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Abstract. The [α, β, y]-Langevin equation describes the time evolution of a real
stationary process with T-positivity (reflection positivity) originating in the
axiomatic quantum field theory. For this [α,/?,y]-Langevin equation a
generalized fluctuation-dissipation theorem is proved. We shall obtain, as its
application, a generalized fluctuation-dissipation theorem for the one-
dimensional non-linear diffusion process, which presents one solution of
Ryogo Kubo's problem in physics.

1. Introduction

In order to clarify a probabilistic meaning of the concept of Γ-positivity (reflection
positivity) with its origin in axiomatic quantum field theory [3,14], we have
investigated a real stationary Gaussian process X having Γ-positivity from the
viewpoint of the theory of stochastic differential equations [10,11,13]. In the
previous paper [11], we characterized a class of stochastic differential equations
describing the time evolution of X as a [α, β, y]-Langevin equation and then
obtained a fluctuation-dissipation theorem for this [α, jδ, y]-Langevin equation as
a generalized fluctuation-dissipation theorem in the theory of Ornstein-
Uhlenbeck Brownian motion in statistical physics [2, 6-8, 15].

The purpose of the present paper is to refine the results of [11] and then make
them serve to get a generalized second fluctuation-dissipation theorem for the one-
dimensional non-linear diffusion process, which presents one solution of Kubo's
problem in physics [6-8]. Before reformulating Kubo's problem stated in [7],
we shall recall briefly a second fluctuation-dissipation theorem for Orn-
stein-Uhlenbeck Brownian motion. Let 9P = (3f(t)9Px;te[0, oo),xeR) be an
Ornstein-Uhlenbeck Brownian motion whose time evolution is governed by the
following stochastic differential equation:

= - βX{t)dt + <xdB(t) (t e (0, oo))l
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Here α and β are positive numbers and (£(ί);£e[0, oo)) is a one-dimensional
standard Brownian motion. We know that

limPxmt)edy) = (π<x2β-1Γί!2exp(-y2/a2β-1)dy = mao(dy), (1.2)
ί-*oo

and the probability measure m^ is a unique invariant measure for the process X.
Let N = (N(t); t eR) be a stationary Markov process representing the stationary
state of the process 9C with mm as its initial distribution. Then it follows that the
time evolution of the process N is governed by the following stochastic differential
equation:

dN(t) = - βN(t)dt + (xdW(t) (t E R). (1.3)

Here (W(t) t e R) is a one-dimensional standard Brownian motion. Denoting by
R the covariance function of the process N, we have

^ (ί€R). (1.4)
2β

From (1.4), we immediately obtain

(1.5)

For the purpose of understanding the physical meaning of formula (1.5), we shall
consider the motion of a Brownian particle moving with velocity N(t) at time t in a
viscous fluid with friction coefficient β whose equation of motion is described by
the stochastic differential Eq. (1.3). In that case we can regard the left-hand side in
(1.5) as the power of random force causing the zigzag motion of a Brownian
particle. On the other hand, (1.2) and (1.5) make us notice that the constant R(0) is a
variance of the equilibrium measure m^, and so we can regard R(0) = fcT, where k is
a Boltzman constant and T is an absolute temperature in the system under
consideration. Therefore formula (1.5) stands for a relation between the power of a
random force and the friction coefficient of a viscous fluid. And it is to be called a
second fluctuation-dissipation theorem. The theoretical ground for a physical
understanding of formula (1.5) lies in the stochastic differential Eq. (1.3). That is, it
is important, not only from the viewpoint of statistical mechanics, but also from
that of probability, to derive a stochastic differential equation describing the time
evolution of a stationary process only by using its qualitative nature. The key is
how to extract a random force.

Now we shall reformulate Kubo's problem stated in [7] as follows. Let

be a one-dimensional diffusion process whose time evolution is governed by the
following stochastic differential equation:

= bmt))dt + σ(%(t))dB(t) (t e (0, oo))

Here (B(t); t e [0, oo)) is a one-dimensional standard Brownian motion, b and σ
are continuous functions on R. Then we know that the Fokker-Planck equation



Generalized Fluctuation-Dissipation Theorem 451

associated with the stochastic differential Eq. (1.6) is

—u(t, x)=-a(x)^u(ί, x) + b(x)—u(t, x) (t e (0, oo), x e R)

u(0,x)=f(x) (xeR).

