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Abstract. The problem of phase retrieval arises in experimental uses of
diffraction to determine intrinsic structure because the modulus ofa Fourier
transform is all that can usually be measured after diffraction occurs. For finite
distributions, the phase retrieval problem can be solved by methods of
factorization in suitable rings of polynomials; for continuous distributions
with compact support, the methods of complex analysis are needed to solve the
phase retrieval problem. These methods are discussed and examples are given
for illustration.

1. Introduction

The problem of phase retrieval arises in all experimental uses of diffracted
electromagnetic radiation for determining the intrinsic detailed structure of a
diffracting object. Usually, the measurement of the diffracted wavefront gives only
the approximate values of the intensity of this wave form, and not its complex
amplitude. Consequently, the phase information is not known explicitly and must
be determined by other methods. Because most diffracted wavefronts in experi-
mental situations are approximated by a Fourier transform or Fourier series in
one or several variables, the methods of Fourier analysis are a great help to phase
retrieval procedures. Using Fourier transforms, one sees that many phase retrieval
problems are algebraic in nature; this algebraic aspect of phase retrieval is one of
the main themes presented here.

A point source of monochromatic electromagnetic radiation falling on an
opaque screen with slits or punctures will diffract in passing through the openings
of the screen and create a new wave front that can be described precisely by
Kirchoff s integral representation, which is a general type of integral transform.
This Fresnel diffraction simplifies if one makes the assumption that the distance of
the source to the screen and of the screen to the focusing plane of diffraction are
both large with respect to the size of the holes in the screen and the wave length of
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the radiation. In this extreme case, the diffraction is called Fraunhofer diffraction;
in Fraunhofer diffraction, the diffracted wave front is a good approximation to the
Fourier transform of the characteristic function of the apertures in the screen, and
the image screen will have the absolute value (or intensity) of this Fourier
transform focused on it. See references [4, 17, 19, 25, 26, 40] for the theoretical
background and examples of the use of Fraunhofer diffraction of this type in
spectroscopy.

In X-ray spectroscopy, similar diffraction occurs by the Babinet principle.
However, if the diffracting object is a crystalline substance with a periodic cellular
structure, then the diffraction is heavily biased to those frequencies which are
emphasized by the cellular structure. Hence, the diffracting wave front is
numerically the complex amplitude of a Fourier series adjusted to coordinates
appropriate for the shape of the unit cell. Thus, in determining the structure of
crystals via X-ray crystallography, the absolute value of the Fourier series in three-
dimensions is sampled at various spatial coordinates. The phase retrieval problem
is especially difficult here because of the periodicity inherent in the Fraunhofer
diffraction; this is reflected in radical changes in the algebraic nature of the phase
retrieval problem. Usually the spectroscopist needs to employ chemical or
physical intuition and algorithmic fitting of the data for the recovery of the
structure from the diffracted intensity; this is all the more true in X-ray
crystallography. See references [3, 15, 22, 27-30, 35,41,44] for background in X-
ray crystallography and the uses of spectroscopy in chemistry.

All types of phase retrieval problems, aperiodic or periodic, discrete or
continuous, can be treated with a common theory. From the viewpoint of modern
Fourier analysis, the Fourier transform and Fourier series methods are just
Fourier transform methods for different underlying group structures. The phase
retrieval problem becomes a question of the behavior of Fourier transforms of
distributions on groups. Say D is a distribution on an abelian group G for which
the Fourier transform D(y) is well-defined on the dual group Γ of G. The question
is how to determine D given only |l5| ? The Patterson function, D * D*, is completely
determined from the knowledge of \D\ by taking the inverse Fourier transform.
Consequently, the phase retrieval problem is to determine D knowing only D * D*.
This is not possible in general, even allowing for some trivial changes in D like
reflection, translation, or scaling. However, there are some good algebraic and
analytic techniques for determining all distributions E of the same type as D with

In Sect. 2, the algebra of phase retrieval is introduced in the generality of
compactly-supported discrete measures on abelian groups. This includes both the
periodic phase retrieval of X-ray crystallography and the aperiodic phase retrieval
arising in other types of spectroscopic analysis. The totally aperiodic case is the
best developed one and is discussed in Sect. 2. Then the periodic case is treated in
Sect. 3; this is the one most immediately applicable in X-ray crystallography. In
Sect. 4, the two previous cases are combined and a general factorization theorem is
proved. Namely, up to scaling and a slight enlargement of the underlying groups, if
D and E are in the group ring K[G~\ over a conjugation-closed subfϊeld K of C, the
complex numbers, and the abelian group G, then D*D* = £ * £ * if and only if
D = A*B and ± E = A * B* for some A and B. In Sect. 5, the analytic methods of
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phase retrieval for continuous distributions are described. The behavior of the
holomorphic functions which are analytic extensions of Fourier transforms is
critical to this type of phase retrieval. Here the general factorization scheme does
not apply because there exists /, g e CC°°(JR), the smooth functions with compact
support on R, such that /*/* = g * g*9 but there is no joint factorization f = a * b
and g = a*b* with complex-valued functions a, be Q°(JR). To obtain a factoriza-
tion theorem here requires going outside of Q°(R) to more general distributions
for the factors a and b. An appendix to Sects. 3 and 4 is provided which gives the
details of some joint work with Joel Berman.

2. Generalities and the Aperiodic Case

Let G be an abelian group. A finite distribution D on G has the form Σα<A>
agsC, agφ0 only finitely often, in the usual Dirac mass notation. The algebra of
such distributions under the convolution product is isomorphic with the group
ring C\G]. The reflection D* of D = Σagδg is defined to be D* = Σάgδ-g, where άg is
the complex conjugate of aq.

N

Let Z denote the integers. When G is a direct sum Z M 0 0 Z Π . , where Zn.
i~ 1

= Z/<ni> are cyclic groups of order nb then there is an alternate polynomial
notation that is very appropriate and convenient. Suppose that xu ..., xM are free
generators of the summand ZM, and yt e Zn. is a generator of the finite cyclic
summand Zn.. Any element D of the group ring C[G~] has the form of a polynomial
D = ΣΦi>—>kM9 /^.. .ΛMS ^f/i 1---)^ where the sum is finite,
a(kί, ...,fcM, lί9 ...,lN)e C for all kl9 ...,fcM, ll9 ...,/# and the exponents kl9 ...,fcM,
ll9...9lNeZ. The multiplication in C[G] then corresponds to polynomial
multiplication, with the usual rules of exponents for exponents in Z, expect that we
have the relations yff = 1 for i = 1,..., N. Because of these relations, the exponents
fejCan always be taken to be in {0,1, ...,nI —1} for each /= 1,..., JV. The reflection
D* of D is given by D* = Σά(kl9...9kMJl9...JN)x^...x^y^...y^. Occa-
sionally the same polynomial notation will be used with exponents in the rational
numbers too.

Let Γ be the group of all homomorphisms of G into the circle group
T={zeC_:\z\ = l}. The Fourier transform of DeC[G] is^efmed^y D(y)
— Σa

gy(ώ f°r aH J e Γ9 where D = Σα<A It i s e a sY t o s e e that D*(y) = D(y) for all
γeΓ. Also, it is easy to check that if Dl9 D2 e C[G], then D1 * D2(y) = Dί(γ)D2(γ)
for all ysΓ. Consequently, if the optical transform is D and D*D* = E* £*, then
\D(y)\ = \E(y)\ for all yeΓ. Furthermore, whenever A e C[G] and A(y) = Q for all
yeΓ, then A = 0. So D * D* = £ * £* if and only if |D(y)| = |£(y)| for all y e Γ.

2.1. Definition. If D, E e C[G], then D and E are homometric if D * D* = £ * £*.

The finite distributions D and £ are homometric if and only if they are
equivalent under Fraunhofer diffraction. The term "homometric" was originally
used by Patterson [33-35] for G being Tn or Rn; he imposed the additional
restriction that D and E are not equivalent up to an isometry of the underlying
group, a restriction that is dropped in the definition above.
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Fig. 1. Here A and £ are illustrated in the first row; D and E are shown twice, the first time with B
still outlined

The algebraic theory of homometric distributions for G = Rn was completed in
Rosenblatt and Seymour [39]. The initial observation (actually motivated by the
type of factorization theorems in Sect. 5) was that if A, B e C[_G\ then D = A * B
and E = A * 5* are homometric. This seems to also have been realized by Patterson
and others; see Bullough [11,12] and Hosemann and Bagchi [24,25], but they did
not realize the algebraic significance of using the ring K[G] instead of Z+[G~\.
First, let us consider some of the consequences of this construction of homometric
pairs. If AeRn, then the distribution lA = Σi{δx:xeA} is a {0, l}-valued
distribution on Rn. If A, Be Rn are well-dispersed finite sets, then D = \A * lB and
E= lA * 1 _β will be {0, l}-valued homometric finite distributions. This method of
constructing homometric pairs via convolutions is illustrated in R2 in Fig. 1. In this
figure, D and E are non-congruent point sets too. We say D, E C Rn are homometric
if ίD and ίE are homometric distributions. Generally, if D, E e C[G], then D and E
are said to be trivially homometric if D = cδg * E or D = cc^ * £* for some ceC, \c\
= 1, and #eG. Clearly, non-congruent point sets do not determine trivially
homometric distributions; so the example in Fig. 1 is not trivially homometric.

