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Abstract We use the Leray-Schauder Fixed Point Theorem to prove the
existence of an analytic fixed point for the period doubling accumulation
renormalization operator. Our argument does not, however, show that the
linearization of the renormalization operator at this fixed point is hyperbolic.

1. Introduction

Two independent proofs (Campanino et al. [1, 2], Lanford [4]) have been given for
the existence of an even analytic solution to the Feigenbaum-Cvitanovic
functional equation [3]

β(χ)=-\g(g(-λχ))> g(Q) = i (i.i)
with

Both of these proofs rely on extensive computations. In this paper, we give yet
another proof, based on the Leray-Schauder Fixed Point Theorem, which, if still
fundamentally computational in nature, requires a substantially smaller amount
of computation. It should be noted that the argument given here, like that of
Campanino et al. and unlike the author's computer assisted proof, does not
establish the spectral properties of the linearization of the renormalization
operator at the fixed point g which are essential for the application of g to the
analysis of period-doubling accumulation.

We will work in a space of even mappings / of [ — 1, 1] to itself, satisfying the
normalization condition

/(0)=1, (1.2)

expressed as functions of x2. Since we are working with x2 as the independent
variable, the renormalization operator has the form

(1.3)
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We will frequently write / for «^J. If we define μ by

f'(ΰ)=-(l+λ + μ),

and write

Mx) = f(x)-f0(x),

then

so /L is uniquely determined by its third derivative. We will denote //"(x) = /'"(x)
by /ι(x). The triple (A, μ, /z) will serve as a set of coordinates for the space of
mappings in which we work. Ultimately, h will be analytic on a complex
neighborhood of [0, 1], but for much of the argument we can take h to be simply a
continuous function on [0, 1]. We will write I(/l, μ, h), μ(λ, μ, /z), K(λ, μ, h) for the
coordinates of /= 2Γf.

The correspondence which associates with any continuous function h on [0, 1]
the unique function fv such that

/ι(θ)=/1(i)=/1

/(θ)=o
is linear and can be written as an integral operator

(1.4)
0

with kernel K(x, y) which can easily be written explicitly (see Sect. 2). We will also
use K to denote the operator, i.e., we will write fί=Kh as a shorthand for (1.4).
Thus, the / corresponding to the triple (λ, μ, h) can be written as

f(x)=\-(l+λ + μ)x + μx2 + Kh(x). (1.5)

Because the renormalization operator 2Γ is expansive in one direction at the
Feigenbaum fixed point, no small neighborhood of the fixed point can be invariant
for ST. To get to a situation where we can apply the Leray-Schauder Fixed Point
Theorem, we introduce an auxiliary operator with an equivalent fixed-point
problem but which does admit small invariant neighborhoods of the fixed point we
are looking for. This operator will act only on the h coordinate and will be
constructed as follows: We first show that, for any h in an appropriate domain, the
pair of equations

Zμ,μ,/0 = Λ, μ(λ,μ,h) = μ (1.6)

has a unique solution (/I*, μ*)«(0.4, 0.1). The auxiliary operator is then defined to
map h to h* = K(λ*(h)9 μ*(h),h). Fixed points for this auxiliary operator
correspond in an obvious way to fixed points for the renormalization operator
itself.

To show that the auxiliary operator is well-defined and admits a fixed point, we
are going to prove:
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Lemma 1.1. Let h be a continuous real-valued function on [0, 1] satisfying

O^Λ(jc)^0.32(l-0.36x) for O g x ^ l . (1.7)

Then there is a unique pair (/ί*,μ*) with

0.396 gλ*g 0.4031, 0.09^μ*^0.16

such that

%λ*,μ*,h) = λ*, β(λ*,μ*,h) = μ*. (1.8)

Furthermore, λ* and μ* vary continuously with h.

Lemma 1.2. // h satisfies (1.7) and if λ*9 μ* are as in Lemma 1.1 then
h* = K(λ*,μ*,h) also satisfies (1.7).