Here a = σ2 and/is a given initial function and the solution u for Eq. (1.7) is given

by
(te[0,oo),x6R). (1.8)

Here Ex denotes an integration with respect to a probability measure Px. We define
a Borel measure m on R by

rn(dx)=^exp(C(x))dx, (1.9)

where C is a function given by

C{x) = ]b-^-dy. (1.10)

Let us suppose the following conditions:

m(R)<oo, (1.11)

C V ] ) C ( 1 . 1 2 )
o \ o

We note that condition (1.12) implies that both boundary points ± oo are entrance
or natural in the sense of Feller. We define a probability Borel measure m^ on 1R by

^(dx). (1.13)

Then we know from [9] that m^ is a unique invariant probability measure for the
diffusion process 9£. Let N = (N(t);teΊR) be a stationary Markov process on a
probability space {Ω,38,P) representing the stationary state of the diffusion
process SC with m^ as its initial distribution. In the present paper, Kubo's problem
takes the form of deriving stochastic differential equation describing the time
evolution of the process N by extracting an appropriate white noise as a random
force so as to obtain, as a result, a relation between a diffusion coefficient and a drift
coefficient in such a stochastic differential equation as a generalization of a second
fluctuation-dissipation theorem (1.5) for the Ornstein-Uhlenbeck Brownian
motion.

In Sect. 5, we shall prove main Theorems 5.2 and 5.3.

Theorem 5.2. Besides conditions (1.11) and (1.12), we suppose the following
conditions:

ί (x2 + b(x)2)m(dx) < oo , (1.14)

$xm(dx) = 0. (1.15)
IR
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Then there exists a unique quadruplet [α, β, γ, J] appearing in the case that the time
evolution of N is governed by the following stochastic differential equation:

dN(t)=-(βN(t)+ J N(t + s)y(s)dsj+(xdl(t) ( ίeR). (1.16)

Here the triple [α, j8,y] satisfies the following conditions:

α>0 and β>0, (1.17)

γ(s)=-χ(_o0,0)(s)lesλμ(dλ), (1.18)
o

with a Borel measure μ on [0, oo) satisfying the conditions μ({0}) = 0 and
00

ί λ~1μ(dλ)^β, and the stochastic process J = (J(ί);ίeR) satisfies the following
o
conditions: for any s, t e R, s < ί,

= ί-5, (1.19)

the closed linear hull of {N(ύ);u^t} equals the closed linear hull
of {I(u) - I(v) ;u,v^t} in L2(Ω, Λ, P). (1.20)

We shall call the stochastic differential Eq. (1.16) and random force I respec-
tively, [α, β,y~\-Langevin equation and innovation process with causal condition
associated with the stationary Markov process N.

Theorem 5.3. (i) The following relation holds between the diffusion coefficient and the
drift coefficient in the stochastic differential Eq. (1.16);

Here R is a covariance function of N and Cβ>y is given by

ι . (1.22)

Γα2 Ί
(ii) The triple —, JR(O), Cβt y can be written in terms of the diffusion coefficient

a and drift coefficient b in the Fokker-Planck Eq. (1.7) as follows:

α2

Cβ,y= (- ί

( i 2 3 )

We call formula (1.21) and constant C ί > y a generalized second fluctuation-
dissipation theorem and a generalized friction coefficient, respectively. Here we note
that for the Ornstein-Uhlenbeck Brownian motion governed by the stochastic
differential Eq. (1.1), formula (1.21) along with (1.23) is reduced to the second
fluctuation-dissipation theorem (1.5).
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The fundamental idea in proving Theorems 5.2 and 5.3 is to regard the
stationary Markov process N as a stationary process having T-positivity and then
apply the results in [11] to this process N. For that purpose we have to refine the
results of [11]. Apart from the diffusion process X and stationary Markov process
JV, let X = (X(ί);ίeR) be a real stationary Gaussian process with Γ-positivity.
Then we know from [4] that the covariance function R of X is represented as

