 9y, f (@)

YCD; x¢ D} Y¢Di xeDj
+ Z YY’(w,) . (25)
Ycb;
Y'OY: Y CD;

On the right-hand side, we have only tail terms localized in bigger sets than D;.
As by (9.7), (9.8), and (9.14),

|04y < O((no+m)~?) exp[ — S5eZ (YU{x})], (26)

we can use part of the tree decay factor to match the growth of w’ inside D’ in the
first two terms on the right-hand side of (25). The third term is estimated as in (21)
with the use of (9.32), and the constraint that Y’ does not lie in the interior of a
single c.c. of D". This way we show that on $LZ(D’, X),

I22)|Z O((no+n) "M IDy]. 27)
Expressions (18) to (21) and (27), when inserted to (5.40), yield
1gP| < exp [(L4+3)C2|D’mX (=422 | |2 +204 | (Imlp')4—20t$(X)]
D'nX D'nX

(28)

on 1L9(D’, X). The analyticity of §i on this set clearly also follows.
Inequality (28) is almost what we want, see (6.5), except the growth of the
constant in front of |D’'nX] (field independent perturbation is relevant). In the
remainder of this section we shall show how to bring this constant down to C,
using the extra strength of the quadratic expression Roughly speaking, on D'nX,
' is at least of order O(C,(ny+n)'/*) so that —{5I2A1/? f hp |* should provide

—0(C?|D’'n X)) constant cancelhng the growth of C, for large C,. The problem
with this argument is that first 1’ may be big in D’ but does not have to, and second,
even if it is big in absolute value, at some point it could contribute little to the L2
norm.

Let us fix v’ €1LP(D’, X) with v’ =.o/'¢' +, ¢’ real, D(SL '.o/’¢) =D, CD’,
v elLA (X). If we take D} as a new D', the ﬁrst difficulty will be avoided. By a
version of (4.16) for g, Wthh the reader will easily establish following the lines of
Appendix 2 of [17],

573?'(1/0— Z Hg’D‘(wﬁl_I(eXp[ W2 4y (w)1-1)

¢ i

-exp[f(/1+5i) | (w‘], (29)

(D'\D{)nX
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where
Wé4YEMY+Wé6YEVW§’+M§+ Wiey, (30)

and X are disjoint, DinX CuX,, Y,C X\UX, and X is connected with respect to
c.c.of D’, X, and Y,. Notice that using (29) would be dangerous for establishing the
analyticity of i (v") since D; depends on y’, but once this is done, we shall employ
it to improve (28). Inequality (28) for §2i(y") and the Wy estimates easily imply

9% )| Sexp[(L* +3)C,DinX|+3C,D' N X| —3 A2 D,f . '

.3

(D'\D)nX

+204 Dajm (my)*— a2 (X)] [exp [—,l ) (w?“}

But by (6.7),
lexp [ —(A+62) | (w?“]
(D nX

Sexp [%CzI(D\D’l)ﬂXI—U”Z [

\D1) (D'\DD)NX
+204 (Imw’)“] . (32)
(D'\DY)nX
Hence
g% (W) Sexp [%Cle’ﬂX =242 | [pP+204 | (Imy)*—aP(X )]
D'nX D'nX
- €xp [(L“+3)C2|D’10X |-G —-2)A'* Iw’lq. (33)
DinX

We still have to show that the second exponential on the right-hand side of (33)
is bounded by 1, i.e. that whenever || gets large it contributes sufficiently to the I?
norm. Here we shall use crucially the fact that ¢’ is equal to /¢’ plus a small
correction 1’ and that 0,4/’ is a bounded exponentially decaying kernel.

Let us rescale C, and ny+n out of the problem by introducing

W= =2LC )y (34)

Notice that D] is by definition the smallest paved set such that

|o/'¢"| <2 exp[f5ed(x, ~D})], (35)
see (4.10). Define for ACX
Ay= sup lv’l, (36)
B,= <£ Iw”l’)”z, 37
C4=sup low”]. (3%)

Let
D'={AcDinX:A4,=1}. (39)
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Since somewhere in D1NX, |«/'¢"| 22 (otherwise DinX would be empty and we
would be done), and since [p”|< 1, D'+ 0. We have the following estimate for C,

Ca= sup (109" + 0%")