A natural question here is how many mutually homometric finite sets can
be generated using only k points? The convolution method above gives a partial
answer to this question. Let SP be a finite set of finite sets in Rn with card(P) = k for
each P e ^ . Assume that if Pl9 P2 eSP, P1+P2, then Px and P2 are homometric
and noncongruent. The set 9 has some card(^) number of elements. Define Cn(k)
to be the largest value of card(^), where & ranges over all sets with the properties
described above.

2.2. Proposition. For m^l, C1(3W)^2M-1 and Cn((n+ l)m)^2w~1 if n^2.

2.3. Corollary. For any M^ 1 and n^l, there exists k^l such that Cn(k)^.M.
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Proof of Proposition 2.2. It is easy to see that there exists sets A C Rn such that, 1)
card(^4) = n +1 for n ̂  2, and card(^l) = 3 if n = 1, and 2) for any x l 5 x2, >Ί> ̂ 2 e ^ if
ll*i — X2IIHI3Ί— J^ϋ* Λen {xl5 x2} = {yu yi)- Indeed, such sets A exist in
profusion. It is not hard to see that such a set has the property that if φ is an
isometry of Rn and φ(A) = A, then φ is the identity mapping. This allows us to
choose sets Au..., Am, each with card(4 f) = card(^l), such that, 1) the only isometry
φ with φ(Ai) = Ai for some i= 1, ...,m is the identity mapping, and 2) for each
k = 2,...,m, the shortest length of a vector x — y, x5 y e ^ is strictly more than
twice the length of the longest x — y,x,yeείA1 + ...+sk-1Ak-u where ε l 5 . . . , εk _ 1

range over all choices of sign ± 1.

Choose some ε1? . . . ,ε w e {1, —1} and define A(εu...,εm) = είA1 + ε2A2

+ . . . + εmAm. By the remarks above about the convolution method, each
A(εu ...,εw) is homometric to A(l,..., 1). It is not hard to show that if (ε l5 ...,εm)
Φ(Ci,...,ζJ, ei=Ci = l, then X(ε l5 ...,εm) is not congruent to A(ζl9...,ζJ.
Therefore, we have C x ( 3 m ) ^ 2 m " 1 and Cπ((n + l ) m ) ^ 2 m ~ x because there are 2 m " 1

possible choices of signs ε2? ?εm a n < i card(^(ε1 ? ...,εm)) = card(y4)m for all
ε l 9...,εm. •

Very little else is known about Cn(k) even for small values of k. Does there exist
a function mn(k) with mn(k) increasing to infinity as fc-> 00 with Cn(k) ^ mn(k)l If fe is
prime, fc ̂  5, is CM(fe) > 1 ? These questions are difficult to answer even though we
know that the convolution method is theoretically the only method available to
use as in Proposition 2.2. This is because it is difficult to determine conditions on a
finite set D C Rn which guarantees that it factors (in many different ways) non-
trivially as ίD = A * B with A, Be Z[JR"], such that A * B* is a {0, l}-valued finite
distribution too. For example, let A{x), B(x) be finite distributions represented in
polynomial form by A(x) = x5l2(l+x + x2 + x?> + x4 + x5+ xΊ) and B(x)
- x ~ 5 / 2 ( l - x 3 + x5). Then D(x) = A(x)B(x)= 1 + X + X 2 + X 5 + X 7 + X 9 + X 1 2 , and
E(x) = A(x)B(χ-1) = l+x + x5 + xΊ + x8 + x10 + x12. Hence, {0, 1, 5, 7, 8, 10, 12}
and {0,1, 2, 5, 7, 9,12} are homometric sets in Z, but they do not factor as above
with positive factors in place of A and B. This behavior is an inherent difficulty for
the phase retrieval problem in general.

For the remainder of this section, G will be an abelian group with no elements of
finite order. We will usually restrict the coefficients of the distributions to some ring
K,ZCKCC, such that K is closed under conjugation. If Z), E e X[G], then there is
a finitely-generated subgroup HcG which contains the supports of D and E. Since
G is torsion-free, there exists some x1 ? ...,xmeH such that i ϊ = Z x 1 φ . . . φ Z x m

^ Z m . Similarly, given a finite set of elements of X[G], we can find a subgroup
H = Zm in G which supports all the distributions. Now even in C[G\ the units are
trivial; that is, if U e C[G] and U* V=δ0 for some V e C[G\, then there exists
c E C, \c\ = 1, and g e G such that U = cδg. However, C[G~\ is not a UFD (unique
factorization domain). Indeed, in polynomial notation,

ί + l
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for all i = 0,1,2,.... So Z[Q] is not a UFD. On the other hand, the observation
above shows that we need only work in the subgroup ring K[Z m ] for any
particular finite set of finite distributions, and X[Z m ] is a UFD whenever K is a
UFD. We assume then for the remainder of this section that Kisa UFD, ZcKcC,
with K = K. Then any element D e K[Z m ] has a unique factorization (up to units)
into prime factors relative to X[Z m ] . Using this, we have the following theorem as
in [39].

2.4. Theorem. If D,Ee K[G] are homometric, then there exists c1,c2e K, |c± | = \c2\
= 1, gu g2 e G, and A, Be K[G] such that D = c1δgi *A*B andE = c2δgi * A * B*.

In the above E = c1c1δQ2*c1A*B* and D = δgι*c1A*B*. Hence, we may
assume c1 = \ without loss of generality. Then if also c 2 + — 1 and K is a field,

^ 2 ^ 1 1 1 1 ( 2 ) 1 ( 2)
Hence, if K is a field, then we may assume cγ = 1 and c 2 = ± 1 without loss of
generality. Finally, since ^ - δ t o l +gi)/2 * δ t o l _,2 ) / 2 and S,2 = δ(gι +g2)/2 * (<S(ί7l _ , 2 ) / 2 )* ,
if we use factors A and B with mass in \G, we may assume g1=g2 = 0. These
observations lead to this corollary which is needed in Sect. 4.

2.5. Corollary. If D,Ee K[G] are homometric and K is a field, then there exists β1?

ε 2e{l, -1} αmM, 5 e K [ i G ] swc/z that D^ε^AxB and E = &2A*B*.

Remark. lϊG = Q,R or C, then certainly ^G = G, but generally, the factorization of
type 2) cannot be obtained in G itself. See the remarks after Theorem 4.1.

The method of proof of Theorem 2.3 easily adapts to the situation where there
is more than a pair of homometric elements D and E.

2.6. Theorem. If Dί9...,Dm e -K[G] are homometric to one another, then there exists
cte K, \ct\ = 1, gi e G, a m / ^ e £ [ G ] , ΐ = l , ...,nsuch that Dί

 z=cίδgi *A1*...*An,
and Dt = q ^ * Aί l ( i ) * ... * Λβ"(i) /or some c/zoices o/ Aε

k

k(i) e {^k, ^ ? } , fc = 1,..., n,
depending on i = 2, . . . ,m.

Remark. An improvement of 2.6 along the lines of 2.5 is generally possible.

One positive aspect of the method here is that it provides algebraic criteria for a
finite distribution to be essentially determined by the intensity of its diffraction. If
D 6 K[G], then D is uniquely retrievable if whenever E e K[G], and D and E are
homometric, then D = cδg*E or D = c ^ * £ * for some C G K , \C\ = 1, and g e G .

It is clear that both K and G affect whether D is uniquely retrievable. The
polynomial x2 + 4 is uniquely retrievable in K[Z] because it is irreducible, but it is
not uniquely retrievable in C[Z~\. Indeed, x2 + 4 = (x + 2i) (x — 2ί). So

and p(x) = x2 + 4 determine homometric elements in C\Z\ which are not trivi-
ally homometric. Similarly, x — 4 is uniquely retrievable in C\Z\ but x — 4

So
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and p(x) = x — 4 determine homometric elements in C\^Z\ which are not trivially
homometric. Hence, enlarging K or G can affect whether a distribution is uniquely
retrievable.

To characterize which finite distributions are uniquely retrievable, the notion
of semi-symmetry is needed. If D e K[G], then D is semi-symmetric (with symmetry
constant c) if there exists ceK, \c\ = 1, and D* = cδg * D for some geG.

The argument in [39] shows the following.

2.7. Theorem. // G is finitely-generated, then D e X[G] is uniquely retrievable if and
only if at most one of its prime factors in K[G] is not semi-symmetric.

3. The Periodic Case

N

Throughout this section, G will be a finite abelian group; so G= @Zn., a direct

sum of cyclic groups Zn. of order n{. The coefficient ring K is taken to be a field,
KcC, which is closed under conjugation. The group ring X[G] is now far from
being a unique factorization domain; it is not even an integral domain because if
e = order(G), then (δg — δ0) (δ{e-1)g+... + δo) = δeg — δo = 0 for all geG. Hence, a
completely different method of phase retrieval must be used to obtain the analogue
of Theorem 2.4 and Corollary 2.5 in this case.