For δ > 0, let Dδ denote the set of complex numbers at distance less than δ from
[0,1]

Lemma 1.3. // δ is sufficiently small, if h is analytic on Dδ, satisfies (1.7), and in
addition satisfies

\h(z)\£ 0.32(1- 0.36 |z|) on Dδ, (1.9)

then h* is analytic on D3/2<5 and satisfies

|Λ*(z)| ̂ 0.32(1 -0.36|z|) on D3/2δ. (1.10)

The correspondence Λh-Wi* is continuous from the space of functions analytic on Dδ

satisfying (1.7) and (1.9) to the space of functions analytic on D3/2δ satisfying (1.7)
and (1.10), both spaces equipped with the topology of uniform convergence.

These three lemmas, and the Leray-Schauder Fixed Point Theorem, immedi-
ately imply:

Theorem. There exists a function g(x) defined and analytic on a neighborhood of
[—1,1], even, with g(ϋ) = 1, and satisfying

g(χ)=-\g(g(-λx)).

Furthermore, λ(= -0(l))e [0.396, 0.4031],

and, writing g(x) = G(x2) (which is possible because g is even),

O^G"'(x)^ 0.32(1 -0.36x) for O ^ x ^ l .

Lemmas 1.1, 1.2, and 1.3 will be proved in Sects. 4-6, respectively. In Sect. 2, we
establish some properties of the kernel K(x, y) of (1.4), and in Sect. 3 we prove a
number of estimates used repeatedly in later sections.

It will be a universal notatίonal convention, for the remainder of this paper, that
the symbols f, λ, μ, h, f0, /x are always assumed to be related as above. We also adopt
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as standing assumptions that λ and μ denote real numbers satisfying

0.396^^0.4031; 0.09^/^0.16, (1.11)

and h a function defined and continuous (at least) on [0, 1], satisfying

0 ̂ Λ(x)^ 0.32(1 -0.36x). (1.12)

These assumptions mil be used very frequently, generally without explicit reference.

In the course of the proof, we need to make a considerable number of concrete
numerical estimates. To take an example at random: At one point, we use the fact
that, if λ = 0.4031 and μ = 0.16, then (1 +/iμ2 + μ/l2(l - /I2) < 0.2498. Estimates like
this were verified with the aid of a Hewlett-Packard HP-15C calculator. This
calculator stores and manipulates numbers in a decimal floating point format with
ten digit fraction and two digit exponent; we assumed only that it would perform
correctly the operations of addition, subtraction, and multiplication on pairs of
operands for which the result can be represented exactly in this format. In practice,
this meant that intermediate results were rounded - up or down, depending on the
sense of the inequality to be proved - to five digits before being multiplied together.
Also, the results of divisions were verified by multiplying back after rounding. To
take the above example:

Λ2 = 0.16248961<0.16249,

/12(1-/12)<0.16249(1-0.16249) = 0.1360869999<0.13609,

(1 + λ) λ2 < 1.4031 x 0.16249 = 0.227989719 < 0.22799 ,

(1 + λ)λ2 + μλ\l - λ2) < 0.22799 + 0.021 78 = 0.24977 < 0.2498 .

This approach to proving such numerical inequalities is no doubt more cautions
than is really justified1, but it does have the merit of relying as little as possible on
the correctness of the calculator.

From a broader point of view, the question of what constitutes a satisfactory
proof of an explicit numerical estimate like the one above provides an illuminating
caricature of the issues involved in "computer assisted proofs" in general. It hardly
seems reasonable to insist that the arithmetic operations be carried out by hand,
but relying on results of individual arithmetic operations performed by an
electronic calculator does not differ in a fundamental way from relying on results of
more complicated sequences of operations performed by a larger computer.

1 Especially since Hewlett-Packard, in a departure from the standard practice of calculator
manufacturers, has published an explicit and unambiguous statement on the accuracy the HP-
15C is supposed to attain. For the four basic arithmetic operations, in the absence of underflow
and overflow, it is asserted that the result returned differs from the exact result by no more than
one-half unit in the last (i.e., tenth) place. This statement is labelled as a design objective which the
designers believe that they can prove they have attained rather than as a guaranteed specification;
it appears in the Appendix "Accuracy of Numerical Calculations", pp. 172-211 of The HP-15C
Advanced Functions Handbook, part # 00015-90011.1 am indebted to W. Kahan for pointing this
reference out to me
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2. The Kernel K

Let

X(x, y) = - x2(l - y)2/2 + 0(x - y) (x - y)2/2 , (2.1)

where θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0. We will also write

)(x-y), (2.2)

-3;). (2.3)

If h is a continuous function on [0, 1], we define

(Kh)(x)=]κ(x9y)h(y)dy.
o

Proposition 2.1. Kh is the unique three-times continuously differ entiable function on
[0, 1] such that

Kh(0) = Kh(l) = Kh'(0) = 0 , (Kh)'" (x) = h(x) .