=0(1) 2 exp[—pd(4, x)]1¢:1+ Co

<0(1) 3 exp[—pd(4, 0] 14+ 0()
=0(1) DZ XeXp[—ﬁd(A,X)] DI 9" +0(1)
S01) [ exp[—pd4,%)] | lv"I+0(1)
xeDinX Ox
<0(1) | exp[—pd(4,4)]Bs+Cs, (40)
A4'CDinX
where we have used (2.43) [or (2.44)], (2.21) and the smallness of ©”. Let
= U 4, (41)
AeD’':C4=2C3A4
Dy=D\D;. (42)

Since on 4 C ), the derivatives of y” are bounded by the supremum of [”], y” has
to contribute sizably to the I? norm:

A,20(1)B,. 43)
Hence
o) ¥ Biz X A]. (44
ACDinX 4CDY
For A D, we use (40):
AA§2AA—1<C3‘1CA—1§@(1)M§ Xexp[——ﬂd(A,A’)]BA,. (45)

Upon squaring and summation over 4 C D, this gives

z A;s0(1) X exp[—Bd(4,4)+d(4,4)1B4B,=0(1) ¥ Bi.

ACD5 ACDs ACDINX
A4',4"CDinX (46)
Since by (35)
IDINX|=0(1) 3, log*(1+4,), (47)
ACD’

(44) and (46) imply

IDInX|S0(1) ¥ Bi=01)C;i*(me+m)~ "> [ [y?, (48)
ACDInX DinX

where (1) is C, independent. Thus for C; = C,(L, N,, C,), we obtain from (33)
9% | <exp [%CZID’ﬁXI—M”2 I wIP+204 | (Imw94—063(Y)] 49)
D'nX D'nX

on 1L9(D’, X).
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Since §¥'(y") differs from the final gi¥'(y") only by the wave function
renormalization v’ {12y, see (5.53), (49) will yield directly the inductive bound

(6.5) for n—>n+1.

11. Inductive Step: Mass and Wave Function Renormalization

By (7.22) and (8.28), with the use of (3.5), the second order contribution to W’ can

be written as

W) =3L'm? | de(y,)* — 61 d=G. . (p,)* + 2( W)+ i), (1)

where on A (Y),
W33 ()| < O(no+n)~>*) exp[ — 6a.2(Y)].

Notice that by virtue of (7.16) and (8.23)
by Witw) =LY [ dzdyK?,, (0, —0,w,)0,p,.
n,v

Let us introduce
W, ()= ; W) +6(M— 1)+ 640 § dy G, (y.)?

for
L=1Z0((no+m)~""*).

We shall limit ourselves to p’=./'¢’ only.
It is easy to see using (2) that

W)= % IL.44;

X,y€dAn+1

where I,,=1,, possesses the unit-lattice euclidean symmetries and
Lyl SO((no+m)~ ") exp[—Solx— ] .
As shown in Appendix 2, we may rewrite (6) as
Wi(y)=10m* Exl(¢;)2 + ”Z ny IV 0y
where
|om?| < O((no+m)~""*)
and J,,, is again symmetric and satisfies the bound

Vil S O((n+n)~ ") exp[—2alx—y[].

as ¢,= | v,
O

x

Somi(g? = Jom? | () —hom® [ ('~ )%,

@

3)

4)

®)

(6)

™

®)

©®

(10)

(1D
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But for ze [,
vo—di=vi— [ v'= %J’ dyrey0upy (12)

where we can choose r;, supported by y e[, and with all the unit-lattice
euclidean symmetries. Hence

—%5mZZD§ (' —¢)?
—4om? Z [ dzdydart 12 0,v,0,0,

—30m* 3 3 [ dedydzery 1. 0,4,V 1),x(0, "V, )WV HV 8,

REX
= uZ xEy oVt V by (13)
where (by (9) and (2.44))
V5l < O((no +n)~ ") exp[— Blx— 11, (14)
and J5;, is also euclidean symmetric. Setting
J=Ji+J,, (15)
we can rewrite (8) as
V() =5om* [ (p)* + uZ IR A (16)
Now
Vb= ;f dzhy 0,0, » 17)
where
hy..=0 for pu=v, (18)

and for p=v, i, is a lattice version of a function whose u-derivativesis 1 on [J,
and —1 on O,