To illustrate some of the problems that periodic groups present, we will look at
the one-dimensional case of Zn first. This cyclotomic case was studied originally by
Patterson [33] and later by others, including Buerger [5-10] and Chieh [18]. See
also [11,12,24,25] for references. The diagrammatic tool here applies equally well
to the one-dimensional case with unit cell [0,1) = {x: 0 ̂  x < 1}. First choose some
set A consisting of fc^2 points in [0,1). We measure lengths modulo 1, so the
length of a, a e [0,1], and 1 — a are considered the same; however, to be consistent
in this, we will always choose the smaller of the two. It is convenient to illustrate
this point distribution as if it were on a circle of circumference one. All pairs of
points are joined by chords. The set of chords is called the Patterson diagram of A.
Our convention is to give a chord in the Patterson diagram a length equal to the
length of the smaller arc that it subtends. Typically, if the points of A are at the
vertices of a regular n-sided polygon (called a cyclotomic set), then the lengths of
the chords in the Patterson diagram are all of the form m/n, where me{l,2,3,...}.
If the diagram is cyclotomic, usually only the numbers m are shown (see Fig. 2 for
examples). In this figure, we have illustrated two pairs of homometric cyclotomic
sets which are fundamental to the classification of homometric pairs with 4 points
in the unit cell [0,1). These examples illustrate the importance of periodicity. The
elements D = δo + δ3-{-δ4 + δ5 and E = δo + δt + δ3 + δ4 are not homometric in
C[Z], but they are homometric in C\Z%\. Indeed, two sets D, EeZn are
homometric if and only if their Patterson diagrams contain the same lengths
counting multiplicities. So the examples in Fig. 2 are homometric in Z\Z%\ and
Z[Z13] respectively.

In dealing with finite abelian groups, it will again be convenient to use
polynomial notation. Here X[G] can be identified with the polynomial ring
K[xu . . .,*#]//, where x1,...,xN are commuting variables and / is the ideal
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Fig. 2. a (w, fc) =(8,4) ; b (n, fc) =(13,4)

^ - l } . Also, to compute D(y) for DeK[G], we

y & { i * . . . * ( 5 ^ , or D = Σ Λ ( Ί » . . . , / j v ) x ΐ 1 x ]...x]vr in the

generated by {x
first express D =

polynomial form. For γ e Γ, £>(y) = ΣβGi> •> ' N M ^ I ^ Ϊ W ^ where y(x{) G C,
i = 1,..., JV. But y(xf) is an nf

 t h root of unity and the values of y(x;), i = 1,..., JV,
completely determine y. By mapping y to (y(xi), ..., y(Xjv))> w e m a P Γ isomorphi-

N
cally onto where ^(m) is the multiplicative group in C of mth roots of

unity. Let y. = y(χ.) for i = 1,..., JV. Then, the polynomial evaluation D(γl9 ...,yN)
equals D(y). This method of computing D when D is expressed in polynomial form
will be used in the sequel. An additional advantage of this notation is that if Du

D2 e K[xί9..., Xjy], then D1—D2el, thus determining identical elements of K[G],
if and only if D^y^ ..., yN) = D2(yu ..., yN) for all (yl5 ..., yN)

Unlike the case of K[xl9..., x#], the units of K [ x l 5 . . . , % ] / / are anything but
trivial. A unit U e X[G] is called a spectral unit if (7 * U* = δ0. It is clear that U is a
spectral unit if and only if U and δ0 are homometric. The spectral units are
especially important because of this theorem.

3.1. Theorem. If D, Ee K[G], then D and E are homometric if and only if there
exists a spectral unit U e K[G] such that U * D = E.

This theorem only presents algebraic difficulties because K is not assumed to
be C. Indeed, suppose D and E are homometric. Let w(y) = E(y)/D(y) if D(y) φ 0, and
u(y) = 1 otherwise. Because G is finite, there exists U e C[G] such that ϋ = u; hence,
I U(y)\ = 1 for all yeΓ, and U is a spectral unit. Moreover, U*D = E because UD
= E. To insure that U e K[G], more argument is needed. The proof will be by
induction on JV, the number of summands of G. This lemma can be used to prove
the case N = 1 and will also be needed later for the factorization theorem.
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3.2. Lemma. If De K [ Z J , there exists WeK[Z^\ such that W= l{yeΓ:5(γ) = o}'

Proof We take D e K[Z^\ and write D in polynomial form. Let F = gcd(D, xn-l)
in K[x]. Then there exists A, B, Mu M2sK[x\ such that F = AD + B(xn-l),
D = M1F,andxn-l= M2F. If y e 9t{jί) and D(y) = 0, then F(y) = 0. Conversely, if
F(y) = 0, then y e M(ή) and D(y) = 0, Hence, for some keK,F = kY[{(x-y): D(y)
= 0 and yn = 1}. Also, if f = 1 and D(y) Φ 0, then F(y) φ 0 and so M2(y) = 0. But the
roots of xn — 1 are not repeated, hence, if yn = 1 and D(y) = 0, then M2{y) Φ 0. Let
V= D + M 2 . Then 7 6 K[x], F(y) = D(y) if D(y)φ0, y e Λ(n), while 7(y)Φ0 for all
y e f (n). By using the relation x Λ = l , we may assume deg(F) = π—1 without
altering these properties.

n-ί n-ί

We write V= Σ ϋ ί χ ί a n ( l s e e k a solution l / = Σ w ί χ ί G ^ M t 0 ^ e equation
i = 0 i = 0

UV= 1 mod(xM— 1). This equation is the same as the system of equations

The circulant matrix ^ composed of the coefficients vt has det^ΦO because V(y)
Φ0 for all yeSt{ή). Indeed, it is well-known that dεttf = Y\{V(y) :y e0£(ή)}.
Hence, by Cramer's Rule, the system of (1) has a solution (u0, ul9 ...,wM_1) with
UiEK, ί = 0, ..., n— 1.

Let Wo = UD. Since U(D + Af 2) = 1 mod(x" - 1 ) , if £)(y) φ 0 and γ e 0t{n\ then
W0{y) = U(y)D(y) = 1. Also, if D(y) = 0 and γ e St{n\ then Wo = U(γ)D(y) = 0. Hence,
W=δo — Wo provides an element of K[Z^\ such that W=l{yeΓ.j>(y) = 0]. Π

This lemma gives immediately the following special case of Theorem 3.2.

3.3. Proposition. If D, Ee K[Z^, then D and E are homometric if and only if there
exists a spectral unit U e K[Z^\ such that U*D = E.

Proof Choose We K [ Z J such that W= l{γer:D(γ) = oy Then let U be a solution to
U*JD + W) = E+W. This is possible as in the proof of Lemma 3.2 because
(D + W) is never zero and Cramer's rule can be used; moreover, U e K{Z^\ too.
Then U(y)D(y) = E(y) if D(y) Φ0, and U(y)W(y) = ϋ(y) = #(y) = 1 if D(y) = 0, for
yeΓΛϊD and E are homometric, then |t/(y)| - 1 for all γ e Γ and t/(y)/5(y) = E(γ)
for all 7 G Γ. This establishes the non-trivial part of the proposition. G

N

Proof of Theorem 3.1. The proof is by induction on N where G= @Zn.. By
i = 1

Proposition 3.3, we may assume N> 1 and the theorem is proved if G is a direct
sum of cyclic groups of less than N summands. Let D, E e K\_G~] be homometric.
Fix y e &(nN). Then, using polynomial notation, D(xu ..., xN_ l 5 y) and E(xu ...,
xN_ 1 ?7) are homometric in K(y) [χ l 9 ..., x N - i ] By induction, there exists
Uy 6 K(y) [x1? ..., XJV.J such that |[/y(y l5 ..., y i v_ 1)| = 1 for all yt e M(n^ i= 1, ...,
JV-1, and such that UyD(xb ..., x ^ . ^ y) = £(x 1 , ..., xN_u y).
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Let y0 be a primitive nN

ih root of unity. Let Σ be the Galois group of
automorphisms of K(y0) fixing K. Because K(y0) is a splitting field for xnN — l,
the extension K(y0)DK is normal and K is the fixed field of Z. Let σeΣ and
define Tσ:K(y0)lxl9...,xN_1 ]^K(γ0)lx1,...9xN-1] by Γ σ ( Σ ^ 1 ? . . ,

and Tσ(W) = PF for all σ e Z, then Whas coefficients in K. Notice that Tσ(Uy)D(xu

...,xN-ί,σ(y)) = E(x1, ...,xN-uσ(γ))whenUγD(xί, . . . 5 x J V _ 1 , y ) = £ ( x 1 , . . . , X J V - I >
y). Hence, we can choose {Uy\yeΓ} such that for all σeZ, y e ^ ( % ) , Tσ(l7y)

= l/σ(y). Indeed, choose α1 ? ..., aκeffl(nN) such that Q Σ(ιx^ = 3l(nN) and Z(at.)
i = 1

cλΣ{θLJ) = φ if iΦj . Then for each i, choose Ua. e K(αf) [x ί? ..., XJV-I] a s above. For
σ G Z, define C/σ(αί)= Tσ(Uy). This is well-defined since σ1(αj) = σ2(αj) for σ l 5 σ2 e Z
implies σx = σ 2 on X(af) and, hence, Tσι = Tσ2on X(af) [x 1 ? . . . % _ ! ] . Now if σ e Σ
and y e ̂ ( % ) , choose σ0 e Z and i = 1,..., X such that σo(αί) = y. Then we have
Tβ(U7) = Tσ(Uσo(J = Γσ(Γσ ot/α j) = Taσo(Ux) = UσσaiXi) = Uσ(y).

