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Abstract. We prove that, for the planar Lorentz process with a periodic
configuration of scatterers, the quasi-local CLT of the gaussian {logρn} type
holds for any ρ > 1. Consequently, for arbitrary ρ > 3/2, the probabilities that,
at the moment of the nth reflection, this process lies in a square of size logρn are
asymptotically gaussian. This implies that these events occur for infinitely
many values of n (i.e. a weaker form of recurrence).

0. Introduction and Main Results

There is a general belief that the statistical properties of the Lorentz process are
quite similar to those of a random walk. The theoretical support of this belief
becomes interesting from a physical point of view by the fact that the Lorentz
process is an intermediate model between the mechanical Brownian motion and
the random walks of probability theory. Moreover, recent sophisticated techni-
ques like Markov partitions not only make certain important properties of the
Lorentz process rigorously tractable but they are also hoped to become the right
methods for less simplified models.

At present, however, the Markov partition of the Sinai billiard [B-S(1980)]
only enables us to treat the probabilistic behaviour of the planar Lorentz process
with a periodic configuration of scatterers.

In fact, first the central limit theorem was proved by Bunimovich and Sinai
[B-S(1981)] who built a Markov approximation for the Lorentz process and
composed it with Bernstein's classical method. Later the present authors
approximated the Lorentz process with random walks with internal states and
their method also gives Cramer-Edgeworth-Tchebysheff type expansions in the
central limit theorem [K-Sz(1983)]b).

In 1979 Sinai proposed to study the recurrence properties of the Lorentz
process which are, in general, strongly connected with local versions of central
limit theorems. He conjectured that the Lorentz process also obeys the statement
of Pόlya's classical theorem: it is recurrent on the plane and it is transient in higher
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dimensions. The lacunary feature of the Doeblin property of the Markov partition
(cf. Sect. 2), has however, hindered us in obtaining a local central limit theorem for
the Lorentz process which, in general, is the usual tool when studying recurrence
properties.

Here we introduce and prove quasi-local central limit theorems for Lorentz
processes.

Definition 1.2. We say that a sequence {Sn} of random vectors satisfies a quasi-local
central limit theorem of the gaussian {an} type if

(i) there exists a sequence {ηn} of random vectors such that ηn has a gaussian
distribution with mean 0 and covariance matrix all (I is the unit matrix);

(ii) Sn + ηn obeys the local central limit theorem.
This definition makes sense if {an} is an increasing sequence of positive

numbers such that an-> oo and an = o(yn). The case an = const would mean a local
limit theorem while the choice an = const]/n would already change the form of the
global central limit theorem.

The main result of this paper is Theorem 3.1. To formulate it we consider the
symbolic representation (Ω,ψ,μ0T0) of the Sinai billiard, and we take a nice
bounded function h: Ω->R. Then under some additional assumption we have

w - l

Theorem3.1. The partial sums Sn= Σ ^(Toω) obey the quasi-local central limit
k = 0

theorem of the gaussian {logρn} type for any ρ>l (d = 2).

The proof of this theorem combines the analytic method of characteristic
functions with direct probabilistic ideas.

If the symbolic dynamics will be constructed for higher dimensional Sinai
billiards, then our method will extend the validity of the QLCLT for higher
dimensions, too, and thus we can immediately obtain the transience of the Lorentz
process for d^.3. Therefore the paper is formulated in a general d-dimensional
setup.

Since our quasi-local central limit theorems do not imply the local ones, we can
only prove quasi-recurrence in dimension 2.

Definition 4.1. We say that a sequence of random vectors Sn is quasi-recurrent of
the {an} type if

P(SnεQ(an)i.o.) = U
where

Theorem 4.2. The two-dimensional Lorentz process is quasi-recurrent of the {logρn}
type for any ρ > f.

The presentation of the results is the following. The notions and some useful
properties of quasi-local central limit theorems are treated in Sect. 1. Section 2
contains the necessary information on the Markov partition of the Sinai billiard.
In Sect. 3 we formulate and prove our quasi-local central limit theorem for the
Lorentz process and in Sect. 4 we describe the recurrence properties of Lorentz
processes.
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1. Quasi-Local Central Limit Theorems

The difference between global and local versions of central limit theorems (briefly
CLT and LCLT) is that they refer to asymptotic probabilities of sets increasing like
j/ή (n is the number of summands) and of constant sets respectively. We introduce
quasi-local central limit theorems (QLCLT) to describe an intermediate case for
sequences of sets increasing not slower than a suitable rate. In the sequel we will
consider random vectors in Rd and σ will denote a d-dimensional covariance
matrix.

