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Abstract. We discuss the use of the family’s index theorem in the study of
gravitational anomalies. The geometrical framework required to apply the
family’s index theorem is presented and the relation to gravitational anomalies is
discussed. We show how physics necessitates the introduction of the notion of
local cohomology which is distinct from the ordinary topological cohomology.
The recent results of Alvarez-Gaumé and Witten are derived by using the
family’s index theorem.

I. Introduction

Alvarez-Gaumé and Witten [1] have calculated the gravitational anomalies of
certain parity violating theories in 4k — 2 dimensions. Their most striking result
is that there is a unique minimal ten dimensionl theory where the gravitational
anomalies cancel. In this communication we reproduce their results in a different
way by using the family’s index theorem [2] instead of Feynman diagram methods.

The relation of the family’s index theorem to anomalies has been discussed by
Atiyah and one of the present authors in reference [3]. In that paper, the geometric
setting for the family’s index theorem was presented and the relation to anomalies
was discussed. The authors showed that the first characteristic class of the index
bundle for the Dirac operator was related to anomalies. A number of papers have
addressed the relationships among chiral anomalies, the geometry of the space of
vector potentials, and the families of Dirac operators. We recommend the papers of
Alvarez-Gaumé and Ginsparg [4], Lott [5], and Stora [6] to the reader. The first
investigation of the behavior of the Dirac operator as a function of the metric is due
to Hitchin [7].
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This is a brief report of a more extensive study we have done on the relation of the
family’s index theorem to anomalies. In preparation is an expository paper [8]
which we hope will be accessible to physicists. In this note we assume some
knowledge of K-theory and characteristic classes. Physicists may find a useful
discussion of these topics in the review article by Eguchi, Gilkey, and Hanson [9].

II. Families of Metrics and the Family’s Index Theorem

Let M be a 2n = 4k — 2 dimensional spin manifold. The space of allowable metrics
on M will be denoted by M. The diffecomorphism group of M is denoted by Diff (M).
For our purposes we require a subset of Diff (M) denoted by Diff, (M) and defined by

Diff,(M)

= {¢eidentity component of Diff(M): ¢(x,) = x,,d(x,) = id}. @1)

where x,eM is a fixed reference point and d¢ is the differential of ¢. Later we will
explain the reason for working with Diff,(M).

We will be interested in the properties of a two parameter family of elliptic
operators on M. The operators in question are the chiral Dirac operators coupled to
a vector bundle V associated with the spin frame bundle. To be more precise, let Si;
be the positive and negative chirality spin bundles over M. Let

B,:C*(S5;®V)> C*(Sy® V) 2.2)

be the chiral Dirac operator coupled to V. The subscript g is a reminder that the
Dirac operator depends on the metric g. A two parameter family of operators will be
generated by varying the metric. The action of ¢ on g is denoted by ¢-g. Since B, is
covariant under the action of Diff (M),

B,,= ¢ 'B,s, (2.3)

we will have to be careful in specifying the two parameter family.

The space of metrics I is a principal fiber bundle over Wi/Diff,(M) with
structure group Diff,(M). The reason for choosing Diff, (M) is that Diff (M) does not
act freely on . In fact, if peDiff (M) is an isometry of g, then the action of ¢ on g is
by definition ¢-g = g. The only isometry in Diff,(M) is the identity transformation,
and therefore Diff, (M) acts freely on 9. Diff (M) could be used if we restricted the
metrics to those with no isometries besides the identity.

The family of operators B, has a family of kernels, ker B,, the zero frequency
modes of positive chirality. There is also the family ker B, the zero frequency modes
of negative chirality for B}. Because B, = ¢~ 'B,¢, the vector space ker B, =
¢(ker B,); we identify them so that one obtains two families of vector space ker B,
and kerB] indexed by peM/Diffy(M). Although these families can jump in
dimension, their formal difference ker B, — ker B} makes sense in K-theory, and is
the index bundle, Ind (B,).

The non-vanishing of the Chern classes of Ind (B,) measures the extent ker B,
and ker B}, differ. The first Chern class is a two form on 9/Diff(M) and has a simple
physical interpretation. Suppose ker B, is of dimension r with zero frequency modes
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Vi,...,¥,. The exclusion principle requires one to study the antisymmetric
combination y/; A *+* A ,, and hence the one dimensional (line) bundle A" ker B, is
important. Mathematlcally, if ker Bf, has dimension s, then the line bundle
A"ker B,/A°ker BT is well defined even when there is a jump (of the same dimension)
in ker B, and ker BT (the effects of the jumps cancel). This line bundle is called the
determmant line bundle of B, which we denote by DET Ind B,. We use the boldface
DET in order not to confuse the above with the functional determinant of an
operator. The first Chern class ¢; of Ind B, is the first Chern class of DET Ind B, and
one can evaluate it by restricting to two dimensional spheres Y in 9i/Diff,(M).