Consider now the system of equations

C/ y (x 1 , . . . ,x J V _ 1 )="Σ Ui(x1,...,xN_1)yi,ye<M(nN), (2)
i = 0

where the unknowns Uo, ..., UnN^ί e C[x 1 ? ..., X]y-i] If we can find a solution
(t/0, ..., UnN-t) with t/0, ..., C/ΠN-i e K [ x 1 ? ..., x ^ _ J , then we can define [/(x^

..., x N ) = Σ Upif and 17 e K[xl9 ..., xN]. Moreover, \U(yl9 ..., yN-l9 γ)\

y

...9yN-l9γ)D(γl9 ...9yN.l9γ) = E(yl9 ...9yN-l9γ)foτaΆyieβl(nd,ί=l, . . . , i V - l ,
and ye&(nN). Hence, l/(x1? ..., xN)D(x1? ..., xJV) = £(x l 5 ..., xN)modI, and so
t7(x1? ...jX^) determines a spectral unit as in the statement of the theorem.

But now there is a unique solution to (2) by Cramer's rule because the
coefficient matrix A = (yι: y e &{nN\ i = 0, ..., nN — 1) = (yι<j': i, j = 0, . . . , % — 1) has
non-vanishing determinant. Let Δj be the matrix obtained by replacing the / h

column of Δ by the transpose of (I7 l 9 I7yo, ..., Uip-1). Then ίJj—det^jVdet^) for
7 = 0 , . . . , % - ! . But for σ e Z , ^ ( £ 7 ^ = ^(det^^/Γ^detzl) . Notice that TJdetA)
= det(zlσ), where Δσ is identical to Δ except that the primitive root σ(y0) replaces y0

throughout. Thus, Δσ is a row permutation of A and det(zlσ) = s det(zl), where s is
the signature of that row permutation. But Tσ(det(AJ)) = det((A&)J)9 where (Δa)j is
just zjσ but with t h e / h column replaced by the transpose of (^( (y j , Tσ(Uyo), ...,
Γσ(C7ys-0) = (ί7i, t/σ ( y o ), ..., Uσ{yor-ή, Hence, det((zlσ)j) = s det^^ ). This means
that Tσ(ϋj)= ΰj for all σ e Z and 7 = 0, . . . , % — 1. Therefore, as remarked above
Ό09...9UHN-1eKlxl9 . . . , % - i ] . •
Remark. A close inspection of the proof shows that we could have started the
induction at N = 0 and obtained a different proof of Proposition 3.3. To do this, we
would only need to show that if d, ee K with \d\ = \e\, then there exists ue K with
\u\ = 1 such that ud = e. But since K is a field, this is obvious. This would eliminate
the use of Lemma 3.1 here; but this lemma is needed later for other purposes.

One method of computing U given a homometric pair D and E is to find the
general solution of 17(x ι,..., xN)D(x x,..., x^) = E(x 1,..., xN)9 and then impose the
diophantine equations on the coefficients of U that make 17 a spectral unit.
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3.4. Examples, a) Let D, E e β[Z 8 ] be given by D(x) = 1+ x + x3 + x4, £(x) = 1 + x3

-fx4 + x5 (see Fig. 2). Since D(-1) = £ ( - l ) = 0, there is not a unique solution U.
Indeed, if l/(x)=l/2-α + ax + (l/2-a)x2 + ax3 + (l/2-a)x4 + ax5 + (- 1/2
-α)x 6 + αx7, then UD = Emod(x8- 1). When α = 0, 1/4, then [/[/* = 1 too.

b) Let D, E e β [ Z 1 3 ] , D = l + x + x4 + x6, £ = l + x 2 + x3 + x7 (see Fig. 2).
Then 2) never vanishes on ^(13), and so there is a unique solution U to l/D
= £mod(x1 3 —1). It is easy to compute [/(x) = (l/3) (x + x2 + x3 —x4 —x5 + x7

- x 8 + x9 + x1 2).

5.5. Problems, a) Is there a useful presentation of the group of spectral units in
terms of generators and relations?

b) Given Deβ[Z Λ ] with D^O, how does one determine all spectral units
l / e β [ Z J with l/*D^0?

We now turn to the proof of the factorization theorem in this case. Again, the
proof is by induction on iV, but there does not seem to be a way to avoid the case
JV = 1. This case is done in this section. The general case with N > 1 is handled in
Sect. 4 where one argument can be used for all groups.

3.6. Theorem. If D, Ee K^Z^ then D and E are homometric if and only if there
existsεl9 ε2 e {1, — l},# l 5 g2 εZnand A, B e K[Zn"\ such thatD = ε1δgι * A*B and
E = s2δg2*A*B*.

Proof Clearly this factorization is sufficient to make D and E homometric.
Conversely, suppose D and E are homometric. Let S = D*-\~E* and T=D* — E*.
T h e n SD D*

Let Bί = S * D. Then S * E = Bf. If S is never zero, we can solve for A γ e K[Z J such
that Aγ * S = δ0 as in Lemma 3.3. Then D = A1*Bi and E = A1^ B\. Since § might
vanish, further computation is needed.

Let B2

:=T*D. Then T* E= —B% with an argument as above. Using Lemma
3.3, we can choose Wl9 W2 e K[Zn] such that Wx = l0+Jg=O} a n d W ^ !{£-£=oj
Then F ^ o - ^ ) * ^ ! has Pi = l0-^ O } n(D + ^o } . Also, V2 = W1*W2 has F2

L e t ^ e X [ Z J be defined by V = (δo-W1)*S
Vβ) S()*OiiD() E()OAΪD() E() O

and j5(y)~JB(y) + O, then V(y) = f(y) (y(l)-y(n-\)). lϊ D(y) + E(γ) = 0 and (y)
-£(y) = 0, then F(y)-F2(y) = l. Hence, F(y) + 0 mύessjβ(γ) + £(y) = O and ]5(y)
- JS(y) + 0 for some y e Γ with γ(ΐ) = y(n - 1) = y( - 1) = y(l), i.e. y(l) = ± 1. Assume
momentarily that 25(y) = JE(y), when y(l)= +1 and D(γ) + E(y) = 0. Then D(y)
= E(y) = 0 for these y and so V(y) + 0 for all yeΓ. Then because F2 * D = 0 and

and

But (δo — W1)* = δo — Wι and Fx* = ̂  because Wγ and Fi are real-valued. Hence,
letting B=V*D, we have F* £ = B*. Since F is never zero, there exists A e
such that yl * F= δ0. This gives D = A * B and £ = A * J5*.
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Finally, we have to make adjustments to handle the possibility that for y e Γ
with y{l)= ± 1, we may have,

D(y) + E(γ) = 0 and D(y)-E(y)ή=0. (3)

Let γl9 y2 e Γ be defined by y1(l) = 1, y2(l) = — 1. Suppose (3) holds for γί9 but not
fory 2.Letp 0= -δ, *D. ThenD0(?i)= -yi(l)^(?i)= - % i ) = %i)andD 0 (y 2 )
— "~ 72(1)^(72) — ̂ (?2) Hence, (3) fails to hold for the pair (Do, E) for both yx and
y2. If (3) holds for γ2, but not for γl9 then let Do = <5i *£• We have D0(γί) = D(y1)
while i30(y2) = "^(72) = ̂ (72)- Hence, (3) fails to hold for (Do, E) for γί and y2.
Lastly, if (3) holds for both yx and y2, then let Do=—D. We have ^o()Ί) = ~^(7i)
= E(γ1) for i= 1,2. Hence, (3) fails to hold for (Z)o, E) for y1? and y2. In any of these
cases Do and £ are still homometric. The preceding argument gives A, Be K[Zn~]
such E = A*B* and D is one of £„_! *4 *B9 —δn-1 *A*B, or —i4*B. D

We can map Zn into Z2n by an isomorphism φ and have (l/2)φ(x) e Z2n for all
x 6 Zn. Jίgl9 g2 G ZM, then δgi = δVί * δV2 and δβ2 = δVl * 5-,2, where vl9 v2 e Z2n are
given by vx = {gx +g2)/2 and v2 = (^ —g2)/2. As in Sect. 2, this allows us to improve
the previous factorization in a way that is necessary for handling the case of more
general finite groups.

3.7. Corollary. If D, Ee K\Z^\9 then D and E are homometric if and only if there
exists εl9 s2 e {1, — 1} and A, BeK\_Z2n] such that D = ε1A*B and E = ε2A*B*.

3.8. Examples, a) Let D, E e β[Z 8 ] be as in 3.4a). Then let 4 = (1/4) (1 + x 3 + x4

-x 7 ) , £ = 3 + x - x 2 + x3 + x4 + x5 + x6 + x7. ThenD = ,4*£ and£ = ,4*£*.
b) Let D,£e β[Z 1 3 ] be as in 3.4b). Then let A = (1/24) (23-9x- 17x2 + 15x3

+ 7 x 4 - x 5 - 9 x 6 - 9 x 7 + 2 3 x 8 - x 9 - 1 7 x 1 0 - x 1 1 - x 1 2 ) and 5 = 5 + 3x + 2x2

+ 2x3 + 3x4 + x5 + 3x6 + 2x7 + x8 + x9 + 3x10 + 3x11 + 3x12. The D = A*B and
E = A*B*.