Definition 1.1. We say that a sequence {Sn} of random vectors satisfies the
QLCLT(σ) of the bounded {an} type if {an} is an increasing sequence of positive
numbers and there exists a sequence {ηn} of random vectors such that

and Sn + ηn obeys the LCLT(σ).
In what follows we always suppose an = o(n1/2), since otherwise the notions

loose their local character.
We recall that a sequence of absolutely continuous random vectors with

densities pn(x), (xe!Rd) obeys the LCLT(σ) if

where φσ(x) is the gaussian density with mean 0 and covariance matrix σ. A simple
consequence of this property is that then

lim J |n'"2pn(n1/2x)-φσ(x)|dx = O
n-κχ) Rd

(cf. [I-L (1965)]).

Definition 1.2. We say that a sequence {Sn} of random vectors satisfies the
QLCLT(σ) of the gaussian {an} type if there exists a sequence {ηn} of random
vectors such that ηn has a gaussian distribution with mean 0 and covariance matrix
all (I is the unit matrix) and, moreover, Sn + ηn obeys the LCLT.

The heart of these definitions is reflected by the following simple propositions.
Since we are considering quasi-local central limit theorems with a definite
application in mind, we do not want to elaborate their detailed theory here.

Proposition 1.3. If the sequence {Sn} of random vectors obeys the QLCLT(σ) of the
bounded {an} type, then for every sequence 0 ^ / n ^ / π + 1 , lim (n= oo and arbitrary

P(Sn exn + Qtfnan)) ~ φa\n~ 1 ' 2 (x n + <2(/BαJ)],

where φσ denotes the gaussian distribution with density φσ.

Proof Since

P(Sn exn + Q(ίnan)) = P(Sn + ηnexn + QVnan) + ηn),
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by Definition 1.1 we have

P(Sn + ηnexn + β[(/ M - IK])^P(S n ex n + Q(ίnan))

But Sn + ηn obeys the LCLT(σ), and consequently its density tends to φσ is
variation. Hence the statement.

Proposition 1.4. If the sequence {Sn} of random vectors satisfies the QLCLT (σ) of
the gaussian {an} type and 0 ^ / π ^ / n + 1 with (\ogri)~ll2£n-+co, then

Proof We will use the obvious bound

where c>0. Thus

P(Sn e Q(Snan)) = P(SΠ + ηn^ Qtfnan) + ηn)

where 5n ̂  exp (—cKl).
Now similarly as in the previous proof we obtain

ύ P(Sn e Q{ίnan)) ύ P(SΠ+ηπsQ [(/„ + Kn)α

This chain gives the statement whenever Kn = o(/n) and

hold. These orders can, however, be easily reached since (Iogn)~1/2ίfn^oo.
The next proposition shows the usefulness of Definition 1.2: even without

controlling the behavior of the far tails of the characteristic functions we can have a
QLCLT.

Proposition 1.5. //

(i) (lognΓ^α^oo,
(ii) n~ίl2Sn satisfies the CLT(σ),

(iii) there exist positive constants A, ε, c such that for every n and A^\\t\\^ εn 1 / 2,

n
|£exp(in- 1 ' 2(

00

where J g(i)dt <oo, then Sn obeys the QLCLT(σ) of the gaussian {an} type.
A

Proof We show that, in Definition 1.2, the gaussian variables ηn can be chosen
independent of Sn. Then, by classical knowledge, it is sufficient to prove that
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where fn(t) = E exp [in " 1/2(ί, SJ] (cf. [I-L (1965)]). The expression on the left-hand
side can be bounded in the usual way by the sum

*

ί
\t\\<A

+ ί \φ

Φ ( - —
\ 2n

ΛWt+

\
J

ί

dt

_ | / π ( ί ) e x p ( - ^

ί
\

By (i) and (ii) lx ->0 if n-^oo for fixed A On the other hand /2->0 if ̂ 4->oo. In view
of condition (iii)

J 3 ^ f \fH(t)\dtύ ί ff(ί>iί.
A < | | i | | < e | / i Hί||>i4

Finally

and by (i) the right-hand side tends to 0.

