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Abstract. The potential of the pure Yang-Mills theory when quantized on the
space of gauge fields modulo gauge transformations is computed. The large-N
behaviour is given in terms of the Green’s function for a scalar field in the
adjoint representation.

1. Introduction

In a pure SU(N) Yang-Mills theory there are only two inherent parameters in
which to expand: the coupling constant g and the group size N. In the N — oo limit
the perturbative quantum theory is known to simplify in the sense that expectation
values of products of equal-time Wilson loop functionals factorize [1]. A
mechanism for this reduction has recently been found and applied to simpler field
theories with a large-N limit [2]. It is known as the collective-coordinate method
and revolves around the fact that as N increases, the symmetry of theory increases.
If only states which are invariant under the symmetry group (the group of local
gauge transformations for Yang-Mills) are to be considered, then the collective
coordinates are to parametrize group-inequivalent fields. When the Hamiltonian
is written in terms of the collective coordinates an extra term appears, called the
collective-coordinate potential (CCP). In the simpler models studied so far [3], as
N increases and the coupling constants are suitably scaled the total potential is
found to become sharply peaked around one point. Then the ground-state wave
function will be peaked at this point and the expectation values of products of
functions of the collective coordinates will factorize. In the case of large-N Yang-
Mills such a point of peaking was termed the “master field” by Witten [1].

We attempt to give an intrinsic expression for the CCP in the sense that it
depends directly on gauge-invariant properties for the gauge field and not on
collective coordinates. More specifically, our expressions (47) and (49) for the total
potential in the large-N limit involve only the covariant derivative of the Green’s
function for an adjoint scalar in a background field. The expression (39) for the
CCP is exact for all N. These formulas may be more computationally tractable
than previous expressions.
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In Sect. 2 the expression for the CCP is derived and discussed. Section 3 has a
brief exposition of the geometry of the space of gauge-inequivalent gauge fields.
Section 4 gives the computation of the CCP for Yang-Mills, and the large-N
behaviour is considered in Sect. 5. The results are discussed in Sect. 6. The
geometric proofs of Sect. 2 are relegated to the Appendix.

2. The General Collective-Coordinate Potential (CCP)

Suppose one wants to solve a quantum mechanics problem with a potential V(p)
on a (possibly) curved space P, equipped with a Riemannian metric g. Letting 4,

. o . 1
denote the Laplacian on P { given in coordinates by 4, f = ——(]/;)g‘”f, vh ) we
have 1/5

I A )+ VO =ik ). )

(There is a possible term coming from the scalar curvature of P, but this will not
arise in the following applications.) In addition suppose that there is a Lie group G
which acts freely on P (ie. if xe G sends any point of P to itself then x is the
identity), acts by isometries (i.e. preserves the metric g) and leaves ¥V invariant. One
may just want to consider wave functions which are G-invariant, such as the
ground state. Then y can be specified equally well by giving its values on the space
M =P/G of orbits of P under G. The space M has a natural induced metric § given
as follows: let m be a point in M (i.e. an orbit in P) and let 4,,, B,, be tangent vectors
in M at m (i.e. infinitesimal changes in the orbit). Pick a point p € P in the orbit m
and let X, denote the tangent space at p to the orbit m. There are unique tangent
vectors Ap and B, in P at p which are orthogonal to X, and glve the same
infinitesimal change in orbit as 4,, and B,,. Define §(4,,, B,,) as g(4,, B,). This is
independent of the point p chosen and so is well-defined.

Because the Laplacian commutes with isometries, 4pyp is also a G-invariant
function and comes from a function A, on M. There is also the function 4,
which is the Laplacian of p on M using the § metric. These two functions are
related in the following way. Let w'/*(m) be the relative volume of the orbit m,
which is defined more precisely in Appendix A. Then

B) 1A= (WHE) T Ay (W) —w A w4 2)

For the proof of (2) see Appendix A.
Let ¢(m) be w'/*(m)yp(m). Using (2), (1) becomes

2

P Aom) + (V- CCPYiom) =i ), ®)

P> D

with
hz
CCP(m)= 7(w_1/4AMw1/4)(m). 4

This is the collective-coordinate potential.
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As an example of how this works, let P be R" without the origin and let g be the
Euclidean metric on P. Take G to be SO(N) acting by matrix multiplication on R¥
(although this is strictly only a free action when N = 2). Then by sending an orbit to
its radius r, M can be identified as the positive real numbers and g is the Euclidean
metric on R*. The relative volume of an orbit, w*/?(r), is ¥¥ " ! and

CCP(r)=gf(l%l)(rgg-l)”:(N—1)(N—3)8hTZZ. (5)

This agrees with the previously derived result for the O(N) linear model [6].