We should remark also that the factors in Theorem 3.6 are far from unique.
This was also true in Theorem 2.4, but there it was only because semi-symmetric
factors of A or B could be included in either B or A. However, for finite groups,
there is hardly any uniqueness properties of the factors A and B. Indeed, suppose
D = ε1δgi^A*B, E = s2δg2*A*B* as in Theorem 3.6. Choose a spectral unit U
which has ϋ(γ)=±l for all yeΓ. Then U* = U and so U2 = U* U* = δ0.
Consequently, D = ε1δgi*(A*U)*(B*U) and E = ε2δg2 *(A*U)*(B* U)* too.
Moreover, if Fί e K[G\ and Fγ is real-valued and never zero, then there exists
F2 eK[G\ with F2*FX= δ0. So

D = ε1δβί*(A*F2)*(B*F1) and E = ε2δβ2*(A*F2)*(B*F1)*,

because F% = Fί. It might be worthwhile here to have some theorem that would
classify or relate the various possible factorizations as in Theorem 3.7 or more
generally Theorem 4.1.

We have many parallels between the case of torsion-free groups and periodic
groups as far as joint factorization of mutually homometric finite sets of finite
distributions goes. However, a real gap in the theory is that it seems difficult to
determine when D e β [ Z J , or DeQ[G] for G finite, is uniquely retrievable.
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Because of the existence of many spectral units, it seems generally not likely for
D e Q\_Z^\ to be uniquely retrievable. No good results have been achieved in this
direction.

Of even more importance would be a restricted type of unique retrievability.
With applications in X-ray spectroscopy in mind, let D C G be a finite set. Then D is
said to be uniquely retrievable if whenever EcG, E finite, with D and E
homometric, then D = g + EovD = g — Eϊθΐ some g e G. Many point sets have this
property, but no general criterion for this have been found. Of course, the
important variation on this theme is to determine from D, in a reasonable fashion,
all E C G which are homometric to it. Both the above problems can be phrased in
the class Z+[_G]9 G finite, which is the space of distributions of classical X-ray
crystallography. This type of classification of homometric pairs is helped only
theoretically by the theorems above because no effective algorithms have been
developed in Z+[G] for implementing a phase retrieval procedure using the ideas
in Theorems 3.2 or 3.6.

We conclude this section with a description of the classification of all sets 2),
EcZn,n^2, card(D) = card(E)=4, which are non-trivially homometric. The case
where card(D) ̂  5 seems at this time very difficult to classify. The classification
below is joint work with Joel Berman. This theorem was just as easy to prove for D
in the circle group, card(D) = 4, as for the general cyclotomic case. Consequently,
we state the theorem here in that context.

3.9. Theorem. // D, E are subsets of the circle group with card(D) = card(£) = 4, with
D and E non-trivially homometric, then D and E are one of the following two types up
to rotation:

i) there exists r, 0 < r < l / 4 , such that D = δo + δr + δr + il/4) + δί/2 and E = δ0

ϋ) ^ = ^0 + ^1/13 + ^4/13 + ^6/13 a n d E = ^0 + ^2/13 + ^3/13 + 5 7

Remark. We have used both these cases for examples in this section. We can factor
case i) as in Theorem 3.6, but the presence of a parameter r makes it more suitable
to discuss later in Sect. 4 (see examples 4.3a)). The proof of Theorem 3.9 is given in
the appendix after Sect. 5.

4. The General Abelian Group

The results of the previous two sections show that a characterization of
homometry in terms of joint factorizations occurs in the extremes of torsion-free
abelian groups or finite abelian groups. Using the results Corollary 2.5 and
Theorem 3.6, and a technique similar to the one in Theorem 3.2, we get the
following.

4.1. Theorem. Let G be an abelian group and suppose D, Ee X[G] for some
conjugation-closed field KcC. Then D and E are homometric if and only if there
exists εl9 ε2 e {1, — 1} and A, BeK[_^G] such that

and D2 = s2A*B*
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/ N \

Proof. We may assume that G is finitely-generated and G = Z m φ ( 0 Z B . . The
\ί=l /

case JV = 0 is Corollary 2.5 and the case m = 0, JV = 1 is Theorem 3.6. Therefore, we
may need only show that if the theorem is true for the subgroup HcG, then it is
also true for H®Zn. So let D, E e K[H©ZJ be homometric and write D = D(x, y),
E = E(x9y) with xeH, yεZn. For each yef(n), D(x9y) and E(x9y) are
homometric in X(y)[H]. By induction, there exists έ[9 ε£e{l, -1} and Av

By e K(γ) [|/7] such that D(x9 γ) = ε\Ay * By and E(x, γ) = εy

2Ay * B*. Moreover, as
in the proof of Theorem 3.2, we can arrange the choices of Av By such that Tσ(Ay)
= Aσ(y) and Tσ(By) — Bσ{y) for all y e 0l(n) and Galois automorphisms σ of K(y0)
over X. But then, as in Theorem 3.2, there exist unique solutions Άθ9 ...9An_ί9

Bo,..., Bn _! 6 K(y0) [iff] to the equations Aγ(x) = " Σ ^ W / , By(x) = " Σ ^ ( X ) /
i = 0 i = 0

for y e ?̂(w). Because of the in variance under all Galois automorphisms σ oϊK(γ0)
over X, the solutions λi9 Bt e Kβ//] for z = 0,..., n-1. Define J / , ^ G X [ ^ H 0 Z J

by J^(X,3;)= " Σ ΛW/, ^ ( ^ y ) = " Σ ^ W / We also need to factor ε\, εy

2. But
i = 0 i = 0

Ut(y) = εj9ye ffl(ri), defines a spectral unit in Q [ Z n ] . Hence, by Corollary 3.7, there
exists ε o e { l , - 1 } , i9 j=l929 and Vi}EQ\^Zn~\ such that for i = l , 2, ί/f

= β»i^i * ^2, ^o = % ^ i * ^ * This gives

D ^ t / i *stf*@=-είlε22Vlί * F 1 2 * F 2 1 * F2*2 * J / * ^

and

E= U2 * J ^ * J** = ε 2 1 β 1 2 F 2 1 * F2

Let ε1 = ε 1 1 ε 2 2 , ε2 = ε21εί2. Let 4̂ = 1^! * F 2 1 * ts/ and B=Vί2 * F2*2* J*. Then
D = ε1y4*β and £ = ε2;4*l?*, giving the desired factorization in

til D

Remarks, a) This theorem includes the special case of G having no elements of
infinite order; this is the theorem promised in Sect. 3. In Hosemann and Bagchi
[24,25], some references to private communications of Patterson indicate that he
knew of the convolution method used in Sect. 2. There is no other published
indication that he suspected that Theorem 4.1 might be true. Also, see Bullough

[11, 12].
b) It should be noted here that the use of \G in the factorization theorem is

absolutely essential. Consider the example D = (1 -f x)/2 + (1 — x)y/2. If x2 = y2 = 1,
then D determines an element of Q [ Z 2 0 Z 2 ] which is a spectral unit. However, the
joint factorization in Theorem 4.1 cannot be achieved in # [ Z 2 © Z 2 ] . Also, if y is
not restricted and x 2 = l, then again U and δ0 are homometric, but the
factorization cannot be done in C[Z2®Z~\. One can also prove this generalization
of Theorem 2.6.

4.2. Theorem. // Dl9..., Dm e X[G] are homometric to one another, then there exists
e f e { l , - 1 } and Aϊ9...,AneK[£G] such that D^^A^* ... * Aε

n"
{i) for some

choice of Aε

k

k{ι) e {Ak, A$}, fc=l, ...,n, depending on ΐ = l, ...,m.



Phase Retrieval 331

4.3. Examples, a) Consider the parametrized sequence of pairs from Theorem 3.9,
D = δo + δr + δr+(1μ) + δ1/2, E = δo + δr+il/4) + δ1/2 + δr+{1j2y Although the para-
meter r can be a rational, hence making D and E cyclotomic for some possibly large
degree, there is no a priori reason thatt r cannot be irrational. Hence, we can think
of D and £ as a homometric pair in Q\x, y] with y4 = 1 by writing D — 1 + x + yx
+ y2 and E = 1 + yx + y2 + y2x. Then following the lines of proof of Theorem 4.1
allows one to obtain a joint factorization of D and E. Indeed, one gets easily that if
A = (\/4) (2 + 3XJ/ + X);2 + 2}/2-;)CJ/3 + X) and B = (1/2) (3-y + y2 + j;3), we have
D = A * B and E = A * B*. Notice that in this example, there is even a spectral unit
UeQ[y] such that U * D = £. An example of such 17 is (1/2) (1 + y + y2 - y3) which
is found directly using the proof of Theorem 4.1; one uses this and Theorem 3.6 to
obtain the factors A and B above. If we want to specialize this to r=l/4 to
recapture Examples 3.4a) and 3.8a), then we let x2 = y and y4=l. Then U(y)
= (1/2) (1 +x2 + x4 — x6) which is one of the spectral units in 3.4a). But the
factorization of D and E in β[Z 8 ] has factors A = (1/8) (2 + x + 3x3 + 2x4 + x5