R{i) = ]e-
mσ(dλ). (1.24)

o
Here σ is a Borel measure on [0, oo). In [11] we have treated the case where σ

00

satisfies σ({0}) = 0 and J (λ~x +λ2)σ(dλ)< oo. In Sect. 2, we shall reproduce main
0 oo

results in the first half of [11] only under the condition J λ2σ(dλ) < oo. Apart from
o

a probabilistic structure, we shall in Sect. 3 introduce a Langevin data by giving the
analytical viewpoint of the results in Sect. 2. Furthermore we shall obtain a
formula by which the Langevin data can be directly calculated in terms of the
measure σ. By taking the same consideration as the second half of [11], we shall in
Sect. 4 derive a stochastic differential equation describing the time evolution of X
and then obtain generalized fluctuation-dissipation theorems for X. Furthermore
we shall obtain a best estimate for a generalized drift coefficient appearing in a
generalized second fluctuation-dissipation theorem. In Sect. 5, we shall reformu-
late the results in Sects. 2-4 to a stationary curve with T-positivity in a Hubert
space, which covers two examples of a homogeneous random field with
T-positivity [3] and a stationary symmetric Markov process. As a realization, we
shall apply the results in this section to the one-dimensional non-linear diffusion
process in order to obtain main Theorems 5.2 and 5.3. We follow the notation and
terminology in [11].

2. [α, /?, y]-Langevin Equation

Let X = (X(t);teΊR) be a real stationary Gaussian process such that X(t) is
continuous in the mean and its expectation is zero. Furthermore we suppose that
X has T-positivity, that is, its covariance function R can be represented in the form

R(ή= J e-Wσ(dλ) (ίeR), (2.1)
[0,oo)

where σ is a bounded Borel measure on [0, oo) [4]. Moreover we assume the
following condition

σ({0}) = 0, 0<σ([0,oo))<oo and ]λ2σ(dλ)<oo. (2.2)
o

We then see that X has such a spectral density A that

( ίeR), (2.3)

(2.4)
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Since it follows from Theorem 2.1 in [10] that the function A satisfies the Hardy
condition

1R 1 -Γ

we can define the outer function h of X by

dξ<oo, (2,5)

We recall the well-known facts from the theory of #2-space and the spectral
theory of X [1]; Since by (2.5) the function h satisfies

heΘ(<£+) and sup f \h(ξ + iη)\2dζ<oo , (2.7)
>7>0 1R

it follows that for almost all ξ e R

lim Λ(ί + iη) = h(ξ + iO) s Λ(ξ) (2.8)
10

exists and it satisfies
2 W K-ξ) and |/z(ξ)|2 = zl(ξ). (2.9)

Next we denote by E the Fourier transform of h:

E(t) = je-^h(ξ)dξ = fi(t)- (2-10)

We then see that

£ e L 2 and E = 0 in (-oo,0), (2.11)

R(t)=^-]E(t + s)E(s)ds for any ίeR. (2.12)
2π o

Furthermore it follows that there exists a one-dimensional Brownian motion
B = (B(t) ί e R ) such that for any teR

X(t)=-±=iE(t-s)dB(s), (2.13)
J/2π*

σ(X(S);5^0 = ̂ ( 5 l ) - B ( 5 2 ) ; 5 l , 5 2 ^ ί ) . (2.14)

The function £ and condition (2.14) are said to be a canonical representation
kernel of X and a causal condition, respectively.

Now we remine the main results of [11]. By noting Step 1 to Step 4 in the
proof of Theorem 6.1 in [11], we have

Theorem 2.1. (i) There exists a unique triple [α, β, y] such that
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Here the triple [α,j3,y] satisfies the following conditions:

α > 0 and β>0, (2.16)

ί λ (2.17)
[O,oo)

with a Borel measure μ on [0, oo) satisfying the conditions

μ({0}) = 0 and β^. J λ~1μ(dλ).
o

(ii) The process X satisfies the following \μ,β,y\-Langevin equation:

( 9 \
dX(t)=-[βX(t)+ ί X(t + s)y(s)ds)dt + adB(t). (2.18)

\ -oo /

Remark 2.1. It follows from Step 5 in the proof of Theorem 6.1 in [11] that

β>]λ~ιμ{dλ) (2.19)
o

if and only if

] λ~1σ{dλ)<oo. (2.20)
o

Conversely we have

Theorem 2.2 (Theorem 6.2 in [11]). For any triple [α,/?,)>] satisfying conditions
(2.16), (2.17), and (2.19), there exists a unique real stationary Gaussian process X
satisfying T-positivity with (2.1), (2.2), and (2.20) such that the outer function h ofX
has the form (2.15). Furthermore the process X is a unique stationary solution of the
\β9 β9y]-Langevin Eq. (2.18).