For computational ease, CCP can be written differently. If y =w ™ '/#is inserted
into (2) then it becomes
W A g™ U= —plle g, wii4 (6)
Also,
~;,—Afzd1nf—|—|l7lnf|2, (7
and so
hZ
CCP= ?(AMlnwﬁ-%lVMlnwlz) 8)
hz
= ~E{(Aplnw—%|l7plnwlz). )

3. The Reduced Space of Gauge Fields

In order to apply the preceding to SU(N) Yang-Mills one must study the space of
gauge fields. This has been done by Singer and others [7] and a synopsis of their
results will be given. For notation, let Z be the space on which the gauge fields live
(such as a torus), let A°®SU(N) denote the SU(N)-valued functions on Z, and let
A*®SU(N) denote the SU(N)-valued 1-forms on Z (i.e. vector potentials of the

form 3 A,(x)dx* with A, e SU(N)). Let z, be a fixed point on Z (to be thought of
n

as the point at co) and let G be the group of functions ¢ from Z to SU(N) such that
#(z,,)=1. These act by gauge transformations on A'®@SU(N) as

¢-2Audx“=Z(¢_1Au¢+¢“15u¢)dx”. (10)
Let Dy: AO®SU(N)—>/ul1 ®SU(N; be the covariant derivative: D, t=Y (0,7
+[A,,t])dx* and let D% : A'®SU(N)—A°®SU(N) be its adjoint: D% (% ntdx”)
=—20n"+[A4,,n"]). Letb,: A°QSU(N)—A'®@SU(N) be the bracket operat-
ion: buAv: = % [A,,7]dx" and let b%: A'Q@SU(N)—A°®SU(N) be its adjoint: b%y
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=—Y[A4,,1"]. For 1eA°®SU(N) we also let b, denote bracketing on

n
A°®SU(N) or A'®SU(N) by components bo=[r,6] and b (¥ 4,dx")
=2 [r,4,]dx". A tangent vector Ve T, U at a point AeW is given by an

"
infinitesimal change in gauge field, that is, an element B of A'®SU(N) such that if

f is a differentiable function on 2L, (Vf)(4)= — f (A+¢B).If B,Ce T,A thereisa
natural inner product given by

9(B,O)= f py Z(B )50 (C)(x0)dx . (11)

This makes 2 into an infinite-dimensional flat Riemannian space with a metric
invariant under the group ¢ of gauge transformations. By identifying gauge-
equivalent fields one obtains the geodesically complete space .# =A/¥ of gauge-
inequivalent fields with the induced metric. This projection n: U—.# defines a
principal 4-bundle and the base manifold .# is not flat [7]. We need the relative
volumes of orbits of A under 4. The Lie algebra 4 of ¢ is {1e A°QSU(N):
©(z,,)=0}. If R, S € 4, define their inner product to be

(R,8)= f ZR 5008 ;(x)dx . (12)

At a point AeU the infinitesimal gauge transformation given by R is
A—A+¢D4R. Using the notation of the appendix, T,:¢— ¢ is defined by

<R, TAS>9=g(DAR9 D,S)=<R, DjDAS>¢' (13)

Thus w=detD%D ,|,. This agrees with a lattice calculation by Lovelace [8].

We remark that there is an interesting formula in [8] giving w as a weighted
sum of Wilson loop functionals over the lattice. It was pointed out to me by Singer
that without conditions at co there is a perfectly well-defined continuum version of
this formula. Let u, (y) be the Wiener measure on the space I, , of paths in Z
starting at x at time O and ending at x at time t.