— x7) and B = 3 — x2 + x4 + x6. This gives D = A*B and E = A * £* in a completely
different fashion than 3.8a) did.

b) The way in which Patterson's Example 3.4a) occurs as a special case of a
parametric family of non-trivial homometric pairs in Theorem 3.11 does not carry
over to Theorem 3.11 type ii). For instance, consider D e β[T] given additively by
D = δo + δr + δr+{3/l3) + δr+{5lί3). In polynomial form, D= l+x + y3x + y5x with
y1 3 = 1. Theorem 3.11 shows that for any r Φ 1/13, D is uniquely retrievable among
four point distributions in Γ. However, when r = 1/13, this is no longer true because
then Z) = (5O-|-51/13 + <54/13-+-<56/13 which is homometric to E = δo + δ2/i3 + δ3ιi3

+ <57/13 modulo 1.

c) The earliest reference to non-uniqueness causing a problem for X-ray
crystallography is in Pauling and Shappell [36] where the structure of bixbyite was
determined. Bixbyite was found to be a solid solution of Mn 2O 3 and Fe 2O 3 by
Pauling and Shappell, and others. By a study of X-ray data, the arrangement of the
metal atoms was shown to have the equivalent positions provided by Tj (see the
international tables [49] for a reference). Further detailed work showed that the
arrangement of the (Fe, Mn) pairs had to be 8(Mn, Fe) in 8e and 24(Mr, Fe) in 24β
where Se and 24e are the following distributions in the cubical unit cell:

Se: 1/4,1/4,1/4; 1/4, 3/4, 3/4; 3/4,1/4, 3/4; 3/4, 3/4,1/4; 3/4, 3/4, 3/4; 3/4,1/4,
1/4; 1/4, 3/4, 1/4; 1/4, 1/4, 3/4.

24β: w, 0, 1/4; -w, 1/2, 1/4; 1/2-M, 0, 3/4; u+1/2, 1/2, 3/4; 1/4, u, 0; 1/4,
-u, 1/2; 3/4, 1/2-M, 0; 3/4; tι+1/2, 1/2; 0, 1/4, u; 1/2, 1/4, -u; 0, 3/4, 1/2-u;
1/2, 3/4, u+ 1/2; -u, 0, 3/4; u, 1/2, 3/4; κ+ 1/2,0,1/4; 1/2-u, 1/2,1/4; 3/4, -w, 0;
3/4, M, 1/2; 1/4, u+ 1/2, 0; 1/4, 1/2 —u, 1/2; 0, 3/4, -u; 1/2, 3/4, u; 0, 1/4, u+ 1/2;
1/2, 1/4, 1/2 -u.

Here u is a parameter with approximate value determined to be ± 0.030. However,
the two choices of u give homometric distributions; only an assumption about
(Mn, Fe)-O and O-O distances allowed Pauling and Shappell to determine that
u= -0.030 + 0.005 was the correct value of u.
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First consider the distribution 24e by itself. We use polynomial notation with
α = (1/4,0,0), βr (0,1/4,0), γ = (0,0,1/4), x = (u, 0,0), y = (0, u, 0), z = (0,0, u). The
distribution D is 24e and E is the same with (x, y9 z) replaced by (x 1

9y *, z x ) .
Rewriting 24e in polynomial notation and grouping terms gives

D = x(y + jβ2?3 + α2y + α 2β 2y 3) + x " ι (y3 + β2y 4- α2y3 + α2β2y

+ αiβ
2 + α 3

i 8V) + y - 1 ( α 3 + α72 + α3

iS
2 + αi8

3 + βy2 + α 2^ 3y 2) + z " 1 (jS3 + a2β + jS3y2 + α2 j

χβ3(l+oc2β2) (1 + y 2 ) .

Following the method of proof of Theorem 4.1, one sees that there is a spectral unit
£/eβ[α,β,y] such that £/£> = £ modulo α

4 = j84 = y4 = l. Here [ 7 = l - ( l / 4 ) F l 5

where

+ ( l - α 2 ) ( l + α 2 i S 2 ) ( l + 7 2 ) .

In this case, U = W2 for a spectral unit W in Q[α, β, y]. Hence D - PF* D * W* and
E = W*D*W. After some simple computations, such a W can be found. For
instance, define

+ α ( l - α 2 ) ( l + α 2 / ? 2 ) ( l + y 2 ) ,

and let W=V2+l-(lβ)U.
Now consider the two distributions 24^ and 8e together. Let D be this

distribution and E be the one obtained by replacing u by —u. Then D and E are
homometric again. Moreover, it happens that U *D = E here too. Hence, with this
new D and E the same factorization occurs, D = W* D * FF* and E = W* D * W.

5. The Non-Discrete Case

Most experimental uses of diffraction of non-discrete distributions employ a
distribution with an essentially continuous density of compact support in Rn. This
is true in the extremes of signal analysis, spectroscopic analysis of diffuse stellar
objects, and studies of changing ionic distributions via spectroelectrochemistry.
The fact that the diffracting objects are often atomic in nature does not
significantly enter into the diffraction in these cases. See [13, 20, 21, 31, 38,43, 46,
47] for references to some of this literature. However, the problem of phase
retrieval is equally well present here as in the use of diffraction to study finite
distributions. See [2, 32, 42, 48] for background and notation concerning
distributions.

5.7. Definition. If D, E e £fc(Rn), the Schwartz distributions with compact support
on Rn

9 then D and E are homometric if and only if |D| = \E\ everywhere on Rn.



Phase Retrieval 333

As before, if A, B e ^c(Rn), then B = A * B and E = A * £ * are homometric. The
general question, yet incompletely resolved, is to what extent this factorization
characterizes homometric pairs. The theorems in Sect. 2 handle this problem for
finite distributions in Rn by an entirely algebraic method. However, if D and E are
in C™(Rn), the smooth functions with compact support, then the methods that give
at least approximate factorizations are more analytic in nature.

If D e &C(R), then D(x) can be extended to an entire function D(x + iy) such that
\D(x + iy)\SC(l+(x2 + y2)ίl2)Nem for some constants C and B. If D e CC°°(JR),
then for all n> 1, \D(x + iy)\ ̂  Cπ(l + (x2 + y2)1/2)~nem for some constants Cn and
B. As observed by Walther [47], this makes D(z), z = x + ίy, satisfy \D(z)\^CeBlz]

for some constants C and 5. Consequently, D is an entire function of order 1 and
has an infinite product factorization of a special type by Hadamard's factoriza-
tion theorem (see [1, 28]). If D has a finite number of zeros z 1 ? . . ., zN e C\{0}, then

Otherwise, there are infinitely many zeros (zn: n= 1, 2, 3, ...)CC\{0}, and

J5(z) = e*o+βizz* Π (1 -z/zn)ezlZn- (1)
« = i

In order to allow for multiplicities, repetitions are allowed in (zn). By the theorem
of Titchmarsh [45], see also Cartwright [16], if D e LX(JR) too, then there must be
infinitely many zeros. The product representations of D converge uniformly and
absolutely on compact subsets of R.

5.2. Theorem (Walther). If D,Ee ^(R), then D and E are homometric if and only if
given the expression 1) for D, with the product possibly finite, there exists c e C,
\c\ = 1, d G R, and a choice ze

n

(n) e {zn, z j , n= 1, 2, 3, ..., such that for all zeC,

00

E(z) = ceidze*0+aiZ2* Π (1 -z/ze

n

{n))ez/z«(n).
n=l

Walther calls the operation in Theorem 5.1 zero-flipping. It is clear from
general theory that zero-flipping on the product representation 1) always gives a
new series which again determines an entire function. However, if one does a zero-
flipping on D where there are infinitely many zeros, it may no longer be the case
that the product represents a Fourier transform extended to C. The same ideas as
above prove this result.

5.3. Theorem. If D,Ee ^C(JR), then D and E are homometric if and only if there exist
entire functions fu f2:C-^C such that D(z) = f1(z)f2(z) and E(z) = fί(z)f2(z), for
all zeC.

Instead of proving this corollary, one just proves this more general fact using
the Weierstrass factorization theorem. We omit the simple proof.

5.4. Proposition. Let gί9 g2 be entire functions on C. Then the following are
equivalent:
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1) forallxeR,\gi(x)\ = \g2(x)\9

2) there exist entire functions fu f2 on C with gι(z) = fι(z)f2(z) and g2(z)
= fι(z)f2(z)forallzeC.

5.5. Corollary. If D, Ee £fc{R) with D and E homometric, then there exists
polynomials pn(z), qn(z) such that D(z) = lim pn(z)qn(z), E(z) = lim pn(z)qn(z)

n-> oo n->oo

uniformly on compacta.

Remark. This corollary justifies a phase retrieval program along the following
lines. Given \D(x)\ in some interval J C JR, approximate |l)(x)| on / by a polynomial
P(x). Then perform the zero-flipping procedure on the zeros oϊP(x) in C to obtain
polynomials Q(x), at least one of which will approximate D(x) on /. The main
difficulty in this method will be in making a reasonable choice of P(x). This method
and others are currently being applied to experimental situations as described in
[40].

To see in more detail what effect zero-flipping has on D e ^C(R), we need to
know the Fourier transform of the zero-flipping z\->(z — ά)/(z — a).