Furthermore:

(Kh)'(x)=ίK'(x9y)h(y)dy9 (2.4)
o

(Kh)"(x)=]κ"(x,y)h(y)dy. (2.5)
0

Proof. It follows easily from standard results about differentiating under the
integral sign that Kh is twice continuously differentiable and that (2.4) and (2.5)
hold. From (2.5) and the formula for K"(x, y),

(KhY (x) = f h(y) dy - J (1 - y)2 h(y) dy ,
o o

from which it follows that Kh is three times differentiable and that (Kh)m (x) = h(x).
It is immediate from the definitions that Kh(Q) = Kh(l) = Q9 and from (2.4) that

In the following proposition x and y denote general points of [0, 1], i.e., an
assertion containing an unquantified x (or j;) should be understood as holding for
all x (or y) in [0, 1]. Also, we write X+(x, y) [respectively K + (x, y), K"_(x, yj] for
the positive part of K'(x, y) [respectively, the positive, negative parts of K (x, y)],
i.e., the larger of 0 and K'(x,y) [respectively, K"(x,y\ —K"(x,y)~\.



526 O. E. Lanford

Proposition2.2. 1. K(x9y)^Q.

2. ]κ(x,y)dy=-x2(l-x)/6.
0

3. ίK(x,y)(l-r-y)dy = -x2(l-x)[(l-r/4)-(r/4)x]/6 for all real r.

4. K'(x,y)£Q for x£l/2.
5. K'(l, = i

6. J j
o

7. fK'(l,y)(l-r y)dy=\/6-r/l2 for all real r.
o

8 . f J
0

9. f J
o

10. } j
0
1

11. ίJ
o

Proof. 1. The assertion follows at once from the formula (2.1) for K(x, y) if x < y. If
x>y

2. This is a special case of 3. .
3. By Proposition 2.1 (with h = 1 — rx), the left-hand side is the unique function

vanishing to second order at 0 and to first order at 1 with third derivative equal to
1— rx; it is easy to see that the right-hand side has these properties.

4. It is immediate from the formula that K'(x, y)^0 for x<y. For x>y,

which is manifestly negative if x^ 1/2.
5. Insert x = 1 in the preceding formula for K'(x, y), which is valid when x > y.
6. Differentiate 2. and put x = 1/2.
7. Evaluate the integral explicitly, using 5. (or differentiate 3. and put x— 1).
8. By 4., the left-hand side vanishes for x^ 1/2, so we have only to consider

x > 1/2. Also, by the proof of 4., K + (x, y) = 0 if either y > x or y > (2x — l)/x. Since
(2x— l)/x£jx, we can ignore the first condition: K'+(x,y) = [2x— 1— xy~\y for
y<(2x — l)/x and 0 otherwise. Hence:

1 (2x-l)/x

ίK'+(x,y)dy= ί \(2x-\)-Xy-]ydy
o o

= (2x - 1) [(2x - l)/x]2 } (1 - z)z dz = (2 - 1/x)2 (2x - 1)/6 ̂  1/6 .
0
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9. From the definition of K"(x, y),

K"+(x,y) = 0 for x<y

= \-(\-y)2 = 2y-y2 for x>y.

Hence

o o

10. From the expression for K"+(x,y) obtained in the proof of 9.,

o

What we have to show, therefore, is that

[x - (1 + 2r)x2/3 + ™3/4] ̂  2/3(1 - 5r/8) for 0 ̂  r g 4/7 .

Since both sides of this inequality are affme in r, it suffices to prove it for r = 0 and
r = 4/7. For r = 0, it reduces to x — x2/3 ̂  2/3, which is immediate and for r = 4/7 to
x-5x2/7 + x3/7^3/7, or 0^x3-5x2 + 7x-3 = (x- l)2(x-3), which is also
immediate.