2. Prerequisites: Properties of the Markov Partition of the Sinai-Billiard

First we recall the necessary information on the Lorentz process and the Sinai
billiard. The main notations will be adapted to [B-S (1981)].

Consider in Btd a Zd-periodic set of disjoint, smooth, strictly convex, closed
scatterers. We suppose that there is no infinite line disjoint from the set of scatterers
(i.e. the Lorentz process or the corresponding Sinai billiard has finite horizon). We
label the congruent finite sets {9*) of the scatterers by x e Έd: Sfx. The Lorentz
process is the uniform motion of a point particle with elastic collisions at the
scatterers. In other words, by considering it with the Liouville measure as an
invariant measure it is a billiard system with a non-compact phase space (for a
formal definition see [C-F-S (1982), Chap. 6]).

It is convenient to discretize the time and to study the Poincare map of the
original, continuous time dynamical system. This map To is defined on the 2{ά— 1)-
dimensional phase space μ1 = (J &x= (J boundary of Sfx® angle (in moments

xsΣd xeEd

of relections). In a point q of the boundary of Sf the angle v can be identified with an
element of Sd~x (d— 1 -dimensional unit surface) which satisfies (v, n(q))^0, where
n(q) is the outer normal to Sf in q e d£f. To has a Zd-periodic invariant measure μL

of the form <5(χ)μ, where δ is the uniform measure on Zd and

dμ((q, i?)) = (i?, n(q))dί(q)dω(q),

where dtf(q) is the Riemannian volume on dίf and dω(q) is the Lebesgue measure
* 1
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By taking the Lorentz process modZd we obtain a Sinai billiard on the
d-dimensional torus. In [B-S (1980)] a Markov partition is constructed for the
Poincare map of the planar Sinai billiard and we will use its properties. Let us
denote this discrete dynamical system by (M1? ψ, μ0, To), where Ml9 μ0, and To are
just Ml9 μL, and To taken modZd and μ0 is also normed (μo(Mί) = 1), ψ is the
natural σ-algebra.

The Markov partition η is a countable partition of

M,:M,= U Aw9

weW

where W is a countable index set. Let Ω be the space of sequences ω = {ωi}°^O0

where (D^W. We consider the map φ i M ^ Ω , where φ(χ) = ω if ToxeAωn,
— oo <n<oo. Two rank functions r+,r_: W^Έ+ are also introduced. We shall
briefly write r+(w) and r_(w) instead of r+(Aw) and r_(^4w). The measure φ*μ0 is
defined on the natural σ-algebra of subsets of Ω, and it is shift invariant. We will
denote it by μ0, too. Next we recall from [B-S (1981)] the Tail Bound, the
Markov Approximation and the Doeblin Properties of the Markov partition,
which are there proved for d = 2.

Property TB. There exists λt e(0,1) such that for all sufficiently large fc,

μ0(co:r+(ω0)^:k) + μ0(ω:r_(ω0)^k)^λk

ί.

For any constant λ20, λ2i, λ22 e (0,1), λ20 < λ22, we introduce the subsets of Mί9

Vn = {x: T*xφUm,m = [nA"], \k\£n; Tjxφ Uj9 \j\>n},

Zn = {x:μ0(Vn\Cη-(x))>l-λ%}.

Here η~ is the partition of Ω arising if we fix all ωf, — oo < ϊ gO, and Cη-(x) the
element of η~ containing φ(x). It is easy to see that

μo(Vn) ̂  2n4t l ]

2n (
— / L 2 0 \/ L22

Property MA. Suppose that C\- corresponds to ω 0 , ω_ 1 ? . . . , ω _ π + 1 , ωτ_M,
ω τ_n_ 1 ? . . .;τ = l,2, and CJ-eφ(ZM). Then one can choose A20? 2̂1? 2̂2?
λ2 e (0,1) in such a way that

Consider the conditional distributions

τ = 1,2 on the space of words ω 3 n + 1 ? . . . , ω4n.

Property D. Suppose that r ±(ω ) ̂  n, 1 ̂  i: ̂  w, τ = 1,2. Then there exists a constant
A3 e (0,1) such that for all n large enough

Var(π\π 2 )=i Σ |π 1 (ω 3 n + 1 , . . . ,ω 4 l I )-π 2 (ω 3 π + 1 , ...,ω4 B |^A3.
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3. Quasi-Local Central Limit Theorem
for the Lorentz-Process

Suppose that h is a bounded function on Ω(||ft||sup = CJ, and there exists a constant
λ4 e (0,1) such that, for every sufficiently large n, one can find cylindric functions
hn(ω) = hn(ω^n, ...,ωn), $hndμo = 0 depending only on the coordinates ωi9\i\^n
and satisfying

\\h{ω)-hn{ω)\\s^λ\.