O ML= 10,2+ L Vo) =y o e+ L VeP), (19
hir,=0 for 2¢O, 0l,,,, . (20)
These (tensor) functions are again euclidean symmetric and moreover
fdzht,  =1= Zhum. 1)
Substituting (17) to (16), we obtain
Wa(y")=%3om* [ dex(y)* + Z § dedydKY,0,4,0,p) , @1

where
5K‘;; = xZ JERE R (23)

xy"uxz vyy
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O0K*’ has all the unit-lattice euclidean symmetries. By virtue of (10), (14), (15), and
(23),

IOK%,| < O((no +m)~ ") exp[— 20— y]. (24)
Using (21) and the symmetries of J, we obtain
[dzsK®, = x}:y Tk, = ;Jgg =4dcom (25

(for non-symmetric interactions we could get a matrix which is not proportional to
identity on the right-hand side). Clearly

0| < O((no+n)~ ). (26)

Thus, we may give (22) the following form
W) =30m? | d(y,)* +36¢ 3 | d(9,9.)?
I3
+ X | deedy K2 (0,0, — 0,1,)0,1, . (27)
v

Equations (1), (3), (4), and (27) imply (5.40). Due to (26), (5), and (5.42) are
compatible.

Now (5.46), (6.1) for n, (5) and (24) yield easily (6.1) for n—~n+ 1. Relations
(5.45), (9.36), and (5) produce (6.2) for n—n+1 as well as (5.49), (9.35), and (5) do
(6.3) for n—>n+ 1. Form the definition (5.50) and (7.22), (8.28), (3.2), (8.31), with the
use of (5), (6.4) with n—n+1 also follows.

This proves the small field inductive assumptions for the new effective
interactions. Similarly (10.49), by virtue of (5.52) and (5) do the large field ones
given by (6.5) with n~n+ 1. Finally from (44), (5), and (9), (6.8) follows. This
completes the proof of the Main Technical Result (see the end of Sect. 6).

12. Thermodynamic Limit and Infrared Asymptotic Freedom
of the Critical Point Theory

Up to now, we have worked in finite periodic volumes. Nevertheless our estimates
were volume indepenent. This makes the thermodynamical limit fairly simple.
Define the sets #"(X) and 2(D, X) of small and large A =Z* fields as before but
whith finite sets X in (4.1) and with finite sets D, X and compact support ¢ in (4.11).
Since the kernels o/, and I, in finite volumes are periodizations of the infinite
volume ones satisfying the bounds of the end of Sect. 2, it is easy to see that infinite
volume (1 —&)2(D, X) is contained in the finite volume 2(D, X)’s for large volumes
(we recall that periodic A has been identified with an IY-block in Z*#). Suppose now
inductively, that m2, K& _, 4,, Viy(y"), V2 y(p") and ¢%P(y") satisfy our inductive
assumptions and converge when A ~Z* the latter two for y"e3X4(Y) and
v"e(1—e)2(D, X) respectively. From analycity of V2, 72, and ¢%° and the
uniform bounds, also their almost uniform convergence follows. W+ 1(y"* 1) and
G 1P(yp"*1) depend on the volume through V5 and g% and through the kernels
M, entering their arguments. Using the almost uniform convergence of V5 and
g% together with the convergence of .#, and the dominated convergence
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theorem, we infer the convergence of Wy i(y"*!) and g%+ P(yp"*1). From the
latter, the desired convergence of m2. ;, K4%,,,, Vrripnty, Vg;,}(w"“) and
g% Py *1) with the volume follows. We also see easily that these objects are
continuous functions of the initial parameters m3 and A, provided that the
previous scale ones where.

Let us notice that, under our inductive assumptions, for y" = .o/,¢" and ¢" with
compact support, V*(p") exists in the thermodynamical limit and satisfies (4.2)—
(4.4) or (4.8) depending on whether y" is small or big. For the infinite volume
weakly coupled ¢* theory, we shall choose the critical point by setting m32
=mZ;(Ao) with the latter in NJ, where

JOOCIOC T cly=[—ng 32, ng¥?]

is a sequence of the closed intervals of the values of m3 chosen inductively [with the
use of (6.8) and the continuity in m3] so that m? sweeps I, =[—(ny+n)~*2, (n,
+n)~%%] when m} runs through J{. At the critical point, all our effective
interactions satisfy the bounds of sect. 6, and clearly

V(-0 M

for y"=/,¢ and ¢ with compact support. This establishes the IR asymptotic
freedom of the weakly coupled critical lattice ¢§ theory which is the main result of
the present paper.