11. From the formula for K"(x,y),

Thus

lκ"_(x,y)(l-ry)dy=](\-y)2(l-ry)dy
o x

3. Some Estimates

We collect in the following proposition a number of estimates which will be used
repeatedly. In this section, as in the preceding one, x denotes a general point of
[0,1].

Proposition 3.1. 1. /"(x) > 0.
2. 1.192<-/'(x)^l+A + μ^ 1.5631.
3. 0.7491< f(λ2) < 0.7692.
4. 0.5611<[/(/l2)]2<0.5917.
5. /(/I2x)^ 1-0.2308*.
6. λs(l+λ + μ)f(λ2x)< 0.016638(1 -0.2497x).
7. λ\ 1 + λ + μ) [/(A2x)]2 < 0.016638( 1 - 0.4370x).
8. A 5 ( l+/l + μ)[/(/l2x)]3<0.016638(l-0.5776x).
9. [/(/I2x)]2^l-0.5082x.

10. -/'(*)< 1.4165 for x^O.5.
11. f"(λ2x)< 0.328.



528 O. E. Lanford

Proof. 1. Using Proposition 2.2.11,

2. By 1. and Proposition 2.2.7,

l+λ + Ai=-/'(0)£-/'(:x)^ -/'(!)= l+l-μ-0.32(l/6-0.36/12)> 1.192.

3.

/(A2) = 1 - (1 + λ + μ) λ2 + μλ4 + Kh(λ2) .

Since, by Proposition 2.2.1, Kh(λ2)^0, f(λ2)^l-(\+λ)λ2-μλ2(\-λ2). The
expression on the right is decreasing in μ and λ separately, so we get an upper
bound by inserting λ = 0.396 and μ = 0.09, which gives

f(λ2)< 0.7692.

To get a lower bound, we apply Proposition 2.2.3 to estimate

)^ \/6λ4(l -λ2) [0.91 -0.09/12] 0.32 .

It is easy to check (e.g., by taking logarithmic derivatives) that the expression on
the right is increasing in λ, so we get an upper bound by inserting 1 = 0.4031, so
-Kh(λ2)< 0.00 106.

Thus

/(/l2)^ 1 -(1 +λ)λ2-μλ2(\ -F)-0.00106>0.7491 .

4. This follows from 3. by taking squares.
5. Since / is convex,

f(λ2x) ί (1 - x) /(O) + xf(λ2) = 1 - (1 - f(λ2))x ,

and, by 3., l-/(/l2)> 1-0.7692 = 0.2308.
6. 7, and 8. As in 5, f(λ2x)^ 1 -(1 -/(/I2))x and

If we define

what we have just shown is that /(/I2x)^ 1 — ρx.
We now claim that, for j — 1 , 2, 3,

λ5(\+λ + μ)(l-ρxy (3.1)

is increasing in λ and μ separately. To show that (3.1) is increasing in λ, we take its
logarithmic derivative; what we have to show is that

5 1 ^ jx dρ

λ 1+λ + μ = l-ρx dλ'

Since the expression on the right is increasing in) and x (and the expression on the
left doesn't depend on these quantities), it suffices to consider j = 3 and x = 1 , i.e., to
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show that

Now

^=2λ + 3λ2 + 2μλ-4μλ*<2λ + 3λ2 + 2μλ<l.5,
oλ

and ρ< 0.2498 so l-ρ>0.75. Thus

3 dρ 3

Γ^δl<α75 ' = '

while

so (3.2) is established.
Similarly, showing that (3.1) is increasing in μ reduces to showing

l+λ + μ ~ 1-ρ
Since

(3.3)

l-ρdμ

while

-—5 > ̂ 7 =0.625,
l+/ί + μ 1.6

which proves (3.3).
Thus, we can get an upper bound for λ5(l+λ + μ)(l—ρ}j by inserting

λ = 0.4031, μ = 0.16. The corresponding value of ρ is greater than 0.2497, and of
A 5 (l+/l + μ) is less than 0.016638. Finally,

^ 1 -β2*> Q2 = 1 -(1 -0.2497)2 >0.4370
J^l-ρ 3x, ρ3 = l-(l-0.2497)3>0.5776.

9.

) f-tfx)} > o.

Hence,
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10. By 1. and Proposition 2.2.6,

-f'(x)£-f'(0.5)=l+λ-(Kh)' (0.5)^ 1.4031 +0.32/24< 1.4165.