In [B-S (1981)] the following CLT was proved: if ά = 2 and

°H= Σ E(T5h h)>0,
n = — oo

then for every α, ft, a< b,

lim μo(ω: a < (σhn)"1/2 " Σ Λ(7?ω) < 6) = (2π)"* J exp ( - ^) du.
n->oo fc = 0 a \ Δ J

Under the same assumptions we have

Theorem 3.1. Ifσh then the partial sums Σ HTow) obey the QLCLT of the gaussian
fc = 0

{\og1 + δn} type for arbitrary δ>0.

Applying this general theorem one easily obtains a corollary giving interesting
inference on the Lorentz process. For xoeM1 put xx = Tx0 and hU)(x0)
= qU)(xί)-quXx0), ^ίkjίkd. It is easy to see that EhU) = 0 and hU) satisfies the
conditions formulated at the beginning of this section (ί^j^d). Moreover, in
[B-S (1981)] it is also shown that the covariance matrix σh of the problem is non-
degenerate.

Corollary 3.2. If d^2 and h = (h{1\ ...,h{d)) are as defined above, then the partial
n-l

sums Σ h(To

fcco) obey the QLCLT(σΛ) of the gaussian {αn = log1+<5n} type for
fc 0

arbitrary δ>0. In particular, for any sequence {/„}, 0S^n = ^n
GogΓ ^ V , - o o ,

Proof of Theorem 3.1. Our starting point is the proof of Lemma 5 in [B-S (1981)]
and we use the notations of that paper. We consider the characteristic function

Γ -,n "-1 „ Ί
ψn(t) = EGxp\ i(σhή) ' t Σ K^o ω )

We decompose the interval [0, n— 1] into disjoint subintervals

in such a way that the length \A\1}\ of each A\1} except the last one is equal to An

while the length of each A\2) except the last one is equal to Bn = o(Λn). To use
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Bernstein's classical method we will focus on

σ Λ n)- 1 / 2 ίΣ Σ
s=lJkedφ

Thus we have omitted a term with

Σ Σ HT*ω)
l J Λ φ

Σ
s = l

^ const-/?•£„. (3.1)

Next we take a cylindric function /zΠl according to the introductory words of this
section, and thus we have $hnιdμo = 0 and

Σ Σ (h(To

kω)-hnί(To

kω))
s=l

<; const nλl1. (3.2)

We will consider

Σ Σ
S=ίkeAψ

P

Lemma3.3. The sums Sn= Σ Σ hnXV)ω) satisfy conditions (ii) am/ (iii) 0/
s = l fceJφ

Proposition 1.5 and if (logή)~ 1/2an-+ oo ftwί a% = o(ή), then Sn obeys the QLCLT(σh)
of the gaussian {an} type.
Proof. Condition (ii) is just the main part of the proof of Lemma 5 of [B-S(1981)].
To show that (iii) is true we should follow its steps more carefully. The main steps
are certain approximations.

I) The calculation of ψ{2)(t) is restricted to sequences ω_Wl, ...,ωM + Π l, where
r+(ωi)^2nί +1 =n 2 , ( — nί^i^n + ni). By Property TB, the probability of these
sequences is not less than 1— (n + n^λi2 and the new integral is

V

( 3 )(ί)= Σ e x p L ^ Γ 1 ' 2 Σ Σ hnί(To

kω)\μo(ω-ni,...,ωn+nι).

It is then an easy exercise to show that

\ψ{2)(t) - ψ(3)(ί)| ̂  const (n + n ^

II) Now μ0 is substituted by a Markov measure μ^ of memory n2 while the
characteristic function ψ^Xt) goes over to ψί,4)(ί) From Property MA, [B-S
(1981)] obtains the bound

S en = n log(l + AW - In log(l - μo(Vnι)). (3.3)

III) Finally, by using Property D, one approximates ψ(4)(t) by the character-
istic function ψ{

n

5)(i) of a product of p independent, identically distributed random
variables, namely

v!,5)(O=Π£(1)expΓi(σfln)-1/2ί Σ KiΉ
r=ί I keAψ
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where the expectation is taken with respect to μ(

o

υ. According to [B-S (1981)]

^ 2 F ] (3.4)

with some λ'3 e (0,1).
We first claim that there exist positive constants ε and c such that for every n

a n d | t | < ε " 1 / 2 ' |tp
2 . (3.5)

Indeed, [B-S (1981)] proves that

ψ

and
E(1)( Σ KχTo

kω)Y ^ const A2.

