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Abstract. We use the methods of [1] to show that the planar part of the
renormalized perturbation theory for φ^-euclidean field theory is Borel-
summable on the asymptotically free side of the theory. The Borel sum can
therefore be taken as a rigorous definition of the N-^oo limit of a massive
N x N matrix model with a + trgφ4 interaction, hence with "wrong sign" of g.
Our construction is relevant for a solution of the ultra-violet problem for
planar QCD. We also propose a program for studying the structure of the
"renormalons" singularities within the planar world.

I. Introduction

The standard problem in constructive field theory is to prove the existence of
"models" which represent realistic interacting fields. Ultimately it should give a
rigorous mathematical construction of the models which are used in the
description of modern particle physics, namely the gauge theories. So far
constructive field theory has not been able to provide the construction of any
interacting model in 4 dimensions of space-time. To construct the 4-dimensional
theories requires in our opinion a complete analysis of their relationship to
renormalized perturbation theory. This does not mean that we do not believe in
the existence of "non perturbative" effects in 4-dimensional gauge theories. There
is good heuristic evidence for the existence of such effects. However we think that it
is unlikely that a rigorous construction of these theories in the continuum can be
obtained before the perturbative phenomena have been investigated in detail and
brought under rigorous control.

It is known in particular that in 4-dimensional renormalizable field theories the
renormalization deeply modifies the behavior of Feynman amplitudes. Some
individual amplitudes become so large that alone they seem to dominate the large
order behavior of perturbation theory. We think that this phenomenon, which has
been analyzed in various heuristic ways [2-6], should be rigorously understood
and controlled. A first step in this direction was accomplished in [1], where the
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necessary methods were developed to evaluate systematically and rigorously the
size of the renormalization effects. To go further one would like to have rigorous
information on the existence, the position and the analytic structure of the
singularities that these large renormalization effects may induce, and to which we
give the generic name of "renormalons" after [4]. We regard the present paper as a
step in this direction. Using the methods of [1] we provide a rigorous perturbative
construction of planar 4-dimensional massive asymptotically free field theories at
weak coupling by proving the Borel summability of their perturbative expansion1.
Since it is very likely that the renormalon singularities are responsible for the
divergence of this expansion, the fact that we are able to prove its Borel
summability is an indication that these singularities might be controlled by
perturbative methods. In fact we propose to see the planar world as a laboratory to
study in detail the heuristic results about both infra-red and ultra-violet
renormalons. We explain this proposal in more detail in Sect. IV.

Before we describe further our results let us emphasize what makes them truly
different from other results on Borel summability of perturbative expansions in
quantum mechanics or quantum field theory [12-16]. Let us consider the standard
Euclidean scalar field with a + gφ4 interaction in dimension d of space time. In the
rest of this paper we adopt the unusual but useful convention that this + gφ4

interaction is in the Lagrangian, hence it corresponds to the "wrong" negative sign
of φ4 in the Hamiltonian. The renormalized perturbation expansion in the
coupling constant for a Schwinger function S can be written as:

S= Σ 9"an, (1.1)
n=l

an = Σ /S, (1.2)
G/n(G) = n

which means that the nih order of the perturbative expansion, απ, is the sum over all
graphs with n vertices of the corresponding renormalized Feynman amplitudes Iζ.
However, one cannot take directly (I.I) as a rigorous definition of S because the
radius of convergence in g of the right-hand side of (LI) should be 0 [17] [proofs of
this statement have been obtained only for superrenormalizable interactions:
P(φ)2 [18] and φ4 [19]]. Nevertheless in the superrenormalizable case a
connection does exist between the two members of Eq. (I.I); it has been proved
that the left-hand side is quite generally the Borel sum of the right-hand side
[12-15]. We would like to emphasize that in all these cases Borel summability is
obtained a posteriori', by this we mean that one gives first a rigorous definition of
the Sch winger functions S in (LI), generally as the moments of a probability
measure on S'(Rd) (functional integral formalism). Then one verifies that the S
defined in this way satisfy, as functions of g, the hypotheses of one of the standard
theorems on Borel summability [20-22]. It is not a completely perturbative proof
since it uses the independent definition of S via the functional integral. Therefore
the question naturally arises: can perturbative field theory be a fully constructive
method, in non-trivial, interesting cases? In particular, if there does not seem to be

1 For a discussion of the relationship of our work to the similar program oft Hooft [7-10], we
refer to [11]; we notice simply here that both methods and perspectives are quite different
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any good definition of S via functional integrals but if one suspects the series in the
right-hand side of (LI) to be Borel summable, is it possible to prove it and to take
the Borel sum of the right-hand side of (I.I) as the rigorous definition of S?

The naive answer to this question would probably be: no. By purely
perturbative methods, the Borel transform of the perturbative expansion has been
proved to exist near the origin in the Borel plane in rather general cases like φ4 in
any dimension where it is renormalizable [1, 23]; but this has been accomplished
via absolute upper bounds on Feynman amplitudes. To prove Borel summability
for nontrivial divergent series made of complicated Feynman amplitudes seems to
require such an extremely delicate control of all sorts of cancellations between
pieces of the expansion with different signs that it looks almost desperate.
Therefore it may be a surprise that as a consequence of this paper at least a
partial "yes" can be answered to the above question. What will be shown in the
next sections is that if one restricts the summation in (1.2) to planar graphs the
right-hand side of (LI) is a Borel summable power series in dimension 4 and for
g > 0 (asymptotically free case). This result is obtained by a purely perturbative
method in which one only looks carefully at the Feynman amplitudes, cuts them
into a lot of pieces, and does carefully controlled partial (Borel) resummations of
some of these pieces.

We understand that the restriction to planar graphs is an enormous
simplification which trims most of the graphs in the original expansion;
nevertheless because of the presence of "renormalons" in the planar expansion we
expect the series we have Borel-summed to be fully nontrivial ones with 0-radius of
convergence (see Sect. IV); moreover the restriction to planarity is not arbitrary; it
is motivated by the desire to construct rigorously the large N limit of, say, QCD
with gauge group SU(JV). Although the method presented in this paper is not yet
able to provide this construction, which involves a control of infrared (or strong
coupling) problems too, we think it represents a solution of the ultraviolet problem
for planar QCD, and gives some hopes for a complete construction, including
massless particles. We would like also to emphasize that large sections of this paper
apply to the non-planar case as well; only convergence theorems in Appendix B
fail because of the large number of non-planar graphs. This seems an encouraging
remark for the study of finite component models with our methods.

The organization of this paper is as follows: in Sect. II we define the model
which will be constructed; we also review briefly the recent results on planar
models and the motivations to study them. For completeness we recall some of the
notions introduced in [1] which are crucial for the rest of the paper. In Sect. Ill we
state our main theorem. We explain how to rewrite the planar expansion in terms
of "dressed amplitudes." using the technique of the Appendix in [24]. Also we
underline the main unexpected difficulty we met; to bound some special regions of
integration in some dressed amplitudes requires a particularly delicate analysis. In
Sect. IV we discuss several open problems and possible extensions of our work.

We include a brief discussion of present ideas about the "renormalon"
singularities. Finally Appendices A-C are devoted to technical proofs;
Appendix A deals with the process of "dressing" in the amplitudes (some earlier
examples of this kind of ideas can be found in [19, 24]); Appendices B and C
establish the various bounds necessary for the proof of Theorems III.2 and III.3;
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they depend heavily on [1]. The reader unfamiliar with the technicalities of [1]
might be mostly interested by this introduction, the first part of Sect. II and
Sects. Ill and IV.

II. The Planar Model

ILL Motivations

The usual perturbative expansion does not describe correctly the long distance
dynamics of non-abelian gauge field theories. It is therefore extremely interesting
to develop other approximation schemes for these theories. The most promising
ones are the lattice regularization of gauge theories and the 1/JV expansion.
However it seems that rigorous studies of the continuum limit of lattice theories
rely always on some sorts of correlation inequalities (recent works in this area,
[25-28] do not escape this rule); most of these correlation inequalities have been
only proved for simple spin systems with one or two components, and every
attempt to generalize them beyond that range has failed. Therefore the 1/N
expansion scheme might be the best proposal to construct rigorously nonabelian
gauge theories in the continuum. The interest for this scheme has been triggered by
'tHooft's paper [29], which showed that the first term in the approximation, the
large N limit of quantum field theories with a SO (AT), SU(ΛΓ) or U(ΛΓ) global or
local symmetry, is given in perturbation theory by the sum of all the planar
amplitudes. Subsequent important works include the study of closed equations for
the Wilson loops [30, 31], and recently the discovery of the reduction of space-time
degrees of freedom which occur in these theories [32-35]. The subject is therefore
in vigorous development although up to date there is still no complete
construction of what one would like to call for short "planar QCD."

Our construction of the (Borel) sum of the planar diagrams will be done only
for a globally symmetric massive model with an asymptotically free interaction;
however the method is sufficiently general to be considered also a solution of the
ultra-violet problem for general theories of the same kind, including asymptoti-
cally free gauge theories (with an infra-red regulator like a finite box with periodic
boundary conditions). Therefore we think our work is complementary to the one
of Eguchi, Kawai and followers, in which the space-time reduction appears like a
solution of the infra-red (infinite volume) problem.

Before giving technical definitions useful for the rest of the paper let us discuss
at an elementary level why the planar asymptotically free massive models are the
best candidates for a completely perturbative construction in 4 dimensions. The
first observation is that in ordinary theories the number of graphs at a given order
n grows at least like n\. The singularities that this kind of behavior induces will be
called "instanton" singularities to distinguish them from the "renormalons." In
ordinary φ4 theories they presumably prevent the theory from being Borel
summable for g > 0 ("wrong" sign of the coupling constant in our convention).
With the usual sign of the coupling constant (g < 0), the theory is Borel summable
in dimensions 1,2,3 [12-14]; but this result has never been proved by an analysis
staying at the level of Feynman amplitudes and exhibiting the large cancellations
which occur between them for g < 0. Such an analysis seems an extremely difficult
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task because one does not see well graph by graph "where the instanton
singularities are"; they are a mean statistical effect. In particular it seems unlikely
that one can perform this analysis before one controls completely easier problems
such as proving by perturbative methods the Lipatov formulae [36, 37] in full
detail and for all superrenormalizable dimensions (note that progress has recently
been made in this direction [38], which might therefore not be hopeless). If one
does not want to deal with instanton singularities and large numbers of graphs,
one is quite naturally lead to the planar theories. They are the most interesting for
physics in which the number of graphs at order n grows only like an exponential of
n [39, 40]. In superrenormalizable dimensions, since any Feynman amplitude of
order n is bounded by a uniform exponential of n [23], it follows immediately that
the sum of the planar expansion can be performed at small coupling and is an
analytic function of this coupling near the origin2. Physically what happened to
the instanton singularity in the limit of large number of components is that its
action goes to infinity; this stabilizes an otherwise unstable vacuum for the theory
with "wrong" sign of φ4, by preventing tunneling effects to occur with a finite
probability.

What makes life more interesting in the 4-dimensional case is that "ultra-
violet" singularities almost surely prevent the direct summability of the planar
diagrams. We are mostly interested in asymptotically free field theories. It was
argued in [4-6] that in this case ultra-violet renormalons should not prevent Borel
summability. Since we do not want from the beginning to attack the hard problem
of long-distance behavior in gauge theories, we are lead to try first the perturbative
construction of asymptotically free massive planar models.