5.6. Proposition. Let D e ^C(R) with D(a) = 0. Then there exists E e &>C{R) such that
E(z) = (z-a)D(z)/(z-a). If De C?(R) too, then E e C?(R) also.

Proof. By the Paley-Wiener theorem, an entire function φ = D for some D e ^C(R) if
and only iϊ\φ(z)\ ̂  C(l + |z|)N^ | Im(2) l for some constants B, C and some N e Z + . If \z\
^ 2|α| + 1 , then \z - a\ ^ (\z\ +11)/2 and

for some constant Cv Hence, (z — ά)D(z)/(z — a) satisfies the growth condition
needed to make it a Fourier transform E for some E e ^(R). The argument that
E E C?(R) if D eC?(R) is similar. D

Remark. Because B does not change in the above, the smallest closed interval [ — ft,
ft], ft^O, containing the support of D, also contains the support of E. Also, as in
Burge et al. [13], one can compute E in terms of D. Let H(t) be the Heaviside
distribution, H(ί)=l [ O f O O )(ί), then if a = c + id, we have E = D
+ 2d(eιtce~dtH(t) * D(ή). One can prove Proposition 5.6 directly using this formula.

5.7. Example. LetD = eδ_ί/2-δί/2. Then D(ΐ) = 0 while D( - i) + 0; define E by E(z)
= (z + ϊ)D(z)/(z — ϊ). Using the formula for E in terms of D above with c = 0 and
d=l, one gets E to be

where λ is the Lebesgue measure on R. Hence, while D is a finite distribution, E is
not of the same type.

The fact that zero-flipping one zero leaves ^C{R) invariant makes it clear that
D e ^C{R) is uniquely retrievable in £fc{R) if and only if all of the zeros of 6 are real.
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This is a much stronger restriction than assuming that D is semi-symmetric, which
only guarantees that the zeros of D occur in conjugate pairs. However, if D,
E eSfc(R) are semi-symmetric, then D and E are homometric if and only if there
exists c e C, \c\ = 1, x e R, such that E is cδx * D or c ^ * D*. This is readily apparent
from Theorem 5.2.

One question that is unresolved here is which (if not all) sequences of zero-
flippings will convert D into an E for some E e 5̂ (JR)? This question is closely
related to the following problem.

5.7. Problem. If D, Ee^c(R) with D and E homometric, does there exist A,
B e £fc(R) such that D = A * B and E = A * £*?

On the other hand, it is clear that the factorization Theorem 4.1 does not have
an analogue in CC°°(JR). TO see this, we need to construct / e C™(R) such that the
zeros of / have certain properties. By Titchmarsh [45], / always has an infinite
number of zeros which are distributed with certain very regular properties. Indeed,
if/ had only finitely-many zeros, then /(z) would be a polynomial up to a factor
eαo+αiZ, and such an analytic function cannot satisfy lim /(x) = 0. It is easy to

construct fl9 f2 e C™(R) with these propertiesjfl f2 () p p j
1) Λ £0, A(-x) = A(x) for all xeR so f1(z) = f1(z) for z e C,
2) ΛCx) + 0 for all x e R,
3) / 2 (-x) - -Λ(x) for all x e Λ; so /2(z) = -/2(z) for z e C,
4) Λ(^) = 0 implies z 6 R.

/This can also be done so that if / = / i + / 2 then / ^ 0 . Now if/(z) = 0, then
0 = /(z) = /1(z)-/2(z). Hence, if x e R, then /(x) = 0 forces Λ(x) + /2(x) = 0 and

/i(x)-/2(x) = 0 which contradicts 2). But / ^ 0 implies /(ix)= ? exyf(y)dy>0
* 0

for all x e R. Finally, not both /(z) and /(z) can be zero at z e C because this would
force O = f1(z) + f2(z) and 0-/ 1(z)-/ 2(z). Hence, /1(z) = /2(z) = 0 and by 4) z G R,
while by 2), z φ R.

Given / with the properties above, choose some aeC, f(a) = 0. Then let
g G C?(R) be defined by g(z) = (z-a)f(z)/(z-a). By Theorem 5.2, g exists and is
homometric to /. But also, suppose f = A*B and g = ̂  * £* for some i , ΰ e ^(R).
If B(6) = 0, fe + α, then it would follow that g(b) = O while g(z) = 0 if and only if
f(z) = 0 or z = α. Since f(b) = O and f(b) = O is impossible, we have b = a a,
contradiction. Hence, 5(z) = 0 only if z = α. But then £ cannot be integrable, let
alone in C?(R).

5.8. Proposition. There exist homometric f,ge C™(R) such that there does not exist
A, BeLx{R)n^c{R) with f = A*Bandg = A*B*.

In conclusion, the phase retrieval problem in Sfc(Rn) or Cc°°CRn), rc^2, requires
much more analysis. Because the zero sets of Fourier transforms are no longer
discrete, there is no currently devised method of phase retrieval analogous to
Walther's zero flipping method. One can conjecture that if F e <^c(Rn). then
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Fig. 3

{E e έ7c(Rn): D and E are homometric} is a discrete subset in the usual topology on
But what this set is and how to describe it remains unclear.

6. Appendix

This appendix provides a proof of Theorem 3.9. We use the Patterson diagram as a
conceptual tool in this classification. The classification of homometric pairs of 4
point sets will depend on the observations that when three points form a triangle
with chord lengths α, b, and c, then a-f b = c if the triangle does not contain the
center of the circle, and a + b -h c = 1 if the triangle does contain the center.
Moreover, the largest inter-point distance will be a chord nearest the center of the
circle in the Patterson diagram.

Lemma 1. // two homometric Patterson diagrams with k = 4 points contain three
points which determine congruent triangles, and if the fourth point in both diagrams
is in an arc of the circle subtended by chords of the triangles of equal length, then the
diagrams are congruent.

Proof. Let pί9 p2, and p3 be the three points of the triangle. Let p4 be the fourth
point in one diagram and let p 4 be the fourth point in the other. Let x, y, and z be
the three lengths of chords emerging from p 4 ; these are the same three lengths if p 4

is replaced by p\. By observing where the center lies, the shortest of these lengths,
say x, must be for a chord to a vertex of the subtending chord. Also, we may assume
that the diagrams appear as in Fig. 3 (since the length x determines uniquely the
length y). But then the distance from p2 to p 4 is the distance from p2 to p\. So the
distance from p 2 to p3 is the distance from p2 to pγ. This means that the diagrams
are reflections of one another and so they are congruent. D

We are now ready to state and prove the theorem. Bear in mind throughout the
proof of the theorem that without the various cases and subcases that we use, and
our congruent triangle lemma, there would be a truly impossible number of cases
to consider. We do not assume any diagrams are cyclotomic, so the lengths shown
are the true lengths. Also, the center of the circle will be marked by a dot.

Theorem 3.9. // D and E are homometric Patterson diagrams with 4 points in each,
then D and E are one of the following two types:
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i) Choose r, se (0/4) with r + s= 1/4 and let m= 1/2.

D . E

Remark. Type i) appears in Patterson, 1944 [33]. For r = s, there are Patterson's
discovery, while Erdόs pointed out the general case of i). Type ii) is new and was
discovered by Edgar using a computer.

Proof of Theorem 3.9. The proof is given by looking at the individual cases. We
distinguish two basic possibilities for homometric diagrams D and E. A diagram is
called outer (inner) if the largest chord length m is for a chord on the boundary (in
the interior) of the diagram. In Fig. 4, we illustrate the two types in standard
position which can be achieved without loss of generality in this manner. For A,
rotate the diagram so that ra, 0 < m S1/2, is vertical (we will refer to chords by the
symbol representing their length in this manner for the rest of this proof). Then
reflect so that x^y.Iϊ the center is interior, then z = 1 — m — x — y. If the center is
exterior, then z = m — x — y. For B, rotate the diagram so that m is horizontal and
above the center. Since m is longest, the lower triangle (6, m, 1 — m — b) contains the
center. Reflect the diagram so the triangle (α, b,a + b) does not contain the center,
except possibly on its boundary.

At least part of our analysis proceeds by considering the shortest and second
shortest chords. We give a table for these pairs in Fig. 4. Notice that for A the table
uses x^y and the fact that neither x + z nor y + z can be shortest or second
shortest. For B, a + b is neither shortest nor second shortest and l—m—b^a
because of the position of the center relative to the intersection of the chords m and
a + b. Moreover, m — a^b since otherwise m is not largest. So this leaves only a and
b for the shortest and one of {α, b, m — a, 1 — m — b} for the second shortest. Finally,
we cannot have the pair (α, m — a) or (fo, 1 — m — b) as the only possible shortest and
second shortest pair because in either case m<a + b.
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A, outer B, inner

Table of pairs of shortest and second shortest chords

A

B

shortest chord

X

X

z

a

b

a

b

second shortest chord

y

z

X

b

a

1-m-b

m-a

Fig. 4. The two basic types, outer and inner

Suppose now that D and E are homometric Patterson diagrams with 4 points.
We have three cases to consider: Case I) D, E are outer, Case II) D, E are inner, and
Case III) D is outer, E is inner. For Case III), we will have the further possibilities:
Subcase a) the center is not in the interior of the convex hull of D, Subcase b) the
center is in the interior of the convex hull of D. We will see that because we are
assuming D and E are not congruent, we only get non-empty cases in Case I) which
gives ii) and Case III) Subcase a) which gives i).