Next, by modifying the proof of Theorem 7.1 in [11], we shall show

Theorem 2.3. (i) For any z e {z e C Rez > 0}

^ Ί ( 2 2 1 )
β + z-]—rμ(dλ)

0 Z + /L

(ii) There exists a unique bounded Borel measure v on [0, oo) with v({0}) = 0,
0<v([0,oo)), and

such that

(2.22)
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(iii)

Proof. By the result of Sect. 2.3 in [1], we see that

e ~ ηtE(t) = (fc( + iη)T(t) for any η e (0, oo) and a.e. t e IR. (2.24)

Therefore, by taking the inverse Fourier transform of both sides of (2.24) and then
noting (2.11), we have (i). Let σ be any bounded Borel measure on [0, oo) satisfying
conditions (2.1) and (2.2), and then define for each n e N a bounded Borel measure

σn by σn(dλ) = σ\ -, n\ ndλ . Furthermore, we denote by hn and En the outer
\{β A I

function and canonical representation kernel of a real stationary Gaussian process
Xn, respectively, whose covariance function Rn is given by (2.1) with σ = σn. Then it
follows from (2.24), Step 2 in Sect. 5 of [11] and (i) proved just above that for any
f/e(0,oo),

fVηtE(t)dt = 2nh(ίη) = In lim hn(iη) = lim f e~ηtEn(t)dt. (2.25)
0 H-+00 π-*oo 0

Since σn satisfies condition (2.20), we can apply Theorem 7.1 in [11] to see that
00

there exists a bounded Borel measure vn on [0, oo) such that EM(ί)= ί e~tλvn(dλ).
Moreover, since by Proposition 3.2 in [11] °

l/2

/ oo \l/2

converges to 4π J λσ(dλ) , we can get a subsequence (nk)ke]N and a bounded

Borel measure v on [0, oo] such that lim v =v. We define a bounded Borel
fc->oo

measure v on [0, oo) by v(<U) = v([0, co)ndλ), and then a bounded function F on

[0, oo) by F(i)= j e~tλv(dλ). Since En converges boundedly to F, we see from
[0,oo)

(2.25) that for any η e(0, oo)

which implies that E = F and so (2.22) holds. Similarly as Theorem 7.3 in [11], (iii)
follows from (2.1), (2.12), and (2.22). Finally we shall prove the regularity condition
of the measure v. By (2.23),

1 / 1 1 \

I λ2σ(dλ) = T- U (ί TTTAW ) <dλ)
o 2π o \o• '
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On the other hand,

J λv&λ, oo))v(dλ) = J (] λv(dλ)
0 0 \0

= 4π] λ2σ(dλ).
o

CO

Therefore, we find from (2.2) that J λv(dλ) < oo. The other condition for v follows
o

from the boundedness of σ and (2.23). Q.E.D.

By using Theorem 2.3, we shall prove directly the following Theorem 2.4,
which gives another proof of Propositions 3.2 and 3.3 in [11].

Theorem 2.4.

(ii) E(0 + ) = |/2πα.

^ S)j in (0 ,oo) ,

E'(t)=-(βE(ή+ f E(t + s)y(s)dsj in (0,oo),

(ii) ^

Proof. (1) By (2.21) and (2.11), for any xe(0, oo),

J - . (2.26)

0 X + λ

Multiplying by x both sides of (2.26) and then letting x to infinity, we have (ii). By
(2.22) and (1) (ii) proved just above,

]/ -l^-v(dλ) for any xe(0,oo).
o o x + λ

On the other hand, it follows from (2.10), (2.17), and (2.22) that for any x e (0, oo)

] e - χ t ( β E ( t ) + J E(t + s)y(s)ds)dt = ] ^ ] ±
o V -oo J
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Therefore, we have (i) by (2.26) and the uniqueness of the Laplace transform. (2)(i)
follows from (2.12) and (l)(i). By (2.22), (2.23), and (l)(ii),

f λσ(dλ)=±-1 J l
0 LTί 0 0

-ϊ-
Therefore, we have (2)(ii) by (2.1). Q.E.D.