IL2. The Model

Let us consider a U(7V) massive Hermitian matrix field φ in 4-dimensional
Euclidean space-time with a +trgφ4 interaction; the connected Schwinger
functions for this field are the moments of the following formal measure:

dμ(φ) = Z-1exp$d4xΎr{-%dfiφ)2-±m2φ2 + gφ4}Yldφ(x). (Π.l)
*

In (II. 1) one should understand φ2 as (φ - φ*) etc. Also (II. 1) does not make sense
without renormalization. Since our theory is massive, we can fix the renormaliz-
ation scheme to be the same BPHZ scheme of "subtractions at 0 external
momenta" which was used in [1]; it is the most natural for this model. Then after
suitable rescaling (g-^g/N) the perturbative expansion in g of any U(JV) invariant
Schwinger function is dominated as ΛΓ->oo by the planar diagrams [29].

For a Schwinger function with e external momenta there is also a factor
N(\/N)e/2, which means that formally the large N limit of this model is a
generalized free field with a complicated two-point function given by the sum of all

2 This result has perhaps not received enough attention; it would be interesting from a
mathematical point of view to explore which axioms of axiomatic field theory survive in the planar
limit, and in which weak sense they can perhaps be still considered as field theories; this
investigation could be done most easily in the superrenormalizable case where one has such a
cheap construction of the Schwinger functions as simple sums of convergent series
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planar graphs with two external momenta [41]. It would be nice to analyze
rigorously this point in further detail, but in any case our construction will not
depend on it.

We introduce now some notations for the perturbative expansion, the
Feynman amplitudes in α representation and the renormalization. In fact in the
rest of this section we will mostly recall some definitions and some material already
contained in [1] which are essential for the rest of the paper.

The connected one-particle irreducible planar Schwinger functions with e
external arguments are given by the (for the moment still formal) power expansion

Sβ(p,flf) = δ ΣP, Σ (p), (11.2)
\q=ι J n = o nl

where p = (pl5 . . ., pe) is a set of external Euclidean momenta, and a* is the sum of all
renormalized Feynman amplitudes associated to l-P-I planar Feynman graphs
with n internal vertices and e external legs. These graphs have exactly 4 lines
attached at each vertex. Up to Appendix B, a "graph" will mean a "labeled graph,"
for which the internal vertices are numbered; this allows a precise discussion of the
symmetry factors associated to them and explains the presence of an n! in (II.2).

II. 3. Graph Theory and Feynman Amplitudes

The following notations are used for any graph G:
n(G) is the number of (internal) vertices of G
/(G) is the number of internal lines of G,
e(G) is the number of external lines of G,
L(G) is the number of independent loops of G,
c(G) is the number of connected components of G.

ω(G) = l(G)-2L(G)(=e^--2 if c(G) = Π is the superficial degree of

convergence of G.
We define subgraphs of G which, as in [1], are sets of internal lines of G with the

corresponding attached vertices and extend the definitions of n, /, e, L, c, ω to them
in the obvious way. The sign C will always mean strict inclusion; for non-strict
inclusion, we use £ . By convention an empty sum will always be 0 and an empty
product 1. We also fix the mass m2 to be simply 1 in the rest of the paper; it will not
be of much concern to us. Since we consider only expansions for truncated
Schwinger functions with e ̂  2, and since we chose to subtract the graphs at 0
external momenta, there will be no vacuum (e = 0) graphs or subgraphs in our
problem, nor graphs containing tadpoles (subgraphs with only one external
vertex) [1].

The bare Feynman amplitude IG attached to the graph G is defined in the
α-parametric representation by the following (possibly divergent) integral:

/G(P) = 1 - ϊ Π d«, exp ( - Σ «,) ZG(p, α) . (II.3)
0 0 i=l V ί=l /



Planar 4-Dimensional Euclidean Field Theory 451

The oc-parametric (or Schwinger) representation (II.3) has a parameter oc attached
to each internal line i= 1, ..., / of G; the integrand ZG is defined by:

(Π.6)
T\iφT

where t/G and FG are the standard Symanzik polynomials: S runs over the
spanning trees (or "one-trees") of G, Tover the "two-trees" (spanning trees minus
one line) which separate the external lines of G into two non-empty sets, one of
which is E1. We introduce also the following short notation for the measure in
α-parametric space:

lW . (Π.7)
i = l

II.4. Renormalization

The subgraphs with e = 2 ("bipeds") and e = 4 ("quadrupeds") are superficially
divergent and have to be subtracted in (II.3). Following [1] and the earlier
references [42, 43], we perform the necessary subtractions via an operator acting
directly on the integrand ZG of the α-parametric representation:

SR = Σϊi; T8=Π(-tF), (Π.8)
$ Fε%

where the sum is performed over all closed divergent forests, including the empty
one, and tF is the Taylor subtraction associated to the subgraph F. The
renormalized amplitude associated to G is then defined as:

JG(P) = I - - ϊ Π d*t exp ( - £ α,.) 9iZG(p, α). (II.9)
0 0 i = l \ ϊ = l /

For a precise definition of closed divergent subgraphs and forests, and Taylor
operators tF we refer to [1]; we recall that Taylor operators subtract once for a
"quadruped" and twice for a "biped," which is quadratically divergent; that a
forest is a set of subgraphs which do not overlap, i.e. they are two by two either
disjoint or satisfying an inclusion relation of one into the other; that the definition
of closed divergent forests is chosen so that all subgraphs in such a forest are
superficially divergent and "one-line irreducible" and that "tadpole graphs" do not
appear when one reduces one graph in such a forest by the forest. This notion of
"reduction" is explained in [1], but let us give again its definition.

For any 5 and F compatible with 5> i e. such that 3?u{^} is again a forest, we
define:

2I5(F) - (F'/F E g F C F no F7/ exists with F' C F" c F} , (II. 10)

A9(F)= U f"= U F7. (11.11)
" ' '
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Note that A%(F) may be empty or disconnected and generally does not belong to g,
except if there is exactly one element in 9%CF). Similarly we define B$(F), the
smallest subgraph in $ which strictly includes F. If there is no such subgraph we
put B%(F) = G. If F C F'9 the reduced graph F'/F is defined by reducing to a single
vertex in Ff every connected component of F. The reduction of a subgraph F
compatible with a forest g by this forest is defined as F/$ = F/A%(F).

In the rest of the paper the word "forest" will always mean "closed divergent
forest"; unless otherwise indicated it is assumed that forests called g, g', ..., are
forests of graphs called G, G', and "quadruped" means what is called "closed
quadruped" in [1],

71.5. Resummatίon of Perturbation Theory

In the study of individual Feynman amplitudes [1], one has to exhibit explicit
cancellations between the forests before integrating over α's in (II.9). In this paper
one has to resum infinite sequences of various pieces of Feynman amplitudes to
exhibit asymptotic freedom. Both cases can be unified under the abstract point of
view of "resummations of perturbation theory," which will be explained now.

Putting together (II.2), (Π.8), and (II. 9), any given Schwinger function appears
as a formal sum over a large space of "contributions." A contribution γ is a triplet
(G, δ,[α]), made of a graph G, a forest g of G, and a set of values
[α] = {αίs ϊ = 1 , . . . ,/} for the parameters of the internal lines of G. The value (or the
integrand) attached to such a contribution y is defined as:

p,α). (11.12)

The "sum" over contributions means a discrete summation on G and g, and a
continuous integration over α's with the measure dμ(oί) defined by (II.7).

Formally we write:

Sβ(p, flf) = δ( £ P, ) ί W(y)dv(y) , (11.13)
\β=ι /r

where Γ is the space of all contributions and dv is the appropriate measure.
We never expect absolute convergence of (11.13) and we need therefore a

"resummation prescription" to compute it.
Such a resummation prescription is a sequence of "slicings" of the space of all

contributions into fibers and base together with the prescription that one should
first compute the partial integrals over the fibers, then sum up over the base the
values obtained.

This can be formulated precisely in the language of projections (mappings φ
with φ2 = φ). A sequence φl9...9φm of projections from Γ into itself is called
compatible if Im^, the image oίφi9 is stable by φi + i9 hence φi°φi+i^φi = φi + i° φ{.
The resummed value of Se according to such a compatible sequence <p l s ..., φm9 is
defined as the following integral (provided it exists):

v9\ ί dv(γj J δ(φm(γm^)-γjdv(γm_1)
q Jlmφm lmφm- 1

ί δ(φ2(y1)-γ2)dv(y1)lδ(φί(γ)-7l)W(y)dv(γ). (11.14)
Imφi Γ



Planar 4-Dimensional Euclidean Field Theory 453

The first basic slicing we have to introduce is the projection S, called in [1] the
"classification of forests," which solves the renormalization problem, especially the
problem of "overlapping divergences" by exhibiting Iζ in (II.9) as a sum of
explicitly convergent integrals. Later in this paper we introduce two other
projections φ and tp, compatible with S, which allows us to exploit asymptotic
freedom in a very explicit way. Together with S they form a resummation
prescription in the sense above. The integral (11.14) can be unambiguously defined
and will be shown to be the Borel sum of the initial series (II.2).

II. 6. The Classification of Forests

This is our basic tool. Following [1, Sect. III.1], we group the subtraction forests
which appear in the definition (II.8) of the 9Ϊ operation into appropriate classes.
These classes depend on the region in α-space that one is considering, so that the
cancellations inside each class will make transparent the convergence over the
region corresponding to this class.

We introduce a slight improvement of the original definition of these classes in
[1]. Let us define the "2nd inf," in a finite set of at least two numbers as the element
of this set which is immediately greater than the smallest one in this set. Then we
replace the technical definition of the quantity y(F, g) in [1? (ΠI.l), p. 79, items f)
and g)] by the simpler definition:

y(F, S) = 2nd inf {j/σ(j) e E} . (11.15)

The attentive reader can verify that this new definition does not change anything in
any theorems or lemmas in [1], mainly because the technical way in which one
compares the quantities associated to different trees in [1, Sect. III.4] always uses
the "2nd inf of the indices of the external legs of a subgraph rather than the true
infimum.

Let (G, g, [α]) be a contribution. We define a projection

where S($) is the "skeleton forest" associated to g and defined in [I]3, and depends
on the value of [α] (in fact only on the Hepp's sector to which [α] belongs [1]). For
completeness we will sketch the definition of S, introducing useful notations. For
any forest g and F E g, one defines two basic parameters α(F, g) and α*(F, g) (the
reader might think of them as "α inside F" and "α outside F", respectively). One
has:

a(F,g) = sup α ί ? (11.16)
ieX(F,%)

where X(F, g) is defined precisely in [1], page 78; in fact X(F, ($) = F/& except
possibly when the presence of bipeds creates technical subtleties. Therefore oc(F, g)
is what is called xX(F,%) in [1] α*CF5g) is what is called uy(F s5) in [1], with the
modification (11.15) of y(F, S). Hence:

(11.17)

3 By an unfortunate coincidence the word "skeleton forest" was introduced in [1]; it has
nothing to do with the "skeleton expansion" considered in [8] or [9]
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where F(F, gf) is the set of external lines of F internal in BS(^(F). By convention
α*(G, g) = + oo. Notice that the modification (11.15) allows a unified treatment of
the cases "F biped" and "F quadruped."