A reader of [18] will also understand that an easy extension of the present
method allows rigorous treatment of correlation functions of the model which
have a massless decay. We plan to come back to this problem in order to exhibit
the logarithmic corrections to scaling [40, 7, 8] and in the context of the UV
asymptotically free negative coupling theory.

As to whether our work provides a general tool to treat renormalizable
asymptotically free models (first of all the UV problem of the gauge theories), we
leave the jugement to the reader (and the future).

Appendix 1

Here we shall establish (3.7) for 5A* given by (3.6). Consider first the third term on
the right-hand side of (3.6). We shall derive lower and upper bounds for

I:tD.[ d$.‘d3’(%LxLy)2 . (l)
For a lower bound (recall (3.5))
)=L* | dzfdy(7,,,)
LOo

gL_4 I dﬁ .‘. dy(g;lzy)2=l‘—4 .‘. dw I dy(gnwy—L—zgn'FlL_1@L“‘y)2
L LOo LOo

0 LOo m}
>L* | d dy(%,, ) —2[L* | d dy(%,, ) |'?
= L[jjo J;Léo y( nzy) l: LI“.jo CﬁLéo Z/( nzy) ]

'I:L_‘t .[ d$ -‘. dyL_4(gn+1L_1zL_ly)2:'1/2' (2)
Lo Lo
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But

;8 I dz .f d%(gnHL—lzL-ly)z: .[d$ I dy(gn+1xy)2§(9(l)
LOo LOo Oo Oo

with @(1) L independent. On the other hand [recall (2.21)]

L* [ dz | dy(G”zy)sz_4 > (j dz | dygmy)

LOo LOo x,yeL0o \Ox
1
=L* ¥ (G)'=L* %

2
x,yeL0o x, yeLDoA,, 0*p,qe2nL~N+ngd

] . —m<pu,qusm
N lp(x_y)Gn(p - q)Gn(q)

_ sianu/2>2 A .
=L —_— G,(p—9G,
Azo*pql;[(smpu/z 0*21:1,‘1 (P=9)6(9)
~R<Pu,qu=m
>(9(1)ﬁ > ! L
A2 ot Ip—df’lgP?
Ipul<T
—7:<q,‘§n

1

zo()L— ¥ |logp?*|z0(1)logL,

A, o%p
lpul <

247

©)

@

where in the fifth step we have used the uniform bounds for the Fourier transforms

G,(p), see Appendix of [16]. Equations (2)(4) give immediately
(H=0()logL.

©)

To get a similar upper bound, take for simplicity L =L with L, = 0(1) (say L, =2)

and m large. Denoting explicitly the L dependence of 7, we have

a"(L _ 21 a'(L )
) Z L kmql—lLo lzLg! ¥

Thus

2
(1) L 4 I di”.[d%( L ZIJrl(rfl‘?BlLo 1zLg ! y)

Oo

<o) Eo Lo* [ dy exp[—eLy!|»]
m—1 m—1
+o1) > X L’Z‘”"’f dy exp[—e(Ly'+ L") lyl]
1=0 k=1+

m—1
<o) ¥ Lg*I4 = 0(1)m=0(1)logL.

This establishes the desired upper bound for (1).

()

(7)
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As for the other contributions to § A%, the first term on the right-hand side of (3.6)
becomes for L L,

—72L_4l2 _‘. dmfdy(Z 142(" fom Z L—ZIfm.;.lL(n kym-— lmL(n kym - 1y>
m—1
: l§0 LOZIg—n(rﬁ?FILO lzLgly» (8)
n—-1m—-1
I®lsoM? ¥ 3 L§" M= 1fdyexp[ —eLy ™" |yl]
k=0 1=0

<O T L0122, ©)

The other terms on the right-hand side of (3.6) vanish. Indeed by (2.19) and (2.21),

Ejl deTipor, =L * z (QLO™ A )y, =L N (CQLO™ 5 )sr, =0
x 1 y 1 (10)

—§L<y“—Lx“§7L

as CQ=0. Equations (3.2) and (10) imply also that
j dx"@anLy = O . (1 1)
Ox

This way, (5), (7), and (9) show that for L= L} with m large,
—O(HmMA* LA < — O(1)ma?,
from which (3.7) follows.