We will in Sect. 4 give a relation between the value of R(0) and the triple [α, β, y]
which is the second fluctuation-dissipation theorem [6-8,11].

3. Langevin Data

We will rewrite the results in Sect. 2 analytically apart from the probabilistic
structure. We define Σ and S£ by

Σ= \ σ; σ is a Borel measure on [0, oo) such that

σ({0}) = 0, 0<σ([0, oo))<oo, and f λ2σ(dλ)<oo \, (3.1)

ί
<£ = <(α,j3,μ);α>0, β>0, and μ is a Borel measure

on [0, oo) such that μ({0}) = 0, and β ̂  J λ ~ ^(dλ) \. (3.2)
o J

Furthermore we define Σo and =έ?0 by

Σ0=lσεΣ;] λ-χσ(dλ)«xΛ, (3.3)

JS?o = {(«, β, μ) e ̂  β > 1 λ~ V W J (3.4)

Then we shall show

Theorem 3.1. (i) There exists an injective mapping Lfrom Σ into 5£ such that for any
xε(0,oo),

ίλhf 1
J ^ σ W = «2 ^ (3.5)

(ii)



Generalized Fluctuation-Dissipation Theorem 459

Proof, (i) Let σ e Σ be fixed arbitrarily and consider a real stationary Gaussian
process X with co variance function R given by (2.1). Then we claim that the triple
[α,β,μ] in Theorem 2.1 satisfies Eq. (3.5); by (2.21), (2.22), (2.23), and (2.26),

λ + β-1 Ί^T/μ(dλ'))σ(dλ)=^=v(dλ). (3.6)
oλ + λ ) |/2π

By taking Stieltjes transform of both sides of (3.6) and noting (2.21) and (2.22)
again, we have Eq. (3.5). Since the measure σ satisfying Eq. (3.5) is uniquely
determined by the uniqueness of Stieltjes transform, we find that the mapping L
defined by L(σ) = (α, /?, μ) is injective. (ii) follows from Remark 2.1 and
Theorem 2.2. Q.E.D.

Definition 3.1. We call a triple (oc,β,μ) = L(σ) a Langevin data associated with σ.
Next we shall obtain a formula concerning the Langevin data [α, β, μ~]

associated with σ.

Theorem 3.2.

(i) °
0

(ϋ) P-I

(iii) For any x e (0, oo)

£{- 5 ί
Here A(ξ) is given by (2.4).

Proof (i) follows from (2.1) and Theorem 2.4 (2)(ii). (ii) can be shown as follows; by
(2.26)

and moreover by (2.6), (2.22), and (2.24), we have for any X G ( 0 , OO)

1 J _ ^ v ( d λ ) = (|/2iF/α)-1exp^f ^ j l o g d ί ^ . (3.8)J

Therefore, defining a function / on (0, oo) by

/(x)=logx+ — ί^—
2π R x + ς |/ ̂ π

1 . 1 . w

(3.9)
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we see from (3.7) that

jS= limx(exp(-/(*))-1).

Noting that for any x e (0, oo) and ξ e R - {0}

2f

dx
\og{A(xξ)x2) = -

J / i 2 , V 2 e 2 \

o (λ +x ζ )
2e2\2

ζ )

σ(dλ)

and

—log(A(xξ)x2)

we can see from (3.9) that for any x e (0, oo)

3oλ2 + x2ξ2

2

σ(dλ)

Y. Okabe

(3.10)

(3.11)

(3.12)

/'<*)= πxkl + ξ2 -dξ

o A t x ς
MM.)

= 1 (• 1 o
_ J -.2 i 22 « -dξ. (3.13)

Defining g(x)=f[ - J, we find from (3.10) that β= lira C X p ( g ( x ) ) ^ Since
\X/ jc-^oo X

= 0, and g'{x)=—2~/Ί~)' ^ follows from RopitaΓs
X \X/

theorem and Lebesque's monotone convergence theorem that

β=lim(-g'(x))
x->0

= limx2/'W

= limif-^-

X2 o ξ 2 + .