As in [1], we define S(S) by:

S($) = {F e g/α*(F, g) ̂  α(F, g)} (Π.18)

The definition, being inductive, starts from the maximal elements of g. It is proved
in [1] that S is a projection, and that:

α(F, S) - α(f, S(g)) α*(F, S) = α*(F, S(g)) . (11.19)

For a skeleton forest g (i.e. S(g) = g) the structure of the fiber {^75(50 = g} is just
{S7S£ S'£ 5uθ(5)} f°Γ some α-depending forest £j(g). Calling D% % the domain
of all α's with S(g) = 5 and §(g) = § (it is a union of Hepp's sectors), the key
decomposition of Feynman amplitudes introduced in [1] is:

Jg=Σ ί dμ(u)T9 Π(l-ί f f)ZG. (Π.20)
$,£%,$ #e£

Every integral in (11.20) is now absolutely convergent and in contrast with (II.9),
can be bounded quite accurately [1].

We introduce also the point of view of "reduction vertices." In this paper we call
a "reduction vertex" of a contribution (G, g, [α]) a quadruped of S(g), namely an
element of the forest:

4}. (11.21)

Since by definition of the Taylor operator tF9 one has

ίFZG(p, α) = ZF(Q, αi9 i 6 F) - ZG/F(p, apj φ F) (11.22)

for any F quadruped, one should indeed imagine that when F e Q(S) the operator
ίF, which is not combined with anything in (11.20) cuts the graph G into the
disconnected pieces F and G/F, where F is replaced by a "reduction vertex" with 4
lines.

Finally we define, for any (ordinary) vertex v of G the parameter

α*(ϋ,g) = 2ndinfα f, (11.23)
ueE(v,&)

where E(v, 5) is the set of the lines connected to v which are internal in BS(^(v)9 the
smallest subgraph of S(g) which contains tλ Again one has

α*(t;,gr) = α*(ι;,S(gr)). (11.24)

When no confusion on the skeleton forest considered is possible, we write
simply αF, α|, α* instead of α(F, 5), α*(F, g), α*(t?, g).

III. The Main Steps of the Construction and Results

Our main theorem states that the planar expansion which forms the right-hand
side of (II.2) is Borel-summable as a power series in g; its Borel-sum can be taken
therefore as the rigorous definition of the left-hand side Se(p, g). We could obtain in
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fact more than the minimal hypothesis which we verify to apply the "Nevanlinna-
Sokal" theorem [21, 22] it is an easy exercise left to the reader to check that our
method gives Watson's theorem [20] in a sector centered around the positive real
axis and of opening angle 2π-ε for any ε>0, so that the Borel transform has no
singularities in the right half of the complex plane for the Borel-variable; this
domain of analyticity is similar to the one found in [10].

Theorem. The planar expansion (II.2), as a power series in the coupling constant g, is
Borel summable in the usual sense of [20, 22].

We would not like to obscure under technicalities the basic ideas used for the
construction which allow us to prove this result; they are in fact very natural.
Therefore we postpone to Appendices A-C the actual proof of the theorem and in
the rest of this section we will only describe these ideas and the main steps of this
construction; for an even simpler sketch of these steps we refer to [11].

The starting intuitive idea is that in order for the construction to work one has
to exploit asymptotic freedom; there should be an ultra-violet improvement after
the bare vertices have been replaced by the (Borel?) sum of the renormalized
4-point amplitudes, and this improvement should lead to convergence.

This is't Hooft's approach [9] in which the full 4-point function is taken as the
running coupling constant. Indeed it is known [1,8] that the sum of planar graphs
without divergent subgraphs is an absolutely convergent series. However one has
still to prove that the 4-point function behaves as indicated by the renormalization
group and that it is the sum of its perturbative series.

In [9], an inductive approach to a fixed point of a set of difference equations is
used. The construction is not very practical for computation and its relationship to
perturbation theory is somewhat involved in our opinion. Indeed to take the entire
4-point function as a running coupling constant is a "maximal" dressing
prescription; in the language of Sect. II.5, it corresponds to an infinite sequence of
projections, hence to a huge rearrangement of the initial perturbative series.

From this point of view, the rearrangement of perturbation theory used in this
paper is in contrast a "minimal" one, described by only two projections. Staying as
close as possible to perturbation theory, we exploit asymptotic freedom inside
Feynman amplitudes, without introducing at any stage any global object like the
4-point function. Each step of the construction is completely explicit; therefore our
prescription could be used directly for numerical computations. This is possible
because asymptotic freedom depends only upon the first coefficient of the β
function in the Callan-Symanzik equation. This coefficient governs the asymptotic
behavior of the nth order of perturbation theory, e.g. at large external momenta.
But this behavior, called the "leading-log" approximation, can also in principle be
computed by summing some pieces of the renormalized Feynman amplitudes with
n vertices, namely those exhibiting precisely this leading behavior. The only
trouble with this approach is that it seems hard to identify all these pieces and to
sum them exactly. In [24], we showed not only that this was possible but also that
it could be done easily after one has performed the splitting (11.20) of the Feynman
amplitudes, precisely into these pieces indexed by "skeleton forests" which solve
nicely the renormalization problem. This suggests strongly that this splitting is the
truly good way to look at amplitudes.
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Before to go further let us recall the intuitive idea which is at the core of the
splitting (11.20). A central problem which prevented for a long time perturbative
renormalization from being established on a mathematically sound basis is the
problem of "overlapping divergences." Indeed one wants to eliminate the
divergences in Feynman amplitudes in a way which is implemented by counter-
terms in the Lagrangian and therefore respects the basic properties of the theory.
One is led to the forest formula (II.9), since it was shown that this formula is
nothing but the compact solution of any renormalization which can be
implemented by such counter terms. The main mathematical problem has been
formulated clearly by several authors (see for instance [46, p. 305]): for com-
plicated renormalized amplitudes it is not clear at all that the integral (II.9) is
convergent, because when overlapping divergences are present it seems that some
necessary subtractions are missing in (II.9), namely the products (— tF) (— tF/)
when F and ¥' do overlap. The key idea is that one has to perform a Taylor
subtraction corresponding to a given subgraph only when one is in a "deep ultra-
violet region" for this subgraph, namely when in integration space one tries to
integrate the internal momenta of this subgraph truly up to infinity; in other
regions it is better not to perform explicitly the (1 — tF) subtraction corresponding
to F on the integrand, but to simply split into the sum of the operator 1 and the
operator —tF. If one systematizes this idea one is led to cut the initial region of
integration in the amplitudes according to which internal momenta are higher
than others, and to regroup the subtractions differently according to which region
one is in. In many rigorous works we know of on perturbative renormalization
which proves theorems valid to all orders, one finds some form or another of this
basic idea [45-50,43,1]. In its most systematic and convenient form one splits the
integral as completely as possible by ordering all momenta (in α-representation, all
the α's). We call "Hepp's sectors" the domains of integration obtained in this way.
The classification of forests in [1] is a correct systematization of how one can
regroup the subtractions; the "skeleton forests" in a given sector correspond to
subgraphs that one should not subtract explicitly in that sector, and conversely the
forests we denote by §(g) correspond to subgraphs that one is forced to subtract
explicitly [note the factors (— tF) for the first ones and (1 — tH) for the second ones in
(11.20)]. As a final remark, we think that a good rule to regroup the subtractions
has to be "local" according to the graph: to know whether a given subgraph in a
forest should be "skeleton" or not (which means unsubtracted or not) one has to
compare the momenta into this subgraph only to the momenta of near-by lines (in
our rule [1], the external lines of this subgraph).

We return now to the main problem of computing asymptotic freedom effects
directly in the amplitudes. At least since the work of Landau et al. [51-52], it is
known that the "leading-log" effects are due to a particular class of graphs, which
following them we call "parquet graphs"; they are all obtained by repeated
insertions of the same elementary smallest divergent graph G0 = XIX, in all
possible ways, at any vertex (see Appendix A for a more precise definition). Some
parquet graphs are shown in Fig. 1. The important point found in [24] is that
within these graphs only very particular pieces are responsible for leading-log
behavior, namely these pieces in the splitting (11.20) for which the skeleton forests g
are maximal among the forests of G; each reduced graph F/g is then isomorphic to
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~S> O
Fig. 1. Parquet graphs

G0. Fortunately the presence of the Taylor operators (-tF) for F e g is precisely
what allows an exact computation of these pieces together with their exact signs
[24], because the Taylor operators cut the complicated topological structure of the
integrand ZG into a simple factorized product. Not surprisingly, when the precise
combinatoric coefficients of every graph are taken into account the final outcome
of the computation gives an exact geometric power series in agreement with what
the Callan-Symanzik equation indicates if one retains only the first coefficient of
the β function [24].

The following generalization comes naturally to mind: one should do the same
kind of computations in every graph if one wants to exploit for every graph the
ultra-violet improvements of asymptotic freedom. This means that for every
amplitude, and even more precisely for every contribution (G, g, [α]), one should
resum a lot of contributions (G', g', [α"]), obtained from (G, g, [α]) by inserting at
any vertex of G an arbitrary parquet subgraph and by integrating over the regions
for which some maximal forest in these parquet subgraphs (called a "parquet
forest") is "skeleton"; in this way one can transform the original expansion (II.2)
into a "renormalization group improved" expansion of the same type, with the
bare vertices replaced by dressed ones which explicitly display ultraviolet
improvement. These dressed vertices depend of the α-parameters of their incoming
lines, which is no surprise because the condition for a subgraph to be "skeleton"
explicitly depends on the values of the parameters of the external lines of this
subgraph. The ultra-violet improvement gained at every vertex makes the
"dressed" planar expansion absolutely convergent. One understands in a transpa-
rent way why the whole process is a Borel summation rather than a simple one; it is
because the ratio of the geometric power series summed at each vertex in the
dressing process can be greater than 1 in some regions of integration in the α space.
Hence the "dressing operation" (and the whole construction) is not an absolutely
convergent summation. In particular it fails for the opposite sign of the coupling
constant: the geometric power series are not alternate any more, and their sum
display explicitly poles (the Feldman-Landau ghosts) over which integration is
impossible.

In the realization of this program, we met an unexpected difficulty. The
dressing process that we define uses only some regions of the parquet graphs.
Therefore the dressed expansion still contains regions of integration for arbitrarily
large parquet graphs. In contrast with every other contribution to the dressed
expansion, these terms are hard to bound by a convergent series. For them, we use
a rather inelegant and complicated mixture of arguments from the α- and
momentum representation (see Appendix B). There does not seem to be any
analog of this problem in 'tHooft's construction [9].
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The attentive reader could wonder whether it is possible to resum enormous
alternate pieces and get extremely small factors at each vertex, which certainly is
sufficient to make the dressed sum convergent in a rather trivial fashion. The
answer is that this is certainly possible. This remark is not deep and is only related
to the rather trivial fact that divergent series with terms of arbitrary signs can be
rearranged to give almost any answer one wants. The only thing which one cannot
do anymore if one makes too large partial resummations is to prove that the sum of
the overdressed series obtained in this way is the Borel sum of the initial expansion;
that is to show uniform bounds on the Taylor remainder of this sum
(Theorem III.3 below). Hence there are two constraints on the dressing process:
one should dress enough in order for the dressed expansion to converge
(Theorem IΠ.2) and not too much in order for the result to be related
unambiguously to the initial series (Theorem III.3). As a result of this paper, these
two constraints can be satisfied simultaneously in the planar case.

To summarize this discussion, we think that Theorem III.3 below is the
cornerstone which controls that there is no arbitrariness in our construction.

We decompose the theorem above in a sequence of three intermediate results.
The first step is the dressing process. Using the language of Sect. II.5, we define two
projections φ and ψ on the set Γ. They correspond respectively to the dressing of
ordinary vertices and of "reduction vertices." It is in fact sufficient to define ψ only
on the image of φ, called by definition the set of "intermediate contributions." The
image of ψ will be called the set of "fundamental contributions":

φ ψ
Γ — > intermediate contributions — > fundamental contributions..