What this boils down to is the following. Let Y, be the upper and lower
hemispheres of Y parametrizing metrics. Along the equator we assume the metric
p_(0) from the lower hemisphere equals ¢(6) p.(0), where p () is the metric
from the upper hemisphere, and ¢(6)eDiff,(M). In the above discussion 6 is the
equatorial angle. Correspondingly, patch ker B,, peY_ along the equator by
kerB, 4 = ¢-kerB, . Do the same for ker B;. In this manner we get two families
of vector spaces E and F over Y whose formal difference is the restriction of
Ind B, to Y < 9N Diff(M). In the same way, DET(E — F) is the restriction of DET
Ind B, to Y. Note that this construction leads automatically to the construction of a
fibre bundle Z with base Y and fibre M. A trivialization of Z is obtained by looking
at Y, x M. The bundle’s transition function at the equator is given by ¢(6). Note
that Z is 4k dimensional. A corollary of the family’s index theorem is that

ch(IndB,)|, = j AZ)ch (V). (2.4)

ch(Ind B,) is the Chern character for the index bundle. On the right-hand side of the
equation one has the 4 genus for the manifold Z, and the Chern character of ¥ which
should now be thought as a vector bundle over Y. One should interpret (2.4) in terms
of differential forms. Since Y is two dimensional one has that ch(IndB))|y =
v+ c;(Ind B,), where v is the ordinary index of each operator and is independent
of p. From now on we can restrict ourselves to the family {B,} for peY.

III. Relation of the Family’s Index Theorem to the Anomaly

The gravitational anomaly also called the Einstein anomaly is the variation of the
logdet B, under a diffeomorphism. If ¢ is the vector field on M that generates a
difftomorphism, then the anomaly is given by

Ajl d(vol)eH(x)V'T,,, (3.1)

where T, is the energy momentum tensor. The anomaly is a one form on Diff, (M),
since (3.1) is the evaluation of a one form on a tangent vector to Diff, (M). The
consistency condition [10] generalized to the case of difftfomorphisms requires the
anomaly to be a closed one form on Diff,(m). Put another way, the one form n =
d(det B, )/(det B, ) is closed and represents an element in the first cohomology
class of Diff,(M).

In reference [8] we show that there is a relation between # and c,(Ind B,). The
connection is obtained by using the transgression operation [11]. We give a brief



412 O. Alvarez, I. M. Singer and B. Zumino

description. The first Chern class of the index bundle is represented by a closed two
form on M/Diff,(M) when computed in terms of curvature. By using the
transgression operation one obtains a closed one form on Diff, (M). Explicit
formulas may be found in [6, 12—-14]. The transgression of ¢, and # give the same
cohomology class in the sense of local cohomology (see below). To check whether the
gravitational anomalies cancel, we need check only that the first Chern classes of the
corresponding Ind B, cancel. We use the right-hand side of (2.4) to calculate the first
Chern class of the index bundle.

Local cohomology is relevant here because the first cohomology of Diff,, (S*~2)is
finite, i.c., has only torsion for k=1 and k > 6. As far as we can tell, no complete
proofis in the literature, see [ 15, 16]. One expects the result to be true for all k. When
the first cohomology is finite, the one-form 7 is exact, i.e., log det B, is a well defined
single valued function of ¢. For a topologist, there is no anomaly. The important
physical question is whether one can write the anomaly as the differential of a local
function of ¢. We have shown [8] that this is not possible by using a generalization
of Gilkey’s lemma [17,18]. Hence #n represents nontrivial class in the local-
one-cohomology of Diff,(M). The notion of locality is familiar to physicists since
it is intimately related to anomalies and to the renormalization program for gauge
theories [19-21]. Local cohomology has been defined in reference [22].

Consider the combined Lorentz and Einstein anomalies. Mathematically this is
the situation where one allows all automorphisms 5# of a principal bundle leaving a
point fixed. The group of gauge transformations ¥ is a subgroup and the quotient
group # /% contains Diff, (M). For the special case of the bundle of bases B of M,
Diff, (M) can be lifted and # is a semi-direct product of % and Diff,, (M). To use the
orthogonal group instead of the linear group one has to consider the subset of
B x M consisting of orthogonal frames in the metric g.