(iii) follows from (2.26) and (3.8). Q.E.D.
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4. A Generalized Fluctuation-Dissipation Theorem

In this section we shall consider a real stationary Gaussian process
X = (X(t); t e R) having T-positivity with covariance function R of the form (2.1)
and (2.2). Then we know from Theorem 2.1 (ii) that the time evolution of X is
described by the following [α,/?,y]-Langevin equation:

dX(t)=-(βX(t)+ ? X(t + s)y(s)ds\dt + ocdB(t). (4.1)

By taking the same consideration as in (9.12) and (9.13) of [11], we have the
following generalized fluctuation-dissipation theorem.

Theorem 4.1. (i) (a generalized first fluctuation-dissipation theorem)

. (4.2)

(ii) (a generalized second fluctuation-dissipation theorem)

a2

-γ=R(O)Cβty. (4.3)

Here CβtΊ is given by

Cβty = πΠ \β + y(ξ)-iξ\~2dξ\~x. (4.4)

We call the constant CβtΊ a generalized friction coefficient, whose best estimate is
given in the following

Theorem 4.2.
(i) Cβ,o = β,

(ii) β-lλ-'μidλ^Cβ^β,
o

(iii) y = 0 if and only if either of two inequalities in (ii) becomes equal.

Proof (i) is easy to be checked. By Theorems 2.4 (ii) and 4.1 (ii), we have

(4.5)

Since 0<R(y) ^ JR(O) for any y e R, we have (ii). (iii) can be proved as follows; we
assume that β = Cβr It then follows from (4.5) that

R(v) °°
which implies μ = 0, because > 0. Next we assume that Cβ = β — J λ ~ 1μ(dλ).

Ryj) ' o
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By using (4.5) again,

which implies that μ = 0, because 0 < — ^ < 1. Q.E.D.
R(Ό)

5. Kubo's Problem

For the purpose of a proposal for solutions of Kubo's problem stated in Sect. 1, we
shall reformulate the results in Sects. 2-4 to a stationary curve on a Hubert space
J^. Let L be any self-adjoint operator on tf? and (U(t); t e R ) be a one-parameter
unitary group with infinitesimal generator \L. For a given initial vector A e Jf, we
define a curve ,4 = (A(i) £ e 1R) in J f by

and then its covariance function RA on E. by

^ . (5.2)

We assume that the covariance function RA can be represented in the form (2.1)
with a Borel measure σ satisfying (2.2). Since there exists a lineaί isometric operator
Φ from the Hubert space M generated by {XA(t); t eR} in L2(Ω, J*, P) into such
that Φ(XA(t)) = A{t) (ί e R), where XA = (XA(t) ί e R) is a real stationary Gaussian
process on a probability space (Ω, 3#, P) having the covariance function RA in (5.2),
we see from Theorems 2.1, 2.2, and 4.1 that

Theorem 5.1. (i) ([α, β, y]-Langeυin equation.) There exists a unique quadruplet
[α, β, γ, /] such that A(t) satisfies the following [α, β, y~\-Langevin equation:

A(t)-A(s)=-](βA(u)+ J A(u + v)y(v)dv)du + (x(I(t)-I(s)) (s<t).
Λ ~°° 7 (5.3)

Here the triple [α,/?, y] satisfies conditions (2.16) αnrf (2.17) and ί/ze cwrfβ
/ = (/(ί) ί G R) in Jf is an innovation curve with causal condition associated with A,
that is, for any s, t e R, s < t,

\\W-I(s)\\* = t-s9 (5.4)

the closed linear hull of {A(u) u^t} equals the closed linear hull
of{/(tt)-/(i?);iι,i?^ί}. (5.5)

(ii) (A generalized second fluctuation-dissipation theorem)

^ β , y . (5.6)

Here Cβty is a generalized friction coefficient given by (4.4).



Generalized Fluctuation-Dissipation Theorem 463

Remark 5.1. The triple [α, β, y] can be calculated from the formulae (i), (ii), and (iii)
in Theorem 3.2.

We shall give an example of the curve A satisfying conditions (2.1) and (2.2).