The precise definition of φ and ψ is given in Appendix A. The following
theorem allows us to resum exactly the contributions in the "fiber" mapped by
φ o φ onto a given fundamental contribution:

Theorem IΠ.l (Dressing Process). For any fixed intermediate contribution
y = (G, 3, [α]), with the notations of (11.14), one has

y^ W(j) OD|(α) = /(y) ,
Γ

and for any fixed fundamental contribution y = (G, 5? M)>

f δ(ιp(f) - y)I(γ/)dv(γ/) =

The summations in (III.1) and (111.2) are absolutely convergent for g sufficiently
small, depending on the (^-parameters in y. The result of these summations, by
definition, is expressed by the two multiplicative factors OD|(α) and RD|(α) (for
"ordinary" and "reduction" dressing). Together they form the dressing factor D%(a)
of a fundamental contribution:

D|(α)ΞθDg(α) RD|(α).
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Moreover, OD and RD are factorized, respectively over the ordinary and the
"reduction" vertices of (G, Qί, [α]):

OD|(α)=Πod(α*),
i eG

where α*, αF, αf ami Q($) ̂ ^ &eew defined in Sect. 11.6. D

The proof of Theorem III. 1 is in Appendix A, together with an explicit
definition of the functions od and rd in (III.4) and (III. 5). Let us remark that by
(11.19) and (11.24):

*) = DS(8f)(α). (ΠL6)

For α small, od(α) behaves as [l+g constlLogαj]"1 (A.13)-(A.15). Hence it
realizes the logarithmic ultraviolet improvement characteristic of asymptotic
freedom. The "reduction" dressing factor RD is a technical complication,
somewhat related to the problem of exceptional momenta in momentum space,
which is unfortunately necessary to our proofs.

If some α's in 7 are smaller than exp ί -- ), the sums in (III.l) and (III.2)

may no longer converge absolutely, but the factor D|(α) still makes sense as the
unique analytic continuation in g of the corresponding factor defined at very small
g. Equations (III.l) and (III.2) hold in this case in this weaker sense.

Returning to the resummation program, one should sum now over all
fundamental contributions γ the dressed integrand J(y). However, even in the
dressed expansion one should perform cancellations between forests (i.e. renorm-
alize) before integrating over α's. For instance quadratic divergence (mass
renormalizations) are certainly not screened by the logarithmic improvement in
the dressing factor and have to be correctly subtracted. In fact, we tailor-made the
projections φ and ψ to be compatible with the classification of forests, so that the
dressed expansion can be renormalized as easily as the ordinary one. This is
obtained first by constructing dressing factors which depend only on S(5) (IΠ 6),
and second, by ensuring that no counterterm was used for dressing in regions
where in (11.20) it has to be combined in a renormalization. This is expressed
precisely by:

Lemma III.l. (G, g, M) is fundamental if and only if(G, S($), [α]) is fundamental.

Proof. It follows trivially from the definition of fundamental contributions in
Appendix A.

Let us call A% the domain of all α's such that (G, g, [α]) is fundamental. We
define also the domain Δ^ίξ) = D^^r\Δ^ where D% % is defined in Sect. Π.6. The
following theorem tells us in which precise way the dressed expansion is
renormalized and resummed.

Theorem III.2 (Convergence of the Dressed Expansion). For any graph G and
forests 5 and ξ> of G the integral

4'S(P)= ί dμ(Λ) Σ
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is absolutely convergent. Moreover the series

is absolutely convergent for any g complex with Reg > 0 and \g\ sufficiently small Its
sum, Se(p, g), is analytic in that domain. D

In (III.8) the sum is of course performed over all planar graphs G with e external
lines. Note that (III.8) is not a power series in g, because of the ^-dependence of D|,
hence of JG. We do not try to find the best possible domains of convergence, or its
dependence with the external momenta p; but our method gives uniform estimates
in p for the domain of analyticity in g, as expected from asymptotic freedom.

The proof of Theorem III.2 is in Appendix B. Note that by Lemma ΠI.l and by
(11.20), in (III. 7) and (III.8) every fundamental dressed contribution to Se has been
summed exactly once, completing the program of (11.14).

The crucial question is: is it legitimate to do the summation in this way, and is
the object Se we constructed really related to the planar expansion considered as a
power series in gΊ This question is answered by the next theorem.

Theorem III.3 (Borel Summability). There exists a constant K, such that for
Re#>0 and |#| <ε, ε fixed sufficiently small one has for any k:

an(G)

\Se(p, g)~ Σ - J&P)I ̂  kl(K\g\)k ,

where the sum in (III.9) is performed over all renormalized amplitudes with at most
k— 1 vertices and exactly e external lines.

This theorem is proved in Appendix C. At once, inequality (III.9) tells us that
the object S that we constructed is C°° at g = 0 that its Taylor series at g = 0 is
exactly the renormalized planar expansion, that this expansion is Borel summable,
and that S is its correct Borel sum ! [21, 22]. Therefore it answers fully the question
above. We remark that to establish (III.9) we need again the combinatoric
machinery developed in [1] to bound renormalized Feynman amplitudes (see
Appendix C).

IV. Open Problems

In this section we list some of the problems which might be attacked with our
methods. As we said in the introduction, we propose to analyze in detail the
"renormalon" singularities within the planar expansion, which is the N-+OO limit
of matrix models. In fact the first reference we know of which describes the large
factorial behavior of 4-dimensional renormalized Feynman amplitudes is [2],
where this behavior was discovered also in the context of an N-+CO limit but for a
ΛΓ-component vector model (for earlier investigations, in field theory, of non-
analytic behavior in the coupling constant due to 4-dimensional ultra-violet
problems, see [53, 54]). Further studies [3-6] realized the generality of the
phenomenon. It was argued in [4] that the large amplitudes create singularities
("renormalons") in the complex plane associated to the Borel transform of the
ordinary expansion.
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One should notice that one is still far from any proof of these heuristic
arguments. The only case where this "renormalon" conjecture can be proved is
precisely in the N-»oo limit of a vector model with N components. But these
models are rather trivial; in the case of a φ4 interaction they correspond only to the
summation of "chains of bubbles" and are explicitly solvable. In the models with
finite N there is a balance between the number of graphs which have an amplitude
of a given size and this size [1], so that it would require an extremely fine analysis to
prove that there is no conspiracy of a large number of small amplitudes to kill the
effects due to a small number of large amplitudes. Our proposal to study and prove
the conjectures about existence, position, structure etc.... of the renormalons in
planar expansion is an intermediate one; the corresponding problems are neither
trivial like in the N-^oo limit of vector models, nor extremely hard as in the full
expansion. They appear solvable because conspiracies of a large number of small
amplitudes cannot occur in the planar world which has only a few graphs.

Before we go on let us explain why we consider the detailed study of
renormalon singularities worth the trouble, even in the simplified planar case.

For a theory which is not asymptotically free, like the ordinary —gφ* theory,
the renormalons should stand on the positive real axis of the Borel plane,
preventing ordinary Borel summability. These singularities, which are clearly
related to the "Landau argument" [51, 52], are responsible for the (apparent?)
triviality of φ*. Therefore it should be possible to connect them to the rigorous
lattice inequalities found recently [25-27]. These inequalities fall short from
proving the triviality of any continuum limit of lattice theories with an ordinary φ%
action and nearest-neighbor interaction. What seems still to be lacking in the
approaches [25-27] is a control of the logarithmic factors which are responsible
for triviality in dimension 4. This control might be provided by an analog of the
resummation technique presented in this paper, adapted to the lattice situation. In
our opinion it might be the same problem as the proof of existence of ultraviolet
renormalons in the full expansion of φj.

Let us return to the planar case. The easiest result we think could be derived by
our methods is a rigorous proof of the divergence of the planar expansion, perhaps
in the style of the proof for φ\ [19]. This would be interesting because one would
like to be sure that the complicated Borel resummation constructed in this paper
has not been applied just to a common convergent series! Also since there is not a
large number of graphs in the theory, a proof of its divergence is already an
indication that "renormalons" do exist.

More generally, we are encouraged in the study of non-perturbative effects
induced by planar renormalons by recent studies. In the 1/JV expansion for vector
models, the existence, location and structure of the infrared and ultraviolet
renormalons has been found [56], together with the analytic continuation of the
modified Borel transform [55] around them. The prescription of summation in the
modified-Borel-transform plane are non-unique. This sheds new light on the
meaning of the operator product expansion [57, 58], and on the triviality problem
for φ4 [59]. We consider the planar world a good laboratory for a complete
version of these results.

Technically we believe also that it might be interesting to find an analog in
α-parametric space of the "quenched momenta" prescription for planar perturba-
tive expansions [35] in order to bring our methods closer to the ones developed in
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[32-35]. Because dimensional interpolation of amplitudes in α space is easy, this
might lead to a rigorous understanding of the ε expansion around d = 4. An
interesting problem would be in particular the study of the ultra-violet stable fixed
point near the origin in 4 + ε dimensional planar models. As previously noticed,
one has an easy construction below d = 4 [23], in contrast with the full non-planar
models which have not yet been defined rigorously in complex non-integer
dimension, even in super-renormalizable cases.

Let us emphasize the most promising aspect of this work: every estimate in this
paper applies without any change to non-planar amplitudes; only the numerical
value of the first coefficient of the β-function changes. Therefore from
Theorem IΠ.l and Lemma B.I one gets:

Theorem IV.l. For any unlabeled graph G, planar or not, the dressed amplitude
KG(p,#) is bounded, for Re#>0 and \g\<ε by:

W (IV.l)

for a fixed K(&\ with \imK(ε) = Q.
ε-» 0

A behavior like (IV.l) is characteristic of superrenormalizable theories
([60, 23]). Therefore our dressing process exhibits the deep similarity between
superrenormalizable and renormalizable asymptotically free theories. Only the
summation in Theorem III.2 fails in the non-planar case, because of the large
number of graphs involved.

We think that putting our resummation prescriptions and Theorem I V.I
together with the solution of superrenormalizable theories due to Glimm and Jaffe
(phase space expansion [60]), one should be able to construct any stable, massive
and asymptotically free renormalizable theory. Unfortunately there is no simple
theory of this kind in 4 dimensions.

Finally we mention as immediate by-products of this paper the Borel
summability of various approximations to massive AF theories, obtain by
retaining at most (const)" graphs of order n\ for instance the sum of amplitudes
with a fixed number of "handles" (higher terms in the 1/N expansion) or the
"parquet approximation" [52], in which one retains all parquet graphs, including
non-planar ones. This last case involves graphs with an unbounded number of
handles: therefore the corresponding result probably does not follow from [7-10].

Appendix A: The Dressing Process

We will define precisely the projections φ and φ introduced in Theorem III.l, solve
the combinatoric problem of performing exactly the sums in (III.l) and (III.2), and
give simple estimates for the dressing functions od and rd.

We recall the notion of a parquet graph and of parquet forests (called
"complete forests" in [24]).