Consequently, by using the Taylor expansion and Holder inequality one obtains
(3.5) easily.

In order to obtain possibly sharper results our choice for Am Bn, and nί differs
from the standard one. Put An = nlog~Cίn, Bn = logβn, nί=logyn with 0<y<β.
Then j? = logαn and by (3.3) and (3.4),

\ψ?\t) -Ψ(

n

5)(t)\ ^ const logαn[(Γ3)
log/3 ^n2! log* nX^t""],

\ψ{Λt) - Ψ{Λt)\ ύ const nlλιrn + log' n ^ T ' 2 " ] ,
and

\ψi2\t)-ψi3\t)\S const nλll0*Ύn. (3.7)

Reminding ourselves that λ21 e (0,1) can be chosen arbitrarily, we can see that all
these differences tend to zero faster than any power of n only if γ > 1 and β~γ>l.

Now from (3.5) and (3.7) we obtain by a simple calculation that there exist
constants A and D such that for

Hence the lemma.
Return to the proof of Theorem 3.1. Fix δ >0. Denote

* / „ = £ [ Σ KT*ω)+ Σ (h(To

kω)-hni(TSω))], (3.8)

and observe that ψn(t) is the characteristic function of Sn + ηn. By (3.2) the second
sum in (3.8) is bounded by a sequence tending to 0 since γ > 1. Concentrate on the
first sum. If we used (3.1) and our forthcoming argument based on Lemma 3.4, then
we could immediately obtain the QLCLT of the gaussian {log2+δn} type. To
obtain a better result observe that the first sum is the sum of p almost independent
random variables. Indeed, the word by word repetition of our approximation used
to treat Sn gives us that we can define a new measure such that (i) its distance in
variation from μ0 on the words ω_n i,..., ωn+nι tends to zero faster than any power
of π, and (ii) the bounded summands Uk = X //( 7Q ω), 1 ̂  s ̂  p become independ-

φ
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ent and identically distributed. Thus, with respect to the new measure the
summands satisfy the conditions of Bernstein's exponential inequality [I-L
(1971)] and

since by (3.6), £ ( 1 )#£ ~ σ A We can choose α = -, β = 1 + -, and we obtain again

that the exponential bound tends to zero faster than any power of n. Consequently
we can conclude that except for a negligible set \ηn\^log1+δ/2n. In fact, sets of
probabilities tending to zero faster than any power of n can be neglected in our
considerations, since we are interested in sets where probabilities are larger than
n~d/2'

Finally we introduce independent pairs of gaussian random variables ζn and ζn

with variance α2 = logn, say, and b2 = log2 + 2δn — a2 respectively, and we also
assume that the pairs (ζn, ζn) and (Sn, ηn) are independent.

By Lemma (3.3) Tn = Sn + ζn obeys the LCLT(σh). The statement of Theorem 3.1
is a straightforward consequence of the following lemma.

Lemma 3.4. Suppose that
(i) the random variables T l 5 Γ2,... satisfy the LCLT(σ), σ > 0 ;

(ii) ηn is a sequence of random variables with P(\ηn\Sdn)= 1;
(iii) ζn is a sequence of gaussian random variables, independent of Tn and ηn such

? P

Then Zn=Tn + ηn + ξn satisfies the LCLT(σ), too.

Proof Denote the distribution of n~ 1/2TM by Fn9 and let bn = n~ ιl2bn, dn = n~ll2dn.
Decompose the real axis into intervals Je = [/dn, (£ + \)dn), of length — oo < ( < oo.
With no loss of generality we shall prove that for the probability density pn(x) of

A simple thought

oo

ΣoFn(J

+

shows that

Σ F.VM>d
= -2

)<Pd°)+ Σ Fn{J()φH{{ί-\)dn)
v — 1

We claim that the difference of the two bounds given for pn(0) tends to zero. In
fact, this statement follows from

lim J (φH(y) - φφ + dn))dFn(y) = 0.
n-+co 0n-+co 0
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Fix an ω>0. This integral equals to

1/2/ ω w r n

00

In the domain y>ωb^d~1 the gaussian density

becomes exponentially small and Jx ->0. To bound I2 we first use the fact that the

densities — ^ - are uniformly bounded since n~1/2Tn obeys the LCLT(σ).
dy

Consequently, by taking the integral with respect to dy we obtain an upper bound.
Then, by the substitution u = b~ 1y, this bound becomes

which tends to zero in view of (iv).