Example 5.1. (A homogeneous random field with T-positivity.) For a given
measurable space (S, !F\ we define the path space Ωs and the coordinate mapping
N(t) from Ωs into S by

ΩS = S*, (5.7)

= ω(ί), (5.8)

and then four σ-fields ffl, J*+, ffl~, and 38' by

# = σ(JV(ί);ίeR), ^ + =σ(N(i);t^0), @~ =σ(N(i);t^0),

and

Moreover we denote by θt and τ the shift operator and the time reflection operator
on Ωs, respectively;

(θtω)(s) = ω(s + t) and (τω)(ί) = ω ( - ί ) . (5.10)

Let P be a given symmetric and stationary measure on (Ωs,&);

τ(P) = P and (θt)(P) = P for any teΈL. (5.11)

Then we define five Hubert spaces Jf, J^+, f̂", f̂', and JUT~/+ by

Jίf = L2(Ωs,@9P), JF+=L2(ΩS,@
+,P), tf-=L2(Ωs,@-,P\

je=L2(Ωs,3#\P), and ^ f " / + = t h e closed linear hull of
. (5.12)

Here P .̂+ denotes the projection operator from J f onto Jf+. Furthermore we
define a unitary group (£/(ί); teR) and the time reflection operator Ton ̂ f by

U(t)B = B(θt) and T(B) = B(τ). (5.13)

Definition5.1. We say that P has T-positivity if S = P^+TP^+ ^0.
We assume that P has Γ-positivity. By taking the same consideration as in [3],

we have (cf. [10]),

Proposition 5.1. There exists a unique non-negative self-adjoint operator Hon34?~/+

such that
1/2 H ί l 2 on Jf~ί+ ( ί > 0 ) , (5.14)

)Jr for any Betf' ( ίeR). (5.15)

Definition 5.2. We call the operator H in Theorem 6.1 the Hamiltonian operator
associated with P.

For a given vector A e ffl', we define a covariance function RA by

(5.16)

By using the spectral resolution of H, we obtain
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Proposition 5.2. (i) The covariance function RA can be represented in the form (2.1)
with a Borel measure σA on [0, oo).

(ii) The Borel measure σA satisfies condition (2.2) if and only if

Ae3){H), (5.17)

\\me-tHA = 0. (5.18)
t-*co

Next, we shall give an example of P satisfying Γ-positivity and conditions
(5.11), (5.17), and (5.18).

Example 5.2. (A stationary symmetric Markov process.) Let S be a complete
separable metric space or a locally compact topological space with the second
axiom of countability and $F a topological Borel field in S. Let us be given a σ-finite
Borel measure m^ on (S, &) and a symmetric conservative Markov semi-group
(Pt; t e [0, oo)) on L2(S, 3F, m^) with infinitesimal generator ^. By Kolmogorov's
extension theorem, we can get a symmetric and stationary measure P on (Ωs, $)
such that for WGN, tί,t2, ...,ίπelR, tu<t2< ... <tn,

,...,N(tn))edxίdx2...dxn)

= mO0(dxί)p(t2-t1,x1,dx2)...p(tn-tn-1,xn__ί,dxn). (5.19)

Here p(t, x, dy) is a transition probability of Markov semi-group (Pt; t e [0, oo)).
By a standard argument we can show

Proposition 5.3.
(i) P has Markovian property, that is, Jt?~/+ =JίΓ.

(ii) P has T-posίtivity.
(iii) The Hamiltonian H associated with P is unitarily equivalent to the

infinitesimal generator & of (Pt; te [0, oo)) through the following correspondence,

<A.f(Nm
feL2(S,*,mJ. (5.20)

In particular, for a vector A=f(N(0)) in Jf (/eL 2 (S,&,raj), A satisfies
conditions (5.17) and (5.18) if and only if f satisfies the following conditions

(5.21)

l imP ( /=0. (5.22)
ί->00

Finally we shall consider two concrete examples of symmetric Markov
processes in order to see what kinds of realization Theorem 5.1 gives for these
examples.

Example 5.3. Let N = (N(t);teΊR) be an Ornstein-Uhlenbeck process with cova-
riance function RN given by

(5.23)

Here α and β are positive constants. Then we consider a stochastic process
Y=(Y(t); t G R) defined by Y(t) = N(t)3. It can be proved that Yis a symmetric and
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stationary Markov process and the covariance function Rγ has the following form:

Rγ(t) = 9Ό3e-βto + 6Ό3e-3m

9 (5.24)

where v = oc2/2β. Therefore we can apply Theorem 5.1, Propositions 5.2 and 5.3 to
the process 7 to find that the time evolution of Y is described by [α r,/? r,y r]-
Langevin equation (5.3) for f(x) = x3. Here the coefficients {αy, βγ, γγ) are given by

and

7y(0=-/(-oo,o)(0-

(5.25)