Definition A.I. A parquet graph is a quadruped G such that there exists a forest g
in G with n(G) — 1 elements. Any such forest will be called a parquet forest of G.
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It is easy to check that if g is a parquet forest, F/g is isomorphic to G0 =
for every F G $. Therefore one can generate all the parquet graphs at order n by
replacing any arbitrary vertex in any parquet graph of order n— 1 by G0, in all
possible ways. If G is a parquet graph and g a parquet forest of G, any F/g has
exactly two internal lines, as G0 itself, and if Fφ G, there are exactly two external
lines of F which are internal in B%(F) and they are all the lines of B%(F). We define
also in the obvious way the notions of parquet subgraphs and subforests.

Definition A.2. A contribution (G, g, [α]) is "intermediate" if and only if there is no
F in S(5) isomorphic to G0.

Remark that if F in g is isomorphic to G0 the condition F e S(g) is just:

). (A.I)
ieF

The following equivalent definition is useful:

Proposition A.I. A contribution (G, g, [α]) is intermediate if and only if there does
not exist any parquet subgraph G' in G with a parquet forest g' of g such that
S'ί SO)- In other words, there does not exist any parquet subgraph G' in G with a
forest J5' of G' which is a subforest of g, contains G7, is such that any F/%' is
isomorphic to G0 z/Fe^? and verifies:

-for

FΦG', sup α^ sup α,, (A.2)
ieF/3r'

- and

sup α^α*(G',g). (A.3)
ieG'/r

Indeed if B%'(F)/ff is isomorphic to G0, it is easy to verify that

α*(F,S') = sup α,.
i6*8r(F)/8f'

To define φ, consider a contribution (G', g', [α"]). One identifies the maximal
parquet subgraphs G\ , . . . , G'k and parquet subforests gί , . . ., $'k of G\ , . . . , G'k which
belong to g' and satisfy (A.2) and (A.3). The existence of such a maximal family
follows from the requirement g C $', and the fact that gx is a forest. We define φ by :

φ[(G', a-', [«!)] = (G, g, [α]) , G = G' I U G'j ,

/ ^ Ί
'/u G; .

/ j=ι J

The notation in (A.4) means that g is the forest of G obtained from gx in the
fe

natural way; one suppresses the subgraphs in (J gj and the other subgraphs of g'
f c J = l

are reduced by U G}. [α] is obtained from [α7] by simply deleting the parameters
J=1 k

of the internal lines which are reduced, hence belong to U Gj (see Fig. 2).
7=1
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G1

Fig. 2. The mapping φ on graphs

It is easy but very important to check that φ is a projection, namely that φ2 = φ.
We come now to the actual proof of (III.l). Let us consider a contribution

(G', ft', |X]) for which <p[(G', 5', [α7, α])] = (G, 5, [α]). The vertices of G, ι> l 9 . . . , t;B

are the reduction vertices of corresponding parquet subgraphs G'1?..., G^ in G',
similar to the subgraphs G'1?..., Gf

k considered in (A.4) except that some of them
(possibly all of them if (G', g', [α/]) = (G, 5, [α])...) can be simply a single vertex.
Similarly there are (possibly empty) subforests Si,..., 3£ of 5', g^ being a parquet
forest of G'j.

Let fc(/) be the number (^ 1) of internal vertices of GJ. We number the elements
of gj as Fj,..., Fkj(j) ~1 = Gp in a way which is compatible with the partial ordering
of $'j induced by inclusion; hence one has

FJCFJ => p<β. (A.5)

For p = 1,..., k(j) - 2 let us call b(p) the index of B^(Fjf). We call αj the 2nd inf
(or the sup ...) of the parameters of the two lines of Ff/ffip which is isomorphic to
G0; the parameter of its other line will be called βjαj; we have of course 0^ βjrg 1.
Finally we put aj = a*(G/

p%
/) = tt*(vp$) and nf = n(Gf). Note that αJ = α(FJ,gx)

The left-hand side of (III.l) can be written as:

f j n > n Ck(j) — 1

G^ fαXPXc^ooU W>-2*\&{jll

(A.6)
Γfcϋ)-ι Ί

. Π exp [ - ocj(l + J8J)]
L P = 1 J

The factor 2 in front of αj is present because there are two values of the parameters
of the internal lines of FJ corresponding to the same set of values for αjf, /?J. To
evaluate the complicated integral (A.6) let us remark that, iterating (11.22), the TΎ

n k(j)-l _ J

operator factorizes the integrand ZG> into ZG(p, αt ) Π Π [αj(l+βj)] 2 (we

7=1 p=l

used the value of C/Go = α1 + α2). The integrals over the parameters αj and /?J
factorize in (A.6) and they can be done almost explicitly. Let us define:

00 /7/y 1

ξ(x)=ί -ίexp[-α(l + jS)](l + ̂ )-22^. (A.7)
x α o
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It is not hard to verify that, for any value of j in (A.6):

k(j)-l

ί Π
<oo,p=l,. . . , fc( j)-2 p=l

κ(α;)]*«-', (A.8)

where C(g}) is the number of possible orderings of ty which are compatible with
inclusion in the sense of (A. 5). Indeed for every ordering σ of %'p the integral

fc(j)-l

ί Π
1)^...^?*1)^ p = l

obviously does not depend on σ; therefore it is equal to

Now we cut the domain of integration in (A.8) into pieces associated to complete
orderings of the parameters αj. The number of such pieces compatible with the
constraints in (A. 8) is precisely C(5})? and the integration over any of these pieces
gives (A.9), hence (A. 10). This achieves the proof of (A. 8).

The proof of (III. 1) is now reduced to a purely combinatoric problem albeit a
non-trivial one. The following key lemma controls the combinatoric coefficients
(symmetry factors) associated to the dressing contributions; it is the analog of
Lemma A.9 in [24], but we have to be careful about the restriction to planar
graphs which change the counting problem.

Lemma A.2. Let (G, 5? M) be an intermediate contribution. We want to count the
number of triplets (G', g', σ), where as before G' is obtained from G by inserting G'3 at
the vertex Vj of G, $' is the union of the fy and σ = (σ,-), j = 1 , . . . , n is a collection of
orderings of ̂  which in each fy are compatible with inclusion. We claim this number
is nothing but

where c = 8. (In the non-planar case the value of c would be 36 J

Proof. We follow the proof of Eq. (A.27) in [24], except for one important change,
the cyclic ordering of the lines around a vertex. To count Wick contractions it is
convenient to define the mapping φ at the level of "ordered contributions" which
will be defined below. They are "sub-contributions" in the sense that in general a
contribution is a sum of several "ordered contributions"; accordingly the
formulation of Sect. II. 5 should not be taken too literally4.

4 We thank E. Speer for pointing out this counting subtlety to us
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Let G'be a labeled graph. The half lines attached to a vertex i are called iί9 i2, i3,
z'4, following the natural cyclic ordering. An "ordered contribution" corresponds to
the choice of an arbitrary order for the vertices of each contracted G} in G'. Hence
there are Π k(j) I ordered contributions associated to a given contribution, each

with a weight [Π &(/)'] ~ 1 To specify φ, we construct G from G' by the following
algorithm. One considers the minimal subgraph in an g^ according to the order σ,..
It is an elementary G0 subgraph, with vertices numbered i and). We contract it to a
reduction vertex named i or j according to which of them is minimal in the
arbitrary order chosen. Then we delete the other number and rename the vertices
of G7 from 1 to ri— 1, respecting the order. There is also a simple rule of how to
attribute the half lines of the reduction vertex to the half lines external to G0,
respecting cyclic ordering (e.g. keep fixed the two half lines, say ΐ2 and i3 which
contract outside G0 if j is lower thany in the arbitrary order chosen). Repeating this
algorithm, a unique (G, g) is obtained from an ordered (G', g', σ) as in [24].

There remains only to count how many different ordered (G', $', σ) are mapped
on (G, g) by φ, hence by induction, count the possibilities for the reverse algorithm.
With a factor ^fe(/) [&(/')— 1]» one chooses a pair of numbers between 1 and k(j)\
the lowest tells us where to insert G0 in Gj and the highest tells us which order
should be given to the second (created) vertex of G0 in the "arbitrary order" relative
to GJ. Finally with a factor ri we choose which number one should give to the
created vertex, and there are 16 = 4 x 4 ways of numbering the half lines of G0

according to the reverse contraction process chosen above. Therefore there are by

induction — - Π {&(/') ! (£(/) ~ 1) ' c/c(j) " l } (with c = 8) ordered contributions mapped
n\ j

by φ on (G, g). Taking into account the weight Π Wy)Π 1 *n fr°nt °f each °f
j

them, one gets Lemma A.2. D

n'!
To prove (III.l), one puts together (11.12), (A.6), (A.8), and (A.I 1). The factor —

1 1 n'
in (A.I 1) takes into account the corresponding factors and . The factor

n(G)!

Π [&(/) — 1] ! in (A.ll) cancels the corresponding one in (A.8), the factor C(δ/) in
7=1

(A. 8) is taken into account by the counting of the sectors σ in the triplets considered
in Lemma A.I, and it remains only to verify that

Π Σ [-S c W0''-1 (A.12)
j = l (k(j)=l }

has the required properties for the factor OD| in Theorem III.l. But this is obvious
since for g sufficiently small, depending on [α], g - c - £(αy) is smaller than 1 and the

n

series in (A. 12) converge absolutely to Π °d(α/), with

Note that (A. 13) always makes sense if g is not a negative real number, even when
(A. 12) is no more absolutely convergent. This is due to the crucial alternating signs



Planar 4- Dimensional Euclidean Field Theory 467

fc(j)-ι
in (A. 12), which can be traced back to the minus signs in Π ( ~ tpp) in (A.6), and

P=l j

further back to the asymptotic freedom of the model.
The factors od(α*) at each "ordinary" vertex v go to zero when the α's go to 0

(the ultra-violet region), because (A.7) contains a logarithmically divergent
integral. This ultra-violet improvement of the dressed integrand in the right-hand
side of (III. 1) is important for the convergence theorems of the next appendix. The
following elementary estimates will be used:

Lemma A.2. There exists a positive constant a such that:

0^cξ(x)^a for x ^ l , (A. 14)

c\logx\-a^cξ(x)^c\\ogx\ + a for 0<x^l . (A. 15)

Proof. (A. 14) is trivial. For (A. 15), one remarks that }— — - = 1 and that for
gl, ||logx|-ξ(x)| is bounded by

1 OC 0 OC 0

Now let us define precisely the projection ψ.

Definition A.3. A contribution (G, g, [α]) is "fundamental" if and only if it is
intermediate and, for any FeQ(g) with F/Q(g) isomorphic to G0, Sl̂ ί̂F),
defined by (11.10) has exactly two elements.

Remark that in the statement above, F/Q(g) cannot have two ordinary vertices
since (G, g, [α]) is intermediate. Therefore it could have 1 or 2 reduction vertices
(respectively, 5lβ(5)(F) could have 1 or 2 elements). Definition A.3 means that for a
fundamental contribution the first case is excluded.

One has the following analog of Proposition A.I:

Proposition A.2. An intermediate contribution (G, 5> M) is fundamental if and only
if there does not exist any subforest 3'gQ(gί), totally ordered by inclusion, with at
least two elements, such that if F'Q is its minimal element, F/g' is isomorphic to G0/or

In other words there does not exist g'£g, such that ^={FQ, ...,F'k}9 k^ 1,
CFΊ ... CFi, FόeQ(g), Fj/FJ-i is isomorphic to G0 for;= 1, . . . , fc and:

α*(F^,5)^ sup α^...^ sup α^ ... ̂  sup α^α(F'0, g).
ieFfc/Ffc- i i e F ' j I F ' j - i ieFi/F6

(A.16)

Proof. Again we play with the fact that here, for 1 gj^/c,

α(FJ,ar) = α*(FJ_1,gf)= sup α,.