4. Quasi-Recurrence of the Planar Lorentz Process

The techniques developed in the preceding section enable us to prove a weaker
result than Pόlya's classical recurrence theorem, only. As we shall see in the course
of the proof, the principal obstacle in proving the exact recurrence is caused by the
"lacunarity" in property D of the Markov partition: as we have no inference about

n-ί

probabilities that Σ h(Tokω) lies in regions of size logκn, κ<\. Therefore we
k = 0

introduce the notion of quasi-recurrence. Suppose {an} is an increasing sequence of
positive numbers.

Definition 4.1. We say that a sequence Sn of random vectors is quasi-recurrent of
the {an} type if

P{SneQ(an)i.o.} = ί.

Theorem 4.2. The two-dimensional Lorentz process is quasi-recurrent of the {logρn}
type for every ρ >f.

Proof. The idea of the proof consists of two ingredients formulated as two lemmas.

Lemma 4.3. The sequence of events

=o
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fulfills the conditions of Lampertfs theorem [S (1964), p. 317],

Σμo(Ak) = κ, (4.1)
k=ί

liming ^<c, (4.2)

~ ( )

consequently

μ0{Aklo.}>~.
c

Lemma 4.4. The event

= \ Vε, 0 < ε < I, " Σ h(To

fcω) e Q((v + ε) logβn) i.o. >
I 4 fc=o J

is Γo invariant, therefore by the ergodicity of Γo, μo(^v)= Ϊ

Proof of Lemma 43. First observe that condition (4.1) is an obvious consequence of
the following rough estimate, derivable from Corollary 3.2: there exist two positive
constants Cx and C2 depending on the function h only such that

Σ h(ϊo ω) e β(logρn) \ ^ 2 ° g n. (4.3)

To prove (4.2) we have to repeat the Markov approximation of Σ h(To

kω) to

obtain i.i.d. random variables as was done in the proof of Theorem 3.1 and to apply
estimate (4.3).

If, in (4.2), h(Γo

fcω) is substituted by hΠl(To

feω), n1=logyn, ρ > y > l , then the
orders of the probabilities P(Ak), P(AjAk) do not change.

The same is true when the calculation of these probabilities is restricted to
sequences ω_Πl, ...,ωM+Πl, where r±(ω ί)^2n 1H-l=n 2, and the measure μ0 is
substituted by a Markov measure μ^ of memory n2.

Now we decompose the sum in the numerator of (4.2) as follows

Σ
k-j<21og»n

+ 2 Σ μo(AjAk).

The first and second terms can be bounded by

4log^n ^ Σ μo(Ak) <4C2 log

4
2 ρ + 1 C 2 l o g 2 ^ + 1 n . (4.4)
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If k— 7>21ogn, then

ίω)eQ(\og6j)

can be bounded from above by

d e f - '•'-•'>)eα(log<n)j

Σ h(7>)e<2(log'n)H.
I-[logon] J/

Property D of the Markov partition provides that the events

| Σ V 7 > ) J and ji_.+Σgβn]h(Toiω)j
are almost independent, i.e. the transition to an independent measure does not
change the order of gjk. So by (4.3),

Using the identity — = τ\- + ~, I it is easy to check that
j k-j k\J k-jj

Σ g]kύC2

2\og^2n. (4.5)

The bound (4.3) gives that

Σ log2'*)' - (J^)2losf*+2n (4.6)

is a lower bound for the denominator of (4.2). It follows from (4.4), (4.5), and (4.6)
that the numerator and denominator of (4.2) have the same order when
n->oo. Q.E.D.

The statement of Lemma 4.4 is a straightforward consequence of the definition
# v .
Obviously the proof of Lemma 4.3 can be carried out for every

def

consequently for every v, μo(^v) > 0. On the other hand

i.e.

This last inequality proves Theorem 4.2.
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