In this case, the Dirac operator depends on a metric and a compatible
connection. We dwell on this extension for the following reason. Now the anomaly is
a closed one form on ¢ x Diff, (M). Its restriction to ¥ is invariant under Diff, (M)
and is the usual Lorentz anomaly. It is the anomaly for a SO(4k — 2) gauge theory.
However, one can add a local counterterm to the vacuum functional so that the new
vacuum functional is invariant under ¢ but not under Diff,, (M). In this way one gets
the Einstein anomaly. The transfer process is reversible [14]. It appears one can
represent the local cohomology of the semi-direct product as an Einstein anomaly or
as a Lorentz anomaly. The manifestation of the anomaly on ¢ x Diff, (M) as a
Lorentz anomaly has a topological interpretation. The relationships between the
topological and the local interpretation of anomalies will be discussed in [8].

IV. Calculations

We have to choose the vector bundle ¥ in such a way that the domain of the operator
B, is either chiral spin 1/2 fermions, chiral spin 3/2 fermions, or the self dual
antisymmetric tensor field. We discuss the different cases individually. For future
convenience we also discuss the Euler complex and the Hirzebruch complex.
Common to all the cases is the following observation. The structure group of the
spin frame bundle of Z is Spin (2n + 2). Since Z is a fiber bundle, the structure group
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may be reduced to Spin (2n) x Spin (2). This means that the values of the curvature
two form takes the following form:

spin (2n) 0 )
< 0 spin(2) )

As a consequence the A genus may be factored as
2)= y2 oo xy2
sinh (y/2) ;&7 sinh (x;/2)’ (4.1)
where y is the Spin (2) piece and {x;} are the Spin (2n) pieces. Note that if heuristically

one thinks of each x; and each y as being a two form, then x and y are not differential
forms on M and Y respectively. They contain mixed pieces.

Case 1. Dirac Complex

. _ 2o x/2
ch(Ind [Dirac]) = A&sinh ) j];II sinh (x,2) (4.2)

The A genus is determined by the Pontrjagin classes and therefore it defines forms of
degrees which are divisible by four. For our purposes this will be important since Z is
a manifold of dimension 4k. Similar remarks apply to the remaining cases.

Case I1. Hirzeburch Complex

The complexification of the self dual differential forms on M may be identified with
S ®(S1;® Sy). The anti-dual forms are given by Sy ® (Sy; @ Syy). The Hirzebruch
signature operator may be identified as

B,: C(S3 ®(Sy @ Sa) — C (S @ (S ® S3y)).- (4.3)
It follows that the vector bundle V is given by V = S;; @ Sy;. The Chern character of
V is given by Eq. (5.1) of [23]:
ch(Sy;® Sy) = [] 2cosh(x;/2). 4.4)
j=1
Itisimportant to notice that since ¥ is a bundle over M only the x’s enterin (4.4). The
family’s index theorem gives

. _ y/2 n X;
ch(Ind[Hirz]) = 1\54 Sinh /) j[;[l anh (5/2) 4.5)

Naturally the above formula involves Hirzeburch’s L-polynomial [9, 23].

Case 111. Euler Complex

The Euler complex is defined by mapping even forms to odd forms using the
differential operator d + d*. The complexification of even forms on M may be
identified with (S;;® S;) ® (S;; ® Syr), and the complexification of the odd forms
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with (Sy ® Sx) D (S3; ® Sy). As far as the index theorem is concerned, the operator
By: C*((Sy @ Sa) D (S ® San)) > C((Sy @ Sa) @ (S ® Siy)) (4.6)

may be viewed as a map
B,: C*(S3 ®(Syr — Sa) = C*(Sy ® (Sar — Sar)- 4.7)

Equation (4.7) is obtained from (4.6) by moving terms from one side of the arrow to
the other. The vector bundle V now becomes the virtual bundle or formal difference
St — Sy According to Eq. (5.1) of [23] one has

ch(Sy; — Sy) = [] 2sinh(x;/2). 4.8)
j=1
The family’s index theorem gives

2 n
ch (Ind [Euler]) = | Sm}yl/w [ x 4.9)

One can immediately see that ¢, is zero in the case of interest. The Euler form
n
e=[]x;. (4.10)
j=1

is a 2n-form, the term involving the y is formally a linear combination of forms of
degree 0, 4, 8,.... Therefore after integration over M one cannot be left with a two
form. In fact we have just proven a special case of a more general theorem: the
characteristic classes for the index bundle of the Euler complex all vanish. The
reason is that Euler is topological in nature and varying the metric should have no
effect.

Case IV. The Self-Dual Complex

In the supergravity theories [24] one encounters self-dual tensors. It is important to
realize that these theories are defined on a manifold of dimension 4k — 2 with a
Lorentz metric. The self-dual tensor is a 2k — 1 form.