ιp is a projection from the set of intermediate contributions onto the
fundamental ones. Let (G7, gx, [α"]) be an intermediate contribution. We identify
the maximal subforests 51 > >5fe of Q(g) which verify all the conditions of
Proposition A.2. To obtain φ[(G', g", [α"])] = (G, g, [α]), we reduce every F/gί9 for
F e 5i? to a single reduction vertex, except the minimal subgraphs Fj, . . ., FQ, which
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G1

Fig. 3. The mapping ψ on graphs

Fig. 4. The mapping ψoφ acting on

•
Θ

F contracted by ψ ° φ

are kept unchanged. Like for φ, the forest g and the set [α] are obtained from g'
and [α7] by suppressing the reduced subgraphs and their internal α-parameters.
This is sketched in Fig. 3. In Fig. 4, the projection ψ°φis sketched from the point
of view of forests with their natural partial ordering, the inclusion. Maximal
elements are on top of the figure, and connecting lines represent inclusion
relations. The subgraphs F in &(g) with F/Q(g) isomorphic to G0 are circled. The
projection \p ° φ reduces the maximal blocks of circled points at the bottom of the
forest (φ-reduction) plus all maximal linear chains of circled elements anywhere in
the forest (φ-reduction), as shown in Fig. 4.

It is left to the reader to check that in the reduction described above there
cannot appear in (G, g, [α]) new subgraphs F e g with F/G(g) isomorphic
to GO and having 0 or 1 reduction vertex.

Now to prove (III.2) we follow the proof of (III.l). Let us consider an
intermediate (G/,S/,[α/]) with φ[(G/,δ/,[α/])]=(G,gf,[α]). Every quadruped
F<jJ=l, ...,s of Q(J5) is the minimal element of a totally ordered subforest of
SΓj 3j = {-py C ... CFkj(j}}, which satisfy the conditions of Proposition A.2, except
that fe(/) could be now 0. For l^p^k(j), we call αj the supremum of the
α-parameters of FJ/FJT 1, and αjβj the parameter of the other line ofFϊ/F?'1. We
define also α;ΞΞα(F°,5) and uf = a*(F?,<8) = a*(Fk

j

(j\$/)- Putting n(G) = n and
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= n', the integration in (III.2) can be written as:

Σ ί OD|V)
'

k(j)

Π [2α?dα?d$ exp [ - αf(l + j8f)]] T9. TgZG,(p, «') . (A. 17)
7=1 (j>=l

Like in (A.6) the T%,. operators cut the integrand ZG, into

P k(j)

zGΠ Π

Moreover every FJ/g' has exactly one ordinary vertex and one reduction vertex.
Therefore, using (A. 13):

«r ΌD&O-ODKα) Π JΠ [1+g.^(ap] (A.18)

Let us define, for 0 ̂  x ̂  y, the function

(A 19)

It is easy to perform the integration in (A. 17), obtaining:

9" .Π [- ί(«;, α,-)]"0'' OD|(α)Γ5ZG(p, α) . (A.20)

The following combinatoric lemma allows us to perform exactly the sum-
mation of all intermediate contributions which dress a fundamental one.

Lemma A.3. Let (G, g, [α]) be a fundamental contribution with G(g) = {F?, . . ., F?}.
77ze number of pairs (G\ g7) obtained from G and g fey ίte insertion of the forests
5i3 ..., 5s considered in Proposition (A.2) zs

Proo/. We follow Lemma A.I. There are — -1 ways of ordering the ri vertices of G'

which respect the relative ordering of the vertices of G. One proves (A.21) by
induction, in the same way as Lemma A.I. Instead of choosing a pair of indices
/ /^Λ _ i \
ί hence the factor k(j) -- - — in the proof of Lemma A.I J one chooses only the

index of the ordinary vertex of G0; then there is a factor 16 to insert this G0,
respecting all cyclic orderings. This proves (A.21) because 16 = 2 x 8 = 2c. The
reader is urged to verify this numerical value since the factors 2feω in (A.21) will be
important for the rest of the paper, Lemma A.4 and Appendix B below. This
factor 2 corresponds intuitively to the breaking of the symmetry of G0 by imposing
the existence of one particular vertex, the reduction vertex.
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Putting together (A. 19) and Lemma A.3 achieves the proof of (III.2), hence of
Theorem (III. 1), with:

D|(α) = OD|(α) - Π exp [ - 2c f (α*, α,)] , (A.22)
j=ι

which has the desired structure (ΠI.3)-(IIL5) if one defines

rd(x,jO = exp[-2c ί(y,x)]. (A.23)

The condition α*(F?, g) ̂  α(F?, 5), or α? ̂  α,-, which is required for (A.22) and
(A.23) to make sense [see (A. 19)], is precisely F?eQ(g). Again the formalism of
"skeleton forests" developed in [1] appears to be an adequate tool.

What has been gained in this second dressing operation is crucial. First, in
contrast with OD|(α), the dressing factors Z)|(α) decrease when the α-parameters
attached to reduction vertices of Q(S) tend to 0, allowing us to transport
convergence from inside graphs in Q(5) to the outside. Second, the mapping ψ
"trims" some of the remaining parquet structures in intermediate contributions
(see the remark after Lemma B.2).

The following elementary estimates will be used in the next appendix and show
how D|(α) decreases when the ratios ot*/aF become small.

Lemma A.4. There exists a positive constant b such that for Re#>0, \g\<ε and ε
small enough, one has:

for l^x^y |exp - 2c ζ(x, y)\ £ 1 , (A.24)

/or 0<xaia,|exp-2c.ax.y ) |a
 ί ' 2 . (A.25)

Proof. Remark that |exp - 2cζ\ ̂  [exp - c Ref ]2. By (A. 14), cξ(a) ^ 0 if α ̂  1, hence

Re- - g

 r, N >0 for Reα>0. This implies ReCO,y)>0 for l^x^^, hence

(A.27)

(A.24).
Putting λ = 1/g c, (A.25) is implied by:

where K is a constant (independent of x and of λ\ provided Re/I >0 and \λ\ < .
ε c

(i+/?)2 =

of λ\ provided Re/I>0 a

Indeed (A.25) follows from (A.27) with b = εxp(2Kc). We write log ' , ,
L W J

|logx| fa
= J -— with ί = |logx|, we subtract this from (A.27), which becomes a

o U + ί
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consequence of the stronger assertion:
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J dt Re|
'-<) λ + t)

Re|
"μi+ί

f f-g~ *(!+/?) ^dp

I Π - L / Γ(1
L

But

dα—L_ίπ r-"1+^ 2d/? <g ΪA28Ϊ
TμϊTϋo^i[1"e ](ΓTF- ( }

x α
J /Ί _L_ R\z — 1 i A?w, , - \ ^ ~ " ~ P / °o ^ ' P

is a bounded integral. Moreover one has, for some Λ-independent K':

Indeed, using Re^
v

^ M A<-—and
~ \11\

a

Choosing ε<

00ίdt

-—, using (A. 15) and Rel>0 gives

^α, (A. 15), it suffices to show:

21

(A.29)

(A.30)

and μ + ί| ̂  , and the left-hand side of (A.30) is bounded by J
^ o

using the condition ε< - - => 2a<\λ\.
2c - a

dt ̂  8,

This achieves the proof of (A.28), hence of (A.25). The proof of (A.26) is similar.

Appendix B: Convergence of the Dressed Expansion

In this appendix we prove Theorem III.2 which states that the sum over dressed
fundamental contributions performed in a well defined way is an absolutely
convergent one. Note that this "sum" includes integrations over α-parameters.

For g complex with Re#>0, \g\<ε, we have

If l fCl+β-c-ί ίαH^l^inffeCc-^α)]- 1 } . (B.I)

We give our convergence proof only for g real and positive, g < ε. The extension
of the arguments to g complex with Re#>0 and \g\<ε is easy, since the bounds
(B.I) and (A.24HA.26), which are uniform in this domain, are the only ones we use.
The convergence being uniform, the analyticity in g of the sum Se(p, g) is an easy
consequence of the analyticity in g of the factors D|(α).
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We do not need to count Wick contractions any more, therefore we return to
unlabeled graphs. Let K|'*(p) = n! JP(p). From (III.7) and (III.2), one has

), (B.2)

(B.3)

We say that K%& is "a fundamental piece" of the dressed expansion if Δ% ̂ Φ0,
which will be now assumed. Theorem (III.2) follows from

Lemma B.I. There exists K(&) with limK(ε) = 0, such that for 0<g<ε:
ε-*0

rG>. (B.4)

Proof of Theorem I II. 2. Assuming Lemma B.I, one gets rid of the factor n(G)\ in
(11.12) and performs the sum in (III.8) over unlabeled graphs with Jg * replaced by
K|'5. The number of planar graphs (unlabeled) at order n is bounded by (const)"
[39-40], and the number of closed divergent forests in a graph with n vertices is
bounded by 8" [1, Lemma A.2], Therefore we can fix β small enough so that the
series in (III.8) is dominated uniformly by a convergent geometric series in
n(G). D

Remark. (B.4), which is the key estimate of this paper will be proved now for general
graphs, planar or not (see the end of Sect. IV).

Proof of Lemma B.I. 1. Case with No Bίdeps. Bideps create technicalities; therefore
we prove first Lemma B.I for a graph G without bipeds, hence one has always S(g)
= Q(5) The general case is considered at the end of the appendix. From now on, a
fundamental piece K%f* is fixed.

We write |g| for the number of elements in the forest g . By [1, Lemma C.I],

l8ruS| = |S| + |S|<n(G). (B.5)

Our main problem is to evaluate the integral (B.2) when G contains large parquet
pieces, so that |gu§|~n(G) = n. In this case, we cannot use only the logarithmic
factors in D| to bound the UV integrations, without performing any (1— tH)
renormalization in (B.2). Indeed this would eat one logarithm, hence by (B.I) one
factor g per divergent integration. The total number of these integrations, IS^θl
being close to n, one would not have enough remaining #'s to ensure the decrease of
K(ε) in (B.4) as ε->0. On the other hand if one performs h subtractions (1 — tH) in
(B.2) with h large (h/n bounded below by η > 0 for instance), a disastrous h ! appears
in the α-representation [1, Lemma III.4] which we do not know how to eliminate.
Our solution combines renormalization of carefully chosen subgraphs H and use
of the logarithmic factors in D| for the others. There exists indeed a mixed α- and
momentum representation (B.I 3) which does not contain factorial terms for
disjoint renormalized subgraphs with a bounded number of vertices. Fixing this
number to be large, one can bound the integrations over the remaining divergent
subgraphs, which are then very large, by using the "accumulated" logarithms in
Dl and get (B.4).
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The whole method works because in contrast with - , — is bounded away
n n

from 1:

Lemma B.2.

Iδl^ (B.6)

Proof. Let ft be the subforest of g made of these F e $ which verify F/g isomorphic

to G0. For any such FeΛ, 9Iδ(F) = 2 by Definition A. 3. This implies |ft|^^γ-,

which implies (B.6) by an argument similar to [1, Lemma C.I].

Remark. There is no analog of Lemma B.2 for intermediate contributions. Here
again the necessity of the second dressing ψ appears.