11. By Proposition 2.2.9,

f"(λ2x) = 2μ + (KhY (λ2x) ^2μ + λ\\- λ2β) 0.32 < 0.328 .

4. Solving for λ* and μ*

The objective of this section is to prove Lemma 1.1. The first step is to reduce the
pair of simultaneous equations

I(λ*,μ*,Λ) = λ*, μα*,μ*,Λ) = μ* (4.1)

to a single equation by solving for μ in terms of λ. To do this, we note that

and hence

C^7)'(0) = /'(0) if and only if /7(1)=-1/(2A).

Recalling that

we see that, if J=λ, then μ = μiί and only if /'(I) = — l/(2λ) i.e., if and only if

μ=l+λ-ί/(2λ)-(KhY(l). (4.2)

Thus, to solve (4.1), we insert (4.2) into land solve the single equation J=A; the
solution is λ* and

For y a real number, we let Cγ denote the intersection of the curve μ = 1
+ λ - l/(2λ) - y with the rectangle {(λ, μ) : 0.396 ̂  λ £ 0.403 1, 0.09 ̂  μ £ 0. 16}. What
we want to show is that, for γ = (Kh)' (1), λ(λ, μ,h) — λ vanishes exactly once on Cγ.
We break up the proof of this fact into a sequence of lemmas.

Lemma 4.1.
r\T /-) T

— (λ,μ,h)>l; —(λ,μ9K)>0.
oλ oμ

Since 1 + λ — ί/(2λ) — γ is increasing in λ, this shows that I(λ, μ,h) — λ increases
with λ along Cr and hence vanishes at most once along this arc.

Lemma 4.2.

^ 0.0438.

Lemma 4.3. // O^y^ 0.0438, Cy intersects the boundary of the rectangle
{(λ, μ) : 0.396 ̂  λ ̂  0.403 1 , 0.09 ̂  μ <; 0. 1 6} twice; once (near the lower-left corner)
at a point satisfying either λ = 0.396, μ< 0.1 334 or λ< 0.3962, μ = 0.09, and once
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(near the upper-right corner) at a point satisfying either λ = 0.4031, μ>0.1189 or
;i>0.4024, μ = QΛ6.

Lemma 4.4.

1(0.396,0.1334,Λ)<0.396,

1(0.3962,0.09, Λ)< 0.3962,

1(0.4031,0.1189, Λ)> 0.4031,

1(0.4024,0.16, h)> 0.4024.

Lemma 1.1 follows almost immediately from these four lemmas. By Lem-
mas 4.1 and 4.4, we see that X(/ί, μ, h) < λ if either λ = 0.396, μ ̂  0.1334 or λ ̂  0.3862,
μ = 0.09, and that X(λ, μ, h) > λ if either λ = 0.4031, μ > 0.1189 or λ > 0.4024, μ = 0.16.
Hence, by Lemmas 4.2 and 4.3, λ(λ, μ, h) — λ changes sign along C(W(1), and so
vanishes at some point of this arc. We have already noted that Lemma 4.1 implies
that it cannot vanish more than once. Furthermore, since the inequalities of
Lemma 4.1 are strict, it follows from the Implicit Function Theorem that the
unique solution λ*,μ* of λ(λ, μ, h) = λ on C(κhγ(ί) varies continuously with h.

Proof of Lemma 4.1. We have

SO

2
+ I

Since

f(x)=l-(l+λ)x-μx(l-x) + Kh(x), -jjτ(x)=-x, (4.3)

so we get

— = — ^"4//([/(/l2)]2)//(/l2)/(/l2)

We first estimate

I 1

where we have written a for [/(/I2)]2. Since K/z(α)^0 (Proposition 2.2.1),
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The expression on the right is manifestly decreasing in λ and μ (for fixed α); it is easy
to see that it is also decreasing in a. We can thus get an upper bound by replacing λ
by 0.396, μ by 0.09, and a by 0.5611 (see Proposition 3.1.4); this gives

Next, from Proposition 3.1.4,

[/(I2)]2 ^0.5917

λ 0.396 <

To estimate the third term in (4.4) we use:

γ (0.5) £ 1+A^ 1.396

(by Propositions 3.1.1 and 2.2.4), -f'(ά)> 1.192 (by Proposition 3.1.2), f(λ2)
> 0.7491 (by Proposition 3.1.4). Hence

4/(λ2)/'(β)/'(λ2)>4.98.