Therefore, by a generalized second fluctuation-dissipation theorem (5.6), we note
that

y=27j8ί;3, Rγ(0)=l5v3, and CβYtγτ=^β. (5.26)

Example5.4. Let 9£ — (β£t,Px;te[0, oo),XGR) be a one-dimensional diffusion
process with infinitesimal generator ^ given by

d2 d
& = α(x) -j-y + b(x) i - . (5.27)

αx αx
Here α and b are continuous functions on R and α(x) > 0 for any x e IR. We define a
Borel measure m on IR by

m(ώc) = —— exp (C(x))dx, (5.28)

where C is given by

C{x) = ]b<^-dy. (5.29)

o a{y)

We suppose the following conditions:

m(R)<oo, (5.30)
0 /θ \ oo / y \

-oo \y / 0 \0 /

We define a probability Borel measure m^ on IR by

m G 0 (dx)=- ? = τ m(dx). (5.32)

Since we know from [9] that m^ is an invariant probability measure of the
diffusion process ΘC and the differential operator ^ generates a symmetric and
conservative Markov semi-group (Pt = e^;te [0, oo)), we can get a symmetric and
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stationary Markov process N = (N(t)); t e R) describing the stationary state of the
diffusion process SC with initial distribution m^, by using Proposition 5.3.

Now we are in a position to state the following main theorem.

Theorem 5.2. Besides conditions (5.30) and (5.31), we suppose the following
conditions:

U (5.33)
R

$xm(dx) = 0. (5.34)
R

Then there exists a unique quadruplet [α, β, γ9 /] such that the time evolution of
JV = (JV(ί);ίeR) is governed by the following [μ,β,y]-Langevin equation:

dN(t)=-(βN(t)+ f N(t + s)y(s)ds\dt + <xdl(t). (5.35)

Here the triple [α,/?,y] satisfies conditions (2.16) and (2.17) and the stochastic
process I = (J(ί) t e R) is an innovation process satisfying conditions (5.4) and (5.5)

By noting that conditions (5.33) and (5.34) imply conditions (5.21) and (5.22) for
f(x) = x, we find that Theorem 5.2 follows from Theorem 5.1 (i), Propositions 5.2
and 5.3.

Remark 5.2. We define a reference family (βt\ t e R ) by

(5.36)

Then it follows from (5.5), (5.21), and (5.35) that there exists a (Ά t\ t e R)-martingale
(M(ί) t e R) such that for any s, ί e R, s < ί,

+ M(ί)-M(s). (5.37)

Remark 5.3. We suppose that the functions a and b in (5.27) satisfy the following
relation

b(x) = a'(x)--a(x), (5.38)

where v is a positive constant. By (5.28) and (5.29), we note

( 5 J 9 )

Then it can be proved that conditions (5.31), (5.33), and (5.34) are satisfied if the
function a satisfies the following conditions:

{^)dx = l^x)dx = CO' (5 40)

— OO IA\Λ>J {J IΛ\Λ/J

J (α(x)2 + (α'(x))2) exp ( - ^ )dx < oo . (5.41)
- oo \ LV J
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Finally, by virtue of Theorem 5.1 (ii), we can obtain a generalized second

fluctuation-dissipation theorem for N which gives a proposal for solutions of

Kubo's open problem [7].

Theorem 5.3. (A generalized second fluctuation-dissipation theorem.)

In the generalized second fluctuation-dissipation theorem (5.6) for [α, β, y]-

Langevin Eq. (5.35), we have

xb(x)

a(x)
exp(C(x))dx

ayx)

R a(x)

exp(C(xj)dx

xb(x)
J _ e χ p ( C ( x ) ) d x
R ^

- 1

(5.42)

Remark 5.4. For the Ornstein-Uhrenbeck process with its covariance function

given by (5.23), Theorem 5.3 is nothing but the classical fluctuation-dissipation

theorem (1.5) stated in Sect.l [6-8,11].

More generally, we shall give the following

Remark 5.5. We suppose that the functions a and b in (5.27) satisfy relation (5.38)

with conditions (5.40) and (5.41). Then we note that (5.42) in Theorem 5.3 is re-

duced to the following

2

R(0)

-^\dx

e x P - ^ 7

(5.43)
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