Let q be an integer which will be fixed later to a large value independent of G, 5>
§, and n. We define 3 and 3 by:

(B.7)

(B.8)

and £ = gu3. One has

Kg.* = Σ KP'*, (B.9)

Let us define also 3m = {#e3,# + G/£5u5(#)egu{G}}. 3m consists of the
maximal elements of 3 in the various F e gu{G}. For F! e 3m and F2 e 3m, one has
F1/Λ = F1/gf and J^/ft^Tyg, and f t/g and F2/5 are disjoint. This property
allows us to write representation (B.I 3) below.

Furthermore we define for ffe3m, $(H) = {F e g, with B^[H](F) = H}, the
forest of the "reduction vertices" of #, and

= H}u {H} ,

which is a subforest of 3 by (B.7) and (B.8). One has 3- IJ
tfe3w

Finally for F e g we define:

o αF^αβfl(F), (B.ll)

Remark that ^cg , 3^5, 5^31=0, and £ = ̂
We will use the following mixed representation:

Lemma B.3.

... Π ί Π δ V Σ p Λ Π e-^d^λ, (B.13)
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where in (B.I 3) there is a ^-momentum pz for each internal line of
F e Λu{G}; a momentum conservation law δ4 ί X pΛ at each vertex v o

and ZHI% is defined by: \l~*v /

ZH®= Π (1-M^Wα ptf).

In (B.14) ίfe (^-parameters of the internal lines ofH/$ are called α', αnd pH is ί/ie
set of the 4 external momenta o/H/g, /zence ίfte momenta incident to the "reduction
vertex" corresponding to H in (B.I 3).

Proof. Lemma B.3 is a straightforward consequence of the way the renormaliz-
ation acts in momentum space [47], and of the equivalence of the momentum and
α-renormalization ([42, 43]).

Now we want to apply (A. 14) and (A. 15) and (A.24)-(A.26). We cut the domain
of α-integrations into at most 2/(G) ̂  4" pieces, according to which α's are smaller
than 1. Actually the integration in the infra-red regions 1 ̂  α < oo are easier, and we
will consider only the most difficult region where all α's lie between 0 and 1 (see,
however, [61] for a correct treatment of infra-red integrations according to the
method of [1]).

Applying (A. 15) and (A.26) one gets, for ε< -:

a)<D^(a}= Π π)^(«

where A^B means A^KnB for a fixed constant K.

We want to integrate first in (B.I 3) over the internal α'-parameters of H/% for
any H e 3W. From now on, we call α the other parameters, and zl(α) the domain of
all αx with [α', α] e A% ̂ .

Using the definitions of Sect. II.6, one shows easily that for any ordinary vertex
v of G, α* ̂  aBsi(Όy Also for any F e g, α| ̂  αβ£(F).

Therefore, using (B.11)-(B.12) and (B.15):

Π Γ 1 +^' c ' |lθgα^ T, ^Π LJ +β . c . |logαjw, J ,

where we note B(v) and B(F) the subgraphs 5£(ι;) and BQ(F).
The important remark is that since 3 £ §, E| depends only on the parameters α

and no more on any αx. Therefore we can integrate in (B.I 3) over the α' parameters,
using the following crude bound:

Lemma B.4.

a'ezl(a) v=l

4

where |pnl = l+4 Σ (Pk)2 ϊs defined as in [1], £^f. (II.6), anrf K is a numerical
i=ί

constant.
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Proof. It is similar to the proof of Theorem 1 in [1], but uses the improved version
of [1, Lemma III.4] introduced in [61] and the following comments. Since α' e zl(α)
we have αH, <; α§ for any H' e ξ>(H). Therefore the left-hand side of (B.17) is just a
piece of the renormalized amplitude /g/5 according to the splitting (11.20) which
was used in [1], with an overall infrared cutoff α£ on the parameters α of ff/g.
Therefore it can be estimated by a straightforward use of [1, Lemma III.4] and of
[61]. |£(#)| will be the analog of what is called /(gu§) in [1] and [61]. (In our
case the analog of s in [1, Lemma IIL4], is just 1, and v is the analog of what is
called v in [61].) One gets, after integration on every Hepp's variable except one,
the bound:

α'eJ(α)

*

(\ξ>(H)\-v)\\pH\vJβ"-1e-ι>dβ,

where β is the analog of what is called β, in [1]. Using J β" le ^^[αg]" proves

(B.17).
Using (B.16) and (B.17) we get from (B.13), (B.7) and the fact that

ίί aπ ^p^^β^ ̂ /ΐL ^4 (,.?,, PίkJEL e" p'}' (B'18)

where Δ is the domain of all α's which respect the collection of inequalities defining

Now we can get rid of the momentum representation, which was only
technically useful in displaying the factorization (B.I3) over disjoint subgraphs of
3W without paying any factorial factor.

Let us consider H e 3m, and let us order the parameters of its external lines as
4

#ι ̂  α2 =
 αs = α4 We have α£ = α2 By momentum conservation, (p#)2 ̂  3 Σ (p#)2.

ί=2

Therefore:
4 4

~ ί = 2 "~ ί = 2

which implies:

,$ 4 f 4 Λ Γ π -«'(pfa2l * ^< *(γ Λπί"^ ί p" ) 2l\£**)l.2e I P "J^πlPH <*Kq (i=^H)^[_e +^

for some positive £(#). Let K'(q) = q!K(q). We make the change of variables
α->α/4 (since a given line could be incident to two different graphs of 3m). Using
(B.I8) and (B.20) we get:

Lemma B.5.

\K% &' Λ(p)| ̂  gn J dμ(oί) [K'(qy] |3ml£|(α)Z§/3m(p, α), (B.21)
Δ

^G/3m(P5α)- Π ZF/^u^α). (B.22)
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Proof. The domain A is defined by a collection of inequalities between α's and is
therefore invariant by α-»α/4. We have

ψ-«>d^4l'ψ-^ <£ ψτΛi

where /' = X /(F/3muft)^2n. Using (B.20) one performs the momentum
Feflu{G}

integration and reconstructs Z§/3m(p,α), using the obvious bound
for g small enough, and

The important gain from (B.2) to (B.21) is that the renormalized divergent
graphs in (B.21) are in 3 instead of §, hence have at least q + 1 generalized vertices,
and the corresponding logarithms have been stored into £| without paying any
factorial factor.

To simplify further, we use:

Zξ/3m(9, α) ϊ Z*/3m(0, α) ̂  Zg/3m(0, α) = [l/g/3m(α)] ~ 2 . (B.23)

The basic object we have to consider is the set G/3m made of Γ lines which is the
disjoint collection of the subgraphs F/3mu£, Fe£u{G} together with their
partial ordering due to inclusion relations, which defines B(F) for any F e £. Let us
call nF, /F the number of vertices and lines of F/3mu£ which will be noted F for
short when no ambiguity is possible.

Let us define A%ίtX as the subdomain of A which corresponds to a fixed 5ι in
(B.ll), 3̂  g 5? and to a fiχed set Z of lines with parameters αf, F e fiu{G}. Hence
|X| = |fiu{G}|. We will bound uniformly (B.I 8), where the integration is restricted
to A9l x and prove therefore Lemma B.I, since there is at most 8" 2Γ^ 1 choices
for (&,*).

For any Fe£u{G}, we call (5F the set of Hepp's sectors of F/3wu£ which
belong to A%ίfX. Let us recall [1] that a Hepp-sector associated to a permutation σF

is a domain in α-space defined by:

. (B.24)

The Hepp variables are defined by:

(B.25)
k e FJCTF

where the subgraph FfF is as in [1], the subset of F/3mu£ made of the lines
σ(l), ...,σ(z), and the infra-red truncation ασ(/F) = αF rg 1 was assumed above for
simplicity.

From (B.21) and the arguments above, we obtain:

|Kp *(p)|!supΓL5l>jr Π M£ J, (B.26)
8?ι,X|_ Fefiu{G} J

1 1 Γ f a Ί

J ί /[X'(ί)]13'"1 Π -̂  £K[a
0 0 LFeβ^{G) aF J

if

if F^^l

σe(5F 0 0

), (B.27)

(B.28)
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where ω(Ff ) is defined in Sect. (II.3) and we used dμ(θί) ^ Π dαf. Indeed it is shown
ί

in [1], that by considering the dominant tree in each sector, the factor

Uβf^'^βi bounds l72(α;)Πdα,. in each given hσ.
i

Let us recall that ω(C)^e(C) for any superficially convergent connected
graph C (Sect. II.3). Remark that if fYΦF, hence ίφ/F, Ff has no divergent
connected part (otherwise they would belong to §, hence to £ by definition of §
and of the compatibility condition σ e (5F, which means that the collection of
inequalities defining hσ is compatible with the collection of inequalities defining
Δ%^. Therefore

M§,z£ Σ Π ̂  (B.29)
σ e ©F i Φ 1F €ι .

Now it is proved in [1, Appendix B] that (B.29) implies M%ltX 1. Since Σ nF ̂
Lemma B.I will be the consequence of only one further lemma.

Lemma B.6.

ISI

(B.30)

Proof. Let us make the change of variables yF = g-c |logαF. For F e 5i, we have

^ 1, hence

3/2

Therefore, using (B.16):

«

oo oo i SF

,.*= ί-ί Π ^ T , (B.32)

sF = * {ϋ 6 G/B(ι;) - F} + 3/2 * {F e %,/B(F') = F}- 3/2χδl(F) , (B.33)

where we introduce the characteristic function χ%i defined by %δlCF) = 1 if F e gl5

χ5l(F) = 0 if Fφ^1; χ5l and χ3 are defined in a similar way.
For any F minimal in £u{G}, if Feg, Jf7 is not isomorphic to G0 (by

Definition (A.2), hence Φ {v e G/B(υ) = F} ^ 3. This implies, using definition (B.8)
of 3> that for any F minimal in £u{G}:

l(F) + 3χ3l(F) + (β + 1)*3(F) . (B.34)
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In (B.32), we integrate over yFo, for F0 minimal in £u{G}, using the bound (B.34).
Therefore:

yB(F0) dγ QO fy

forF 0 eg 1 ? 1 / Λ t [
Fo^ ^ j -—^3/2^2, (B.35)

0 (1 ~f" y)

m Λ Λ . / 1 \2

(B.36)

oo /7ηι oo /7η» 1 Γ 1 ~~|4

forF 0 e3, f /Λ

 dyp\s £ f _-^—^i i 1
yB(F0) (1 + ?F0) yB(F0) (1 +?)* 4 L1 +7ΰ(F0)J

(B.37)

We obtain a new forest fiu{G} - {F0}, and a new integral similar to (B.32) with
new values Sp = sF if £(F0)φF, and SFΞ 5F + 2χ3l(F0) + ̂ χ3(F0) if F = B(Fo). We
repeat this elementary integration over a new subgraph F1 minimal in £u{G}
— {F0}, and so on. We have to verify that condition (B.34) never becomes violated
for the new numbers SF,SF, •••• Let Fe£u{G}, F = Fk+1, hence F becomes
minimal after the /cth integration. By induction, using (B.34) and (B.35)-{B.37) there
are "reduction rules" to compute a lower bound on sF: any ordinary vertex in F/2,
counts for 1, any F e & with B(F') = F counts for 3/2 [by (B.33)], any F'ε^ with
B(F^ = F counts for 2 [by (B.36)] and any F'ε% with B(F') = F counts for q [by
(B.37)] finally one has to subtract 3/2 if F e gj. Using Definitions A.2 and A.3, plus
(B.8), it is easy to check that this rule proves SF ̂  3/2χδl(F) + 3χ3l(F) + (q + l)χ5(F):
by induction on £u{G} this proves that:

"1ΊI3I
(B.38)

[The factor 2 comes from (B.35).] Together with (B.31) this achieves the proof of
Lemma B.6.