Appendix 2
For I, given by (11.6) define
(P(P) = Z e_ipxIOx

xeApn

(p(p) is periodic in each p,, with the period 2z and, due to (11.7) is analytic for IIm Dl
<30. Equations (11. 8)—(11 10) are corollaries of the following result giving a
solutlon to the Gleason problem [36].

Lemma. Let f(p;, ...,p,) be a function analytic for |Imp;| <a, periodic in each p,
with period 2m such that

1]

ﬂ=0 for 1=0,1,...,k—1.

op,, --- 0D,
Then there exist functions f, ,(p) with the same analyticity and periodicity
properties satisfying

f(P)— Z H €™ = 1) fuy.ulD) -

e j=
Jus...m can be taken linearly dependmg on f and such that for each 0 <a, <a,<a,
sup | f,..w(PIZC(d, k,ay, az) sup. /@)l

Impy|<a; mpy|<ay
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Proof. Define f(z,, ..., z,) analytic for e < |z;| <e® by
f(e—ipir"'>e_ipd)5f(p1:--'apd)' (5)
Again
a7, ..., 1)
—'azul—azm—o for l—O,l,,k—l (6)
Notice that by the Cauchy formula,
1
z)= — d
TOZ (2 o G oo™
o,=%1
f(ZI)--.agd)
el =euta-o d(C1"Z1)---(Cd_Zd)
=3 29, ..., 239). (7
1
d\WU1s s Vg) = -3 d d
T X Q27i)* oyl Ieﬂ P
,7(’11 9. 97111 2
. 8
(M1 —=01), s (Ma—0g) 4= H ( ”Mﬂ) ®

(the integrals over |z| = e ¢ are counter-clockwise and the ones over [z| =e™“* are
clockwise). Clearly f,(v) are analytic functions for | .| <e® and for [=0, 1

s "3k5
(v ~ »
sup Jﬁa)_ _S.C(da ka ay, a2) sup If(zla ""Zd)l . (9)
|llj|§€“1 avm... U‘” e‘az_s_lzuléeﬂz
But, Taylor expanding, we may write
k=1 M, ..., 1)
fow)= p ﬁm’%mm 1:[1 (0,,— 1)
1
— dt(1 —t)* 1
F g, Z,
My ‘
m( —t+tvl,...,1—t+tvd)j]=_[1(vuj—1) (10)
or
“11 (1, ..., 1) ouy—1
Joets ; I, 2# v,,...00,, El(”zw) 2 (z,— 1)
1
—_— dt(1—p)F1!
T,
5*F,
(1 —t+tz], ..., 1 —t+ 1239 1'[( Z, ) (z D).
avm avuk ( )
In the first sum on the right-hand side of (11), we may expand

(—z”j)“=—(1+zﬂj—1)—1=k;gl(—l)"“(zﬂj 1) — (= 1)z, g, — 1)

(12)
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Hence (grouping the terms in a somewhat arbitrary way), we obtain
k-1 1
Z Z aaul...m H (Zuj_ 1)
=0 I j=1

=0 g5

k
+ Y fowlzs "~>Zd)jl=—[1 (z,—1) (13

Biseees ke

Fuzgt, . 259 =

with f,,m_“ w(2) analyticfore™* <z, <e"linear in f and satisfying (4) with C—2~4C,
say. Upon the summation over ¢ of (13) the lower order terms (I < k) must vanish
and hence by (7), we obtain

k
fo)= , Z” J’,“...,‘,C(Z)Jl:[1 (z,,— 1D (14)

for f;lm#kz > i;ﬂbullk' This completes the proof of Lemma.

We apply Lemma with k=2 to f(p) =¢(p) — ¢(0) where ¢ is given by (1). Let
0u(D)=—1, ‘w(p)e” . We have

o(p)= MZ (e~ —1) (€™~ 1Do,,(p) (15)

and put
30m*=¢(0), (16)

Ji " g, (p). a7

A —
xy
An+1 pean—-N+n+114
—n<pusm

The symmetry properties of J{},, may be guaranteed by averaging

e_ipueipv(puv(p)
over the lattice rotations and reflections. Equation (11.10) follows from the
uniform bound for ¢,,(p) for [Imp,| <2a.
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