Since, finally, the last term in (4.4) is non-negative,

-1.25-1.5 + 4.98 = 2.23.
oλ

Next

From (4.3)

SO

γμ = \\_2f(λ2}(-f\ά))λ\l-λ2}-a(\-ά)\.

Now -f(a)= 1 +λ-μ(2a- l)-(Kh)'(a). By Proposition 2.2.8 (Kh)'(a)^0.32/6
< 0.0534, and hence (using Proposition 3.1.4)

-f'(a)>l +0.396-0.16(2 x 0.5917-1)-0.0534> 1.313.

Thus

rl T 1 1

— > -[2 x 0.7491 x 1.313 x λ\\ -λ2}- 1/4] > -[0.26-0.25]>0.
oμ λ λ

Proof of Lemma 4.2. By Propositions 2.2.5 and 2.2.7,

0^OKΛ)'(l) ̂ 0-32(1 -0.36/2)/6 <0.0438 .
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Proof of Lemma 4.3. If 0 <; γ ̂  0.0438, the graph ofμ = l + λ+ ί/(2λ) - y crosses the
vertical line λ = 0.396 at

μ = l + 0.396 -l/(2x0.396)-y<0.1334

and the horizontal line μ = 0.09 at a value of λ < 0.3962 [since 1+0.3962 -I/
(2x0.3962) — y > 0.09]. One of these crossings belongs to the boundary of the
rectangle {(λ, μ): 0.396^ λ ̂ 0.4031, 0.09^/^0.16}.

Similarly, the graph crosses the vertical line λ = 0.4031 at a value of μ> 0.1 189
and the horizontal line μ = 0.1 6 at a value of λ > 0.4024, and, again, one of these
crossings belongs to the boundary of the rectangle.

Proof of Lemma 4.4. We use the notation /0, f^ as in Sect. 1; we also (as above)
write a for [/(A2)]2 and α0 for [/0(A2)]2. With this notation

λ= \f(a)=\Ma)+l-fi(a)=-λfM (4.5)

for some a between α0 and a. Now fl(a)^0 (Proposition 3.1.1) while

α-flo = [/o(A2)+/1(A2)]2

and /o(α)<0 so, rewriting (4.5) as

I(λ,μ,h ) = λ(λ,μ,0)+ \fM+ |/o(«~)(α-«o), (4-6)

we see that the second term on the right is negative and the third positive. We will
next bound each of these terms.

From Proposition 2.2.3,

a - - 0 t 3 2 ιt ι

λ 6λ

From Proposition 3.1.4, 0.5611 <α<0.5917, and it is easy to check that the right-
hand side of (4.7) is increasing in a in this range. We thus get an upper bound by
substituting 0.5917 for a and 0.396 for λ in (4.7); this gives

To estimate the third term on the right of (4.6), we first remark that, by
Proposition 3.1.4, both a and a0 are between 0.561 1 and 0.5917, so the same is true
of α. Hence, by Proposition 3.1.10, — /O'(α)<1.4165. Similarly, by Propositi-
on 3.1.3, both /0(A2) and /(/I2) are smaller than 0.7692, so [/(/I2) +/0(/l2)] < 2
x 0.7692. Finally, by Proposition 2.2.3,

^ λ ^~λ ) [0.91 - 0.09A2] x 0.32 .

Combining these estimates, we get

/o(α)(α-αo) <000572

Λ
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We have thus established that

Hence, to prove, for example, 1(0.403 1, 0.11 89, h)> 0.4031, it suffices to prove
1(0.4031, 0.1189, 0)-0.01651>0.4031, and similarly for the other three state-
ments of Lemma 4.4. The required estimates with h = 0 are established by
straightforward explicit computation.