Case I. Both D and E are outer and the location of the center of the circle is
otherwise unspecified. So z = l— m — x — y or z = \—x — y. See Fig. 5 for the
illustration and subcases affecting Case I). In all four cases where there are two
obvious congruent triangles, Lemma 1 shows D and E would be congruent.

Case I.I. Now a = x and b = y. To avoid congruent diagrams, one diagram must
contain the center and one must not contain the center in its convex hull. Assume
that the convex hull of P does not contain the center; so z = m — x — y and c=l—m
— x — y. The sets {z, z + x, z + y] and {c9 c + a, c + y} = {l —m — x — y, l—m — y,
1 — m — x} are identical. Equating the smallest in these two sets gives z = m — x — y
= l—m — x — y.So2m=l and the longest chord is a diagonal; this means D and E
are congruent and Case I.I) is vacuous.

Case 1.2. Now a = x and c = y. To avoid congruent triangles with chords a and
m, we may suppose again that D does not contain the center and E does contain the
center. Then 2m<1 and z = m — x — y, b=l—m — x — y. Of the three remaining
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Here x < y and a < b

Table of shortest and second shortest pairs for D and E

(χ,y)

(x,z)

(z,x)

(a,b)

Case I.I

symmetric to

Case 1.2

symmetric to

Case 1.3

(a,c)

Case 1.2

Δ(a,c,a+c)

= Δ(X,Z,X+Z)

Δ(a,c,a+c)

=Δ(z,x,x+z)

(c,a)

Case 1.3

Δ(c,a,a+c)

=Δ(X,Z,X+Z)

Δ(c,a,a+c)

=Δ(Z,X,X+Z)

Fig. 5. D and E both outer

l-m-y l-m-b

Table of shortest and second shortest pairs for D and E

(χ,y)

(x,l-m-y)

(y,χ)

(y,m-x)

(a,b)

congruent

congruent

congruent

Case II.1

(a,l-m-b)

congruent

congruent

Case II.2

Case II.3

(b,a)

congruent

symmetric to

Case II.2

congruent

congruent

(b,m-a)

symmetric to

Case II.1

symmetric to

Case II.3

congruent

congruent

Fig. 6. Both D and E are inner
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lengths in P, z, z + x, and z + y = m — x, m — x must be the longest. But in E the
remaining lengths are b, b + c, and a + c. Hence, m — x = b + c=l—m — a=\—m
— x, but then 1 = 2m, a contradiction.

Case 1.3. Now c = x and a = y. We may make the same initial assumptions as in
Case 1.2) so z = m — x — y, c=\— m — a — b. Solving for b gives b=l— m — a — c = \
— m — x — y. The three remaining lengths in D are {m — x — y, m — x, m — y} and in E
are {&, b + c, a + c} = {l — m — x — y, 1— m — y, x + y}. Equating the largest in these
sets gives m — x = \—m — y since b + c= 1— m — y^a + c = x + y. Hence, l=2m — x
+ y. Of the remaining pair of lengths, i f l— m — x — y = m — x — y, then l=2m, a
contradiction. Therefore, 1— m—x — y = m—y and x + l = l— x — y. So
m = 2(x + y) and l = 2 m + x. Since, l=2m — x + y, we have — x + y = x and so
y = 2x. Solving for all variables in terms of x gives 1 = 13x, (x, y, z, x + z, y + z, m)
— (x, 2x, 3x, 4x, 5x, 6x), and (α, b,c,a + c,b-\-c,m) = (2x, 4x, x, 3x, 5x, 6x). This is
ii) in the statement of the theorem.

Case II. Both D and E are inner and the center is located only to the extent that
standard positions in Fig. 6 indicate. See Fig. 6 for the illustrations and subcases
affecting Case II). When "congruent" is written in the table, it means that there is an
obvious pair of congruent triangles to which Lemma 1 applies and that D and E
would have to be congruent. Also, Lemma 1 and a simple argument show that if
2m = 1, then D and E are congruent again.

Case ILL Now a = y and b = m — x. The remaining lengths in D are {x, x + y,
1 — m — y} and in E are {m — a, a + b, \—m — b} — {m — y, m — x + y, 1 —2m + x}.
Adding these lengths in D gives 1 — m + 2x, while adding them in E gives 1. So
2x = m and, since b = m — x, we have b = x. Hence, (a,b) = (y,x) and Lemma 1
proves that the diagrams are congruent.

Case Π.2. Now a = y and \—m — b = x.Sob=l—m — x. The remaining lengths
in D are {x + y, m — x, 1 — m — y} and in E are {fc, α + b, m — α}. Equating the sums of
these three lengths gives l=m + 2b. But then b=l—m — b = x and so (α,b)
= (x,y). Hence, D and E are congruent.

Case Π.3. Now a = y and 1— m — b = m — x. Solving for b gives fr = l— 2m + x.
The remaining three lengths to consider for D and E are {x, x + y, l—m — y} and
{b,m — a,a + b) respectively. Equating sums of these two sets gives m + 2b=l—rn
+ 2x. Substituting b = 1 — 2m + x gives 1 = 2m, and so D and E are congruent as we
commented above.

Case III. Now D is outer and E is inner. We have to break this case into two
subcases. The diagrams for D and E are as in Fig. 4 with A = D and B = E. Note that
no assumptions on whether we are in Subcase a) or b) is intended despite the
illustration of A = D in Fig.4.

Subcase IΠ.a. Now the center is not interior to the convex hull of D. The five
lengths for D and £, other than the longest m, are {x, y, z, x + z, y + z} and {a, b,
a + b, m — a, l—m — b} respectively. Equating the sums of these two sets gives
2m + z=l + a + b. I f2m<l, then z>a + b. But then z cannot be smallest or second
smallest, and x^y<z<x + z^y + z. Also, a + b is not smallest or second smallest,
and z>a + b. This is impossible. Hence, we have 1 = 2m and z = a + b. So a<z and
b < z; consulting the table in Fig. 4, we see that since z is third largest in D, we must
have {a, b} containing the smallest and second smallest in E. But then {x, y}
= {α,b} and z — x-\-y. Also, m^x + y + z and so rn = 2(x + y) = 2z. This gives
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x -f y = z = 1/4 and m = 1/2. Also, any matching of {a, b} with {x, y} will give us, up
to congruence, the homometric pair D and E of i) in Theorem 3.11.

Subcase IILb. Now the center is interior to the convex hull of D and so z = 1 — m
— x — y, oτ\-m = z + x + y. Adding the remaining five lengths gives this formula:

l-m + 2z + x + y=l+a + b. 1)

Since D contains the center in the interior of its convex hull, m>z + y^z + x gives
the three largest lengths in D. In E, the largest length after m is m-a, a + b, or
l—m — b. Hence, we have three further subcases depending on which length is
second largest in D. A consequence of 1) and l-m = z + x + yis that 2(1 —m) + z
= l+a + b, and so a + b — z = 2(l— m)—1 = 1— 2m>0. Hence, a-\-b>z. Here are
the three subcases.

Subcase IΠ.b.l. Now z + y = m — a. Subtract both from 1) to get 1 — m + z + x
= l—m + 2a + b. Hence, z + x = 2a + b, and so x > a because a -f b > z. But since x is
the smallest or second smallest in P, we have z = a. This means x = a + b,
contradicting the fact that x is second shortest.

Subcase III.b.2. Now z + y = a + b. Subtracting from 1) gives 1— m + z + x = 1
so z + x = m. But z + x < m, a contradiction.

Subcase III.b.3. Now z + y=l—m-b. But also z + y=l-m — x. Equating
these gives 1— m — b = l— m — x. Hence, b = x. Now, in E the only possibilities for
third largest are a + b and m —α, and in P the only possibilities are z + x and y.

Subcase IΠ.b.3.1. If α + fc^z + x, then b = x implies a = z. This gives congruent
triangles to which Lemma 1 applies, so D and E are congruent.

Subcase ΠI.b.3.2. If a + b = y, then the final chords to match are {a, m — a] and
{z, x + z}. But z — m — a together with y = a + b would say z + y = m + b>m, a
contradiction. And z = a together with b = x gives us congruent triangles to which
Lemma 1 applies to prove D and E are congruent.

Subcase IΠ.b.3.3. If m — α = z + x, then we only have to match {α, a + b} and
{y, z). We cannot have a + b = z, since a + b > z throughout Subcase IILb). Hence,
a = z and y = a + b. But then a~z and b = x gives congruent triangles to which
Lemma 1 applies to show D and E are congruent.

Subcase IΠ.b.3.4. If m — a = y, then we have yet to match only {z, x + z} and {α,
α + fo}. Clearly, α = z is the only choice. Since b = x, for one last time we apply
Lemma 1 to prove D and E are congruent. D

See Caelli [17] where a similar problem has been studied in the plane.
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Added in Proof. The answer to Problem 5.7 is negative. There exists homometric / , g e C?(R) such
that for no A, Be S^C(R) is f = A *B and g = A*B*. This construction and the answers to other
questions left unresolved in Sect. 5 are to appear in a forthcoming paper.