2
|:Formally, dux,,(y)=exp< —— da) Py, with 9y, , as the formal

measure on such paths y. | Then if y is the character on SU(N) corresponding to

the adjoint representation

Inw=—lim [ | jts-1X<Pexp<—§Av(a)dav>>dux,,dzdx [13].  (14)

520 Z 0 Iy

4. Application to Yang-Mills Fields

The CCP for Yang-Mills can be derived by writing the quantum Yang-Mills
equations in a Schrédinger-type form [9]. Let the spacetime be R x T3 with T3 a
finite volume 3-torus and let the metric be the flat (+ — — —) Lorentz metric. The
following can be considered as the continuum limit of the Kogut-Susskind lattice
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Hamiltonian. For the Yang-Mills Lagrangian

1 v
F,=0,4,—0,4,+[A,, 4], (16)

we pick the local gauge condition 4,=0 to derive the Hamiltonian,

%92\‘. ana(x)nta(x)d3x— 2_2 j Z TrF, '(x)Fij(x)d3x ) (17)
with the Gaussian constraint
> Dn'= 3 (0’ +[4;,7']) =0. (18)

(Here 1 <i,j<3 and ais a Lie algebra index.) Hereafter, we use the positive definite
Euclidean metric on Z = T3. The commutation relations

[ma(x), (1)1 = — 73703 (x ~ y)d (19)
can be formally represented by

()=~ o)
then as an operator on a function f on 9, H becomes
Hf ) (D)= - g 2(Af)(A)+ > IF(A)%f(4), @1
with
(AN )= I z5 Am( )2 X, 22
and
IFA)I? =~ = TrFi(d. (23)

This Laplacian is the same as the geometric Laplacian on the space of irreducible

gauge fields on T3 and the Gaussian constraint D, says that f is a gauge-

of
54,(x)
invariant function on . We can apply (3) to conclude that as operators on
functions on ./,

1 0
—1#%9%4 ¢+ <? [F[*+ CCP) o= lh_¢ (24)
with w=detD%D | , =w"*f and
2 2

CCP= h—(AQIInw 1|7y lnw|?). (25)
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If suitably regularized the terms in CCP can be computed. For a trace class
operator T, let Sp(T) be the trace of T. If T can be represented by (Tf)(X)
={K(X,Y)f(Y)dY for a continuous kernel K(X,Y), we have Sp(T)
=[K(X,X)dX. Let G, be (D%D )™, the background-field Green’s function for a
scalar in the adjoint representation. Let {¢;}¥27* be an orthonormal basis for
SU(N) under the Killing-form inner product, with [¢;, 0] = c;,,0;. Let { f;} 521 bean
orthonormal basis for A°®SU(N) consisting of eigenvectors of D%D, with
eigenvalues {/;}7Z .

In order to treat D%D , acting on ¢ we must first restrict the domain to functions
which are sufficiently continuous to have a value at z_, by introducing Sobolev
spaces (see Appendix B). The effect of using g instead of A°®@SU(N) can then be
subtracted from all determinant calculations. For brevity we will only show the
calculations on A°®SU(N), as the subtracted terms will go away in the large
volume limit. The variation of D¥D , under a variation of 4 is

d

de

(D*D) 444y =b D4+ D%b, . (26)
=0

The method of zeta-function regularization [10] gives

Indet(D*D) . ,,= lim Sp((b}D 4+ D%b,)G5*Y)
s—0

d89=0
= li_{ré Z {f;»(byD,4 +Djb,,)Gf§+ 1)fj>
;' g ® (s+1) (27
= SI_I,%2§<fj’b”DAGA fi>
= <717 EA>
with E e A'®SU(N) given by
s=>0 i,j

Although, this only literally exists for Re(s) >3, it can be analytically continued to
give a finite value at s=0.
For the second variation of Inw, we have

2

) d
Indet(D*D) 11y = HmSp-o (6Dt D)) G5 1)

Et::O =0
) 1 © t
-tmso(asinet - g [rfony o

e VPADABED, 4+ Db e OPIPag th) .
The first term of (29) is
Sp(2byb, G5 )= X< 267,64V
= <71, - 2; A7 T Dbsby, '7> ' (30)
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Using the identity
(byD 4+ Db, fj= —(2b3 .5, + by D), (31)

the second term of (29) is

F(s+ 0 (5, tsj <n,Ze(V""’(2[bg*’DA]+DAbf;)
J

(32)
-e”PAPAQ[D%, b1 +by D )
= (1o Dby 07 G4 )= DD, )2B3 1 +by, D).
Thus we can write (29) as
d2
pr =Oln det(D*D) g4 oy =<1, 041> (33)
with
s=0 j
(A7 TP~ GT 1))(/1,-—D,”QDA)_ 1(2b§’3,,f,-+ by, DA} - (34)

This is a well-defined self-adjoint second-order pseudo-differential operator

(pd0,) [11].
The Laplacian Ay lnw is Sp(6,); then

2,2

CCP= g

(SP(QA) i(E4E ). (35)