5. Bounding the Third Derivative: Real Points

The objective of this section is to prove Lemma 1.2. Thus, we can assume that λ
and μ are the λ* and μ* of Lemma 1.1. For most of the argument, we will not need
to use this fact but only our standing assumptions (1.11) and (1.12) about λ, μ, and h
(and we will accordingly drop the *'s). At one point, however, it will be convenient
to use the identity

/'(1)=-1/(2A), (5.1)

which was shown in Sect. 4 to be a consequence of λ — A*, μ = μ*.
For this section, we introduce the notation

fl(x) = [/(Λ2x)]2; (5.2)

note that this is not quite consistent with the use of the symbol a in Sect. 4. We also,
as above, write / for $~f.

By differentiating the definition of / we get

+ 2λ5f(λ2x) [-/'(α(x))] h(λ2x)

+ mY(λ2x)[-/'(A2x)]3r(α(x))
+ m5[/(A2x)]2 [-/'(A2*)] f"(λ2x) f"(a(x))

(λ2x) . (5.3)

Since f(λ2y), —f'(y), and f"(y) are all non-negative on [0, 1] (Proposition 3.1), all
terms in the above expression for h are positive except the last. We will show that
E(x) ^ 0 by showing that the sum of the third and last terms is already positive. To
do this, we first note that, since /'"^O (by assumption), /"(a(x))S:/"(A2x), and,
since /"^O (Proposition 3.1.1), -f'(λ2x)^ -/'(α(x)). Thus

)- 1}.

Again using /"^O, -/'(A2x)^ -/'(0.5)^1+1 [By Proposition 2.2.4, the
contribution of h to — /'(0.5) is positive.] Also, by Proposition 3.1.3, f(λ2x)

.7491. Hence,

2[-/'(l2x)] f(λ2x)- 1 >2 x 1.396 x 0.7491 - 1 >0,

which completes the proof that /Γϊ; 0.
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We now rework (5.3) by using

in the third and fourth terms on the right and

in the fifth. Expanding and regrouping, we get

h(x) = 8A5[/μ2x)]3 [-/'(I2x)]3 h(a(x)) + 2

+ Πμλs{2f(λ2χ ) [-/'(A2x)]3- [-/' (A2x)] [-/'(α(*

+ 24μλsf"(λ2x) [-/'(A2x)] [/(Px)]2

+ I2λ5f(λ2x) [-/'(A2x)] {[-/'(A2x)]2 + /(A2x)/"a2x)} CK/0"

A2x) . (5.4)

We call the six terms on the right Γ1? ... , Γ6 respectively; we will now proceed to
estimate them one at a time.

1.

We use -A/l2*)^ 1 +λ + μ. (Proposition 3.1.2), /15(1 +λ + μ) [/(A2x)]3

<0.016638(l-0.5776x) (Proposition 3.1.8), α(x)^ l-0.5082x (Propositi-
on 3.1.9). Combining the last of these with the assumption

Λ(x)^ 0.32(1 -0.36x),

we get

Thus,

T! <0.066608 x (1-0.5776*) x (1 +0.2859x)^ 0.066608(1 -0.2917x) .

2.

Γ2 = 2A5/(A2x) [-/'(α(x))] /j(A2x) .

We use -f'(a(x))< 1.4165 (Proposition 3.1.10), /(/I2x)^ l-0.2308x (Propositi-
on 3.1.5), h(λ2x)^ 0.32(1 -0.0564x) [from h(x) ^0.32(1 -0.36x)], and

(1 -0.2308x) x (1 -0.0564*) ̂ (1 -ex)
where

c= 1 -(1 -0.2308)(1 - 0.0564) > 0.2741 .

Thus,
Γ2<0.00965(l-0.2741x).

3.
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Here, we will use (5.1), which, combined with Proposition 3.1.1, implies

We also use -f'(λ2x)^\ +λ + μ (Proposition 3.1.2), and f(λ2x)^ 1-0.2308*
(Proposition 3.1.5). Combining these estimates:

The right-hand side is manifestly increasing in λ and μ, so we can get an upper
bound by substituting λ = 0.4031 and μ = 0.16. This gives

Γ3< 0.1 1653 -0.03602*.

4.

T4 = 24μλ5f"(λ2x) \_-f'(λ2x)] [/μ2*)]2 .

We use Γ(λ2x)< 0.328 (Proposition 3.1.11), -f(λ2x)^l+λ + μ (Propositi-
on 3.1.2), and

A 5 ( l+A + μ)[/(/l2Λ:)]2<0.016638(l-0.4370x)

(Proposition 3.1.7). Thus,

Γ4< 0.02096(1 -0.4307%).