To apply the family’s index theorem we analytically continue naively to a metric
of Euclidean signature. The complexification of the anti-dual even forms is S;; ® Sy,
while the self-dual odd forms are given by S;;® S;;. We are interested in

B,: C™(S$;® S;31) = C*(Syy ® Sy (4.11)

The vector bundle V is given by S;;. One has the following formal manipulations
which are valid in K-theory:

ch(Sy) = (1/2) ch ((S3 ® Sy) — (Sar — Sa)
= (1/2)ch (Sy @ Sy) — (1/2) ch(S3; — Spy) (4.12)

— (1/2) [] 2cosh (x;2) — (1/2) [ 2sinh(x;/2)
i=1 i=1

by (4.4) and (4.8). Comparing to Cases II and III we see that the self dual complex
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may be thought as being given by one half of Hirzebruch minus one half of Euler. We
immediately have the result

2 .
ch(Ind[self duall) = | sinl)l)/(y % ,-Dl tanhx(Jx L 4.13)

since the Euler contribution vanishes.

Case V. Rarita-Schwinger Complex
Naively the Rarita-Schwinger complex is given by
B,:C*(S3 @ T*M)— C*(S3; ® T*M). 4.14)

However, S;;® T*M is not pure spin 3. One must remove two spin 4 degrees of
freedom of the same chirality and one spin 3 degree of freedom of the opposite
chirality [25]. The relevant elliptic complex becomes

B,: C*(S3 @ T*M) — C*(Sy) — C*(Sy) — C*(S3)

= C?(Syy ® T*M) — C*(S3) — C*(M ) — C*(Syy)- (4.15)
By manipulating terms just as we did in the Euler case one finds
B,: C*(Sy ®(T*M — 1)) » C*(Sy; ® (T*M —1)). (4.16)

The vector bundle V is identified with the formal difference T*M — 1 and it follows
that

ch (T*M — 1)=ch(T*M) — 1 =2 ¥, cosh(x;) — 1. @.17)

J

The family’s index theorem becomes

2 [ x2
ch (Ind [Rarita-Schwinger]) = Aj; sinl);/(y ) <I=_[1 sinl’?(/x _ /2)>

. <2_Z cosh (x;) — 1). @.18)

V. The Results of Alvarez-Gaumé and Witten

In Sect. III we reported that the anomaly was related to the first Chern class of the
index bundle via the transgression operation. If we can arrange the field content in
such a way that the total contribution to the Chern class is zero then we have an
anomaly free theory. This requires that we carefully collate the results of Sect. IV,
making sure that we have all the relative signs correctly and a certain factor of two.
All we are really concerned with are the x-dependent terms in the formulas of
Sect. IV since the y term is common to all formulas. We will collate the x-dependent
terms of all the integrands. We have to interpret the formulas of Sect. IV aslivingin a
manifold of Lorentz signature.

The contribution to the anomaly due to a spin 3 negative chirality fermion is
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given by

L= ] 9 (5.)

1z j=i sinh (x;/2)° '
One minus sign is just the Fermi (— 1) relative to the bosonic contribution. The
second one is due to the fact that the calculation in Sect. IV was done for positive
chirality. Likewise, the contribution due to a negative chirality spin 3 fermion is
given by

n x;/2
I, =(—1 —L—— 1 2 ) cosh(x;/2)—1 5.2
(22 e 1) 2
The only tricky calculation is the anti-symmetric self dual tensor field F. One
should think of F as coming from a potential 4, F = dA4. The potential is an even
form, and therefore (4.11) was a map in the opposite direction. This means we should
take Eq. (4.13) with a minus sign:

Iy=(= %%l:[ anh(x ) (53)

There is no Fermi (— 1) since the particles are bosons. There is an additional factor of
(3) since a self dual tensor in a 4k — 2 dimensional Lorentz manifold may be taken to
be real. The calculations in Sect. IV were performed in the complexified deRham
complex. This factor may be understood by counting the number of physical degrees
of freedom or by analyzing Feynman diagrams [ 1]. To make our results agree with
Eq. (114) of reference [ 1] one notices that the term of order 2k in x of (5.3) is the same
as the term of order 2k in the quantity (note that 2n = 4k — 2):
LT Xj

® =i tanh(x) (4)
The reason why one is interested in the term of order 2k in x is that one needs a 4k
form to integrate over the 4k — 2 dimensional manifold M to obtain a two formon Y.
The order 2k term is all one needs to obtain the leading term of the first characteristic
class, i.e., the approximation that

y/2
sinh (y/2)

The rest of the terms may be obtained by using the consistency condition [6, 10, 14].

Except for an overall factor which does not affect the striking cancellation in the
ten dimensional chiral N = 2 supergravity theory, the above are the main results of
reference [1]. Our computation gives an extra factor of £ in the Alvarez-Gaumé and
Witten formulas when the latter are interpreted as the covariant form [14] of the
anomaly. If one tries to interpret their formulas as the linearized consistent form
[147 of the anomaly, then we find a further dimension dependent factor of 1/(2k).

=1+00?). (5.5)
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