By (B.9), (B.26), (B.29), and (B.30) one gets

ΠΊI3I
|Kjp(p)|^ CV"lflυ<G>l[K/(9)]l3'»l - (B.39)

L«J

for some numerical constant C^ 1010. To complete the proof of (B.4), hence of
Lemma (B.I), let η be any (arbitrarily small) positive number.

We fix q to be the first integer greater than [C//?]12. Then we take

^»- Dδl + ISO- Moreover by Lemma B.2 1$| ̂  and |3M| ̂  |3| ̂  |§|. Therefore:

Remark that |S| + |3| + |3| = |8ruS|^n, hence n-|£u{G}|^|3| and n-|fiυ{G}|

y L

and:

(B.40)
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b) if |$| > n/6 and β| < , hence |3| ̂  :

[M

^

12|3|

c) if

l- jn/12 ΓΠ"/12

. (B.42)

This completes the proof of Lemma B.I.

2. General Case. As is remarked in Sect. Ill, when bipeds are present it is
important to do correctly the subtractions which renormalize their quadratic
divergences, even in the dressed expansion. We will not use here the painful
treatment of bipeds given in [1], which, as remarked in [1, Sect. IV], does not give
a sharp estimate for a "chain" of bipeds. We prefer to use the following facts which
allow an inductive estimate on dressed bipeds in our expansion:

a) Bipeds never overlap with closed graphs.
b) Amplitudes for bipeds B depend on only one invariant, the square of the

external momentum pβ flowing through them.
c) If we write the Taylor subtraction for bipeds as l — tB = SB + s& where

Sβ~ 1 — tβ subtracts only the first term in the Taylor expansion and Sβ = tβ retains
the second one, each piece corresponding to SB or SB does not show any quadratic
divergence, but only a logarithmic one. Moreover the operators SB or SB
renormalize automatically the spurious divergences associated to open quad-
rupeds whose closure is B [1].

d) Since by insertion of a biped the number of (ordinary) vertices of a graph
increases by at least 2 there are no subtleties similar to the preceding section, and
the logarithms of the dressing factor can be used to screen the remaining
logarithmic divergence of the bipeds.

Let us make the following inductive assumptions on the renormalized dressed
amplitude for a biped B(KG is defined as JG in (III.8) with K|'̂  instead of J|'̂ )

Lemma B.7. There exists K(ε) with Km K(ε) = 0, and
ε->0

c) y-Kβ'ttP + Jr*)2) = [2p-k + 2k2]M£'1(p), (B.45)

d) IL' Vk)!^ [£(£)]"<*>, (B.46)

e) |M°'Vk)|^[K(e);r<B>. (B.47)

The induction is on the number b(E) of bipeds which are strict subgraphs of B.
For b(B) = 0, Lemma B.7 can be proved easily by the techniques of [1] and of the
preceding section, using the two dressing extra logarithms to bound the loga-
rithmic divergences associated to Kg'1. Let B be a biped with maximal sub-
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bipeds J5 l 5...,Bh ...,Bm. In the momentum representation for B l(j B^ there are

loop momenta q1? ...,qy, ...,qL, and the line momenta k l 9 ...,kλ, ...,kι are linear
combinations of the q/s and of p. We call pf the external momentum of Bb and
kj, ...,k£, ..^kf, ...,pf ... the corresponding quantities at p = 0. As an analog of
(B.I 3) we have the following mixed representation for KB (we forget unessential
details like the possibility of forests of quadrupeds to add to the formulae, treating
them as in the preceding section, and call DB the dressing factor for B).

)- "(Bi) Π

w

Π e-^- Π e-χ^2 Π [n(Pi) + n(Pi
fc=l k=l

m I

+ Σ Π e-α*(lφ2 Π [K
s = l / c = l l ^ i < s

Pl) - Ki(ps°)]} Π
s<i^m

" (B.48)

By (B.44), cancel the 2p£ ps term by symmetric integration, and bound the
remaining L ;̂1 by (B.46). Using three-fourth of the dressing logarithms in DB/(jB.
one can effectuate all integrations and prove (B.43) for KB' [Remark that the
factor m + 1 which appears in the sum (B.48) is bounded by l(B} — X l(Bt), hence

I

by 2l(B)~ΐl(Bi\ a factor which grows inductively into an inoffensive 2l(B\ Also there
remains a factor gn(B}14 to ensure the decrease of K(ε) as ε->0].
The rest of Lemma B.7 [(B.44)-(B.47)] can be verified in a similar way.

Appendix C: Borel Summability

This section is devoted to the proof of Theorem III.3. We replace first Se(p,#) in
(III.9) by its definition as the absolutely convergent sum (III.8) of the dressed
amplitudes. The subtractions in (III.9) will modify and partly "undo" the dressing
of the amplitudes with less than k vertices, but it will not modify the dressed
amplitudes with k vertices or more.
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We write the left-hand side of (III.9) as:

G

where the operator T* retains the q first terms in the Taylor development in g near

0 = 0.
To bound (C.I) and to prove (IΠ.9), by linearity of Tg and the usual exponential

bounds on the number of graphs and forests it suffices to prove the following
lemma:

Lemma C.I. Let Dε = {g complex, Re#>0 and \g\<ε}. For geDε:

(C.2)

where K'(ε) is as in Lemma B.I, and n = n(G).

Proof 1st case. Let us suppose n^k+ 1. We have

p,α). (C.3)

Let us call αmin = {inf αί? ί = 1, ..., '(G)}. From the explicit form of the factors
od(α*) and rd(αF, oc$) in (ΠL4)-(ΠI.5) it is obvious that D|(α, g) is analytic in g and
uniformly bounded by (const)" in the set Γ surrounding Dε at distance
c [2£(αmίn)] ~ * (see Lemmas A.2 and A.4). By a Cauchy formula:

. (C.4)

In (C.4) the contour surrounds the segment [0,0] at distance c-
Therefore one has:

flf))| \g\k\ξ(*mίn)\k+ 1 ~n . (C.5)

Let us cut the integral in (C.3) into the Hepp's sectors and perform the
renormalization as in [1]. It is proved in [1] that:

...i ήβ?Γ1Πdβl, (C.6)
0 O ί = l t = l

where jS^ are the /? variables associated to the sector σ, and JVf are positive integers
and/(gu§) and /(G) are defined in [1]. Furthermore it is a basic bound of [1]
that:

' ,c,,

From Lemma A.2 and (C.5) we have in a Hepp's sector hσ:

]k+l-n

.Σ llogAI - (C.8)
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Using the multinomial expansion and trivial explicit integrations one gets easily:

oo 1 I / / \ f e + l - « i ι-ι _ _

ί e-"dβtί ..Ma+ Σ l l o g A l ) Π / ^ Λ Π f f , -
0 0 0\ i=l / i=l i=l Π N? (C9)

i = l

Putting together (C.7), (C.8), and (C.9) achieves the proof of Lemma C.I since
fc

trivially n\(k + l—n)\^k\ in the case n^fe+1, and A%t$£D%t£.
2nd case k<n—l. In this case, from the presence of gn in K|'θ,
(1 - Tf- l)K%* = Kjp. To prove (C.2) it remains to "trade" a factor \g\k against a fc!
in the estimates of Appendix B. Let us sketch how to do that in the case "without
bipeds," namely the first part of Appendix B. The other case is similar.

We have to modify slightly the treatment of the graph G in Appendix B. We
distinguish two cases:

- If |§u{G}|^fc we choose a subforest §' = [Hl9 ...,#/} of §u{G} such that

the H/s are disjoint and such that h = Σ ht = k, where ht = \{H e

- If |gu{G}|<fc we put /=1,S X = {G} = {/?!>, and Λ = Λι = |S
i

We define also s~\{FE^9 FQHJl s= Σ si9 and /. = ft. + Sί. We define
i = l

r = sup{Q,h + s — k — l} and choose an arbitrary (possibly empty) subforest
{Fl9...,Fr} = $' of g such that each FJ9 j=l,...,r is contained in one Hi9

i= 1, ...,/. This is possible since r<s. We define also:

} , F £ F j and FgA9.(FJ)}\.

Then one has

Σ P'i+ £ ί } = Σ / t = Λ + s
i = 1 7=1 i = 1

We define a new forest 3 slightly different from the definition in (B.7) by:

We write a mixed representation similar to Lemma B.3 with the corresponding
new definition of 3m.

The action of the operator Tr in K|'5 factorizes completely the various F//5'>
7 = l,...,r, which will be treated as in [1]. More precisely, starting from the
minimal elements of gx, one writes the bound:

ί dμ(αθ{Π[3θd(α?)]}exp[-
α'eJ(α) [veFj j

^ (const) (C.H)

where we used Lemmas A.2 and A.4.
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Performing all renormalizations as in [1] and integrating the last logarithmi-
cally divergent variable βl up to the ultraviolet cutoff α|. one gets:

where χ(x) = 1 if x > 1 and χ(x) = 1 + |logx| if x ̂  1 . Putting the factor \g od(α$.)|
with the rest of the integrand for G/Fj reconstructs its proper integrand and
complete dressing factors.

Iterating this argument one gets as final bound for the subgraphs of g' the
r

factor |#Γ(r) Π [fj]\ [up to an inessential (const)"], where
7=1

"050= Σ (^m)-i)-lδΊ,
m = l

Fl,...,Fr being the maximal elements of g', and the proper integrand and
dressing factors for G/ffi have been reconstructed.

The treatment of the subgraphs //f/8f', i = 1, ..., / is slightly more complicated.
We consider Hl = B3rn(Hi) and define

By an obvious analog of Lemma B.4 applied to H'i/ff one gets:

J dμ(a')ZR

H^(a', pHί) "'If' Σ (ft'- ») ! [fl^W ,
α'ezl(α) v= 1

where the natural analog of (B.14) for H( is

Z^'= I (-tF) Π

We bound [αSj|pHί|]
Γ like in (B.19HB.20) by Π β-"^"/)2. We use Λ-'^P!,

υ \ ( f ί - ΰ ) \ £ f ί \ and by (ClOλ/.'gpί+nίHί/H^pί+β, hence//! ̂ 2^ p^!. We
remark also that

Π \[a od(α*)]| ̂  |̂ r

Putting together these bounds, the final result for integration of the subgraphs of
5' and §' is a factor

7=1

up to an inessential (const)"; the proper integrand and dressing factors for G/§7 is
indeed reconstructed; the factor q\ is absorbed in the definition of the factor K'(q)
corresponding to f/ in (B.21). Hence treating G/§x as in Appendix B, we get for this
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i
part a bound K(ε)n(GI*f)' Defining ri= Σ n(Ht), gives the final bound:

t = l

\κl>*\^\g\«f-l-'iκ(8W-«'+l π [ίj]i Π Mi (C.13)
j=ί ί=l

By (B.5) one has n'^/i + s + ί. In the first case, where h = k, since r<s, this means
that ri — I — r > k. In the second case, where §' = {G}, ri = n, and / = 1 either r = 0
and ri—l — r = n—\ >fe, or r = h + s — k — l, and again since n'^/ι + s + /, n'—l—r

Hence in every case one can extract a factor \g\k from the right-hand side of
(C.13). Since one can choose K(ε) such that \g\^K(έ), one obtains

*<° "-'-» Π K] ! Π
7=1 i=l

By (B.6) r g — . Moreover since

j = ι ί=ι

and:

In every case we obtain the final bound (C.2).
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