5.

T5 = I 2 λ 5 f ( λ 2 x ) [-/'(A2%)] {L-f(λ2xy]2 + f(λ2x)Γ(λ2x)} (KhY(a(xj) .

We use

(Khγ (α(x))^0.32 x f( l -I x 0.

[Proposition 2.2. 10 and the definition (5.2) of α(x)], -/x(A2x)^(l +λ + μ)
(Proposition 3.1.2),

A 5 ( l + A + μ)[/(A2x)]3<0.016638(l-0.5776x)

(Proposition 3.1.8), /(/I2x)^l (for the occurrence inside braces), and //x(/l2x)
< 0.328 (Proposition 3.1.11). Thus,

T5<0.09149(l-0.5776x).

6.

T6= -6λ5l-f(λ2xK [-/'(*(*))] (KhY(λ2x) .

We use

(Proposition 2.2. 11),

-/x(α(x))<1.4165
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(Proposition 3.1.10), and

(Proposition 3.1.2). Thus,

T6<0.01373.

Collecting the estimates established above, we get

ft(x)<0.06661(l-0.2917x) + 0.00965(l-0.2714x) + 0.11653-0.03602x

+ 0.02096(1 - 0.4370*) + 0.09149(1 - 0.5776x) + 0.01373

<0.319-0.12x<0.32(l-0.36x).

6. Bounding the Third Derivative: Complex Points

We will use the notation of the preceding section but will assume in addition that h
is analytic on a complex neighborhood of [0,1]. For x e [0,1],

-f-α(x) =\2λ2f(λ2x)f(λ2x)\^2λ2(\+λ + μ)<Q.5W.
ax

Assume, now, that h is analytic on Dδ and satisfies

|Λ(x)| ̂ 0.32(1 -0.36M) (6.1)

there. Then, provided δ is small enough, a(x) (which is analytic on Dδ/λ2) satisfies

— α(x) ^2/3 on D3/2δcDδlλ2, (6.2)

and hence maps D3/2δ into Dδ. Thus,

is analytic on D3/2δ. We will from now on assume that δ is small enough so that (6.2)
follows from (6.1). We want to show that, possibly by making δ smaller still, we can
guarantee that

\h(x)\£ 0.32(1 -0.36|x|) on D3/2δ. (6.3)

The calculation leading to (5.3) holds for complex x as well as for real x. The
estimates of Sect. 5 show that the sum of the last three terms on the right of (5.3) (or,
what is the same thing, T3 + T4 + T5 + T6, in the notation of Sect. 5) is bounded by
0.24272 — 0.09802x for x in [0,1]. Since these three terms involve only / and its first
two derivatives, whereas (6.1) gives a bound on the third derivative of/, we can, by
taking δ small enough, guarantee that

|Γ3 + T4+ Γ5 + T6| ̂ 0.24273 -0.09802x for x ε D3/2δ.

(Note that we have added one to the last digit of the constant term on the right.)
Bounding T^ and T2 requires a slightly different argument. We will consider only
Ti explicitly; T2 is handled in essentially the same way.
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By definition,

)]3 h(a(x)) .

The estimates of Sect. 5 show that

8/l5[/(/l2x)]3 [-/'(/I2x)]3<0.32522(l -0.5776x) on [0, 1] .

Again using the bound (6.1) on /'", we see that, if δ is small enough,

|8A5[/(/l2x)]3[-//(yl2x)]3|<0.32523(l-0.5776|x|) on D3/2δ.

Also, a(x)^ 1 — 0.5082* on [0, 1] (Proposition 3.1.9), and hence, again if δ is small
enough, |α(x)|^ 0.9999 -0.5083|x| on D3/2δ. Hence,

ITJ ^0.066616(1 -0.29161x1) on D3/2δ.

Similarly, we can ensure that

|Γ2| ̂ 0.009651(1 -0.2740|x|) on D3/2δ.

Combining, we get

|β"(x)|<0.319-0.12|x| ̂ 0.32(1 -0.36|x|) on D3/2δ,

as desired.
Continuity of the mapping fo-+h* follows immediately from the formula (5.3)

for h and the continuity of the dependence of λ* and μ* on h.
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