Using (8) we can write CCP to make the trace act on a nicer operator than 6 ,.
Let {0, }z= 1 be an orthonormal basis of Ker D¥%. Because the geodesics in .# are
projections of geodesics in 2,

2
4 ,IndetD*D=3" d—z Indet(D*D) 4 4 .4,
k dS =0
=2{0y,0,404)
- (36)
=y <ak,hm S{—24; by by, +4bp s,
k 50 j
(4 TG ) (= DED) bR Jo )
Because the projection operator on KerD¥ is I—D ,G D%, we have
A 4Inw=Sp(%,), (37

with
U= lim(I-D,G, D% {— 2’11’_ e Z)bfjbfj
s—=0 J

+4bp (A7 TV =G4 —DED )T bh s YU DG D). (38)
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This is a pd0,. Then

h2g2
CCP= =2 (Sp(#) +3<Ex E)). (39)

5. The Large-N Limit

The pure SU(N) Yang-Mills theory has a large-N limit in the sense that if g?N is
fixed then for any loop L,

W, (4)= <K17—TrP exp (— f4- ds>> (40)

approaches a limit as N—oco. We can think of {W,} as coordinates for a linear
space ¥~ with the manifold #y of SU(N) gauge-inequivalent gauge fields
embedded in #" as ¢y(#y) by sending Ae My to gy(A)={W,(4A)}e# . For
A€ My, the SU(pN) field

A0 .. 0

- [o

A= f1 0 pN (41)
00 .. 4

in .,y has W,(A)=W,(A) for all L; if {N;};2, is a sequence with N,|N,,, then
On (My)—> Py (My,) = ... >y (My)— ... gives a chain of submanifolds of #". If

Xe U dn (My), then the leading term of (V+ CCP)y (45, (%)) in i should dominate

in the large-N limit.

There has been confusion in the literature on the role of the kinetic-energy term
in the large-N limit. In the Hermitian matrix model the total potential vanishes
and the large-N is given by constraints on the wave function from the geodesic
incompleteness of the base manifold .# [5]. In our case the base manifold is
geodesically complete and we conjecture that Yang-Mills is similar to the O(N)
linear model in that the kinetic contribution will be nonleading order in N.

Lovelace has speculated that only the |V , Inw|? term of (8) contributes for large
N [8]. Before showing this we must make a regularization of the trace in (39). First,
suppose that M is the operator for multiplication by a continuous function F on
[*(Z). To define Sp(M ) suppose that Z is latticed by [ points in Z. Then for large [,

Sp(M,) as defined on the lattice is I{ F(x)dx/vol(Z). In order to extend this
z
definition to other pd0,’s, let a(z, £) be the symbol of %,, so
1

(W) @)= 55167 %ale, O (dyde. “2)
If a, is the zeroth order part of a, we define
“Sp”(U)=1 | ao(z,&)dzdé/vol(§*Z), (43)
S*Z

where S*Z is the cosphere bundle {(z, &) e T*Z: |{|*=1}.
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This regularizes the most singular part of Sp(%,) in terms of a lattice spacing.
Computing a, from (38) and using the fact that “Sp” is tracial, we obtain

S == 3 Taiz) ImSpOa". (#4)
From (39),
h2g? 4 (s+1)
CCP=— <_§vol(Z) E%SpG + <EA,EA> (45)

For a fixed JEEU dn(My), let A(R) be ¢y '(X) (this exists for large enough i).

Clearly, |F(4%))||*~N,. The eigenvalues of (D*D), acting on g consist of p?

copies of the eigenvalues of (D*D) ,; thus lim SpG§ ;) ~ N?. Because E ; is made of
s—0

copies of p- E , strung along the diagonal, {E ,z,E 4>~ N;. Then

|F(4(x))|*~ N7,

27
hzgz 4 ! (s+1)
8 <— 3 vol(Z) il—{% Sp GA‘(X) ~Ni,
and (46)
h2g2

T (% <EA,»(3c)s EA;(E)>) ~ Niz .

It is in this sense that in the large-N limit the dominating terms in the total
potential are

S VF+ L (B . @)

To write E , more explicitly, define the kernel (D ,),G$ ™ V)(x, y) of D ,G§* Y by
(DG N ()= i (DDGE ), 1) ()Y@, (48)
q

Then
E = lim Z ZCM,((D 265D ,(x, x)dx' @, . (49)

50 p

6. Remarks

It has been shown that the name “collective-coordinate potential” is a misnomer in
that the CCP can be evaluated in a wholly coordinate-free manner. The large-N
total potential (47) is finite and smooth, a property due to the fact that when doing
an n+1 dimensional Yang-Mills theory with n odd, the regularized Green’s
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function will exist and be smooth when taken from a point to itself. For even n
there will generally be a pole in s when computing lim G§* V(x, x).

s—0
A collective-coordinate potential was previously computed by Sakita using
Wilson loop functionals as coordinates for .# [4]. Our expression differs from his

because of different kinetic energy terms on .#. Sakita uses — 5 5 9", 1y, Whereas

we use the coordinate-invariant expression — — (1/~g Vs s y- Thus the

o
potentials will also be different.

It may be possible to extend the preceding methods to other field theories with
large symmetry groups, such as gravity and string models. For Yang-Mills,
assuming the kinetic energy is nonleading order in N, the master field should be
obtained by minimizing (47) for large N.

Appendix A
The hypotheses of Sect. 2 essentially define a principal G-bundle [12] n: P->M

with a right G-invariant metric g on P. The Lie algebra ¢ of G has a representation
q by vector fields on P given by sending an x € ¢ to the vector field,

q(X),= (p-e™). (A1)

dTr—o

Let <,), be any inner product on 4. For a point peP, define a linear
transformation T, by

(X, T,Y>=9(q(X),,q(Y),), where X,Yegy. (A.2)

Then w(p) is defined as detT,. This is a G-invariant function and so can be
considered as a function on the space of orbits M.

Proposition. If f is a G-invariant C* function on P, then
ST AL =) T A )~ Ay, (A3)

Proof. At a point p € P, define the vertical space ¥V to be the tangent space of the
G-orbit at p, i.e. span(q(X),). Define the horizontal space H,, to be the orthogonal
complement V3. If X € 4 and R,rx denotes the action of e’* on P, then for any
horizontal vector field H, (R,-rx),H is horizontal and

d

| (Re-rx) Hpux=[q(X), H], (A4)

dtl—o
is horizontal. Let {¢;} and {e,} be G-invariant orthonormal bases for V and H,
respectively. Then {n e,} is an orthonormal framing of M, and if V/, V are the Levi-
Civita connections on P and M,

My(Vep) =V 085 (A.5)
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We have
Apf=3 e[+ e =S (Voe)f = S edf
= duf = S (Voedf
=Auf— gg(ﬁeiei, eJe.f
=4S+ 2l Veede.f
=8l + Tote Vet Tesee
=Auf+ Za glei Le e )e.f - (A.6)
Let {X;} be an orthonormal basis for 4 under < >, and let f;=q(X}). Then if
e;= Zi‘,cijfj and f;= ;djkek,
Apf=Ayf+ gg(ei,[;cijfj,ea]) e, f
=dyf+ i’Zag (ei, ; cilfied— ; (eacij)fj> e.f

(A7)
=Ayuf— iz;;(eacij)dji(eaf)
— Ay f— 3 (e, Indet) (e, f).
Now
<Xk, ’ILXI> = g(ﬁn ﬁ) =g (2 dkmem> Z dlnen> = Z dkmdlm > (A8)
so T,=dd" and
detc=(detd)‘1=(detTp)*1/2=w‘”2. (A.9)
If (,), denotes the inner product on M,
1
Apf=Apf+ _Z_W—(VMW’ VaeSIna - (A.10)
Because
AW ) =W Ay [+ FW T3V, Vo pg +f A%, (A.11)
we have
Apf = B Ay (0 ) — Wi Ay and [T f= (W) T Ay ()
—w AL, w4 (A.12)

For a more geometric interpretation of this extra term, let K(m) be the mean
curvature normal to the orbit above me M, when projected onto M. Then

—w V44wl =1divy, K~ 4K, K),,. (A13)
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Appendix B

We want to treat the operator D%D, on the L7 space of elements of A°®SU(N)
vanishing at z_,. However, this condition does not make sense on I? functions; we
work instead on Sobolev spaces Hy [11].If T>4dim Z then elements f, g of H are
continuous functions and <{f, g>y,.=<f,(1—=V?*)Tg>L?. Then

(DAD )y, =(1— 72 TDY(1— 737D, (B.1)
Let Ve Hy be such that <V, />y, =f(z,,); we have V=(1—V?)"T5,_. Then
_ _ VI(D*D )5V
SP(DAD )1, =Sp (03D gt — S DAD sl V) (B2)
VNV S

This extra term can be carried throughout the determinant calculation.
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