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Abstract. The potential of the pure Yang-Mills theory when quantized on the
space of gauge fields modulo gauge transformations is computed. The large-iV
behaviour is given in terms of the Green's function for a scalar field in the
adjoint representation.

1. Introduction

In a pure SU(iV) Yang-Mills theory there are only two inherent parameters in
which to expand: the coupling constant g and the group size N. In the JV-» oo limit
the perturbative quantum theory is known to simplify in the sense that expectation
values of products of equal-time Wilson loop functionals factorize [1]. A
mechanism for this reduction has recently been found and applied to simpler field
theories with a large-N limit [2]. It is known as the collective-coordinate method
and revolves around the fact that as JV increases, the symmetry of theory increases.
If only states which are invariant under the symmetry group (the group of local
gauge transformations for Yang-Mills) are to be considered, then the collective
coordinates are to parametrize group-inequivalent fields. When the Hamiltonian
is written in terms of the collective coordinates an extra term appears, called the
collective-coordinate potential (CCP). In the simpler models studied so far [3], as
N increases and the coupling constants are suitably scaled the total potential is
found to become sharply peaked around one point. Then the ground-state wave
function will be peaked at this point and the expectation values of products of
functions of the collective coordinates will factorize. In the case of large-JV Yang-
Mills such a point of peaking was termed the "master field" by Witten [1],

We attempt to give an intrinsic expression for the CCP in the sense that it
depends directly on gauge-invariant properties for the gauge field and not on
collective coordinates. More specifically, our expressions (47) and (49) for the total
potential in the large-JV limit involve only the covariant derivative of the Green's
function for an adjoint scalar in a background field. The expression (39) for the
CCP is exact for all N. These formulas may be more computationally tractable
than previous expressions.
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In Sect. 2 the expression for the CCP is derived and discussed. Section 3 has a
brief exposition of the geometry of the space of gauge-inequivalent gauge fields.
Section 4 gives the computation of the CCP for Yang-Mills, and the large-iV
behaviour is considered in Sect. 5. The results are discussed in Sect. 6. The
geometric proofs of Sect. 2 are relegated to the Appendix.

2. The General Collective-Coordinate Potential (CCP)

Suppose one wants to solve a quantum mechanics problem with a potential V(p)
on a (possibly) curved space P, equipped with a Riemannian metric g. Letting ΔP

denote the Laplacian on P I given in coordinates by APf= -y=(]/ggμvf, v), n ), we
have ^ I/0 /

fι2 d
Δpψip) + V(p)ψ(p) = in—ψ(p). (1)

(There is a possible term coming from the scalar curvature of P, but this will not
arise in the following applications.) In addition suppose that there is a Lie group G
which acts freely on P (i.e. if x e G sends any point of P to itself then x is the
identity), acts by isometries (i.e. preserves the metric g) and leaves V invariant. One
may just want to consider wave functions which are G-invariant, such as the
ground state. Then ψ can be specified equally well by giving its values on the space
M = P/G of orbits of P under G. The space M has a natural induced metric g given
as follows: let m be a point in M (i.e. an orbit in P) and let Am, Bm be tangent vectors
in M at m (i.e. infinitesimal changes in the orbit). Pick a point p e P in the orbit m
and let Xp denote the tangent space at p to the orbit m. There are unique tangent
vectors Ap and Bp in P at p which are orthogonal to Xp and give the same
infinitesimal change in orbit as Άm and Bm. Define g(Άm, Bm) as g(Ap, Bp). This is
independent of the point p chosen and so is well-defined.

Because the Laplacian commutes with isometries, APψ is also a G-invariant
function and comes from a function APψ on M. There is also the function AMψ
which is the Laplacian of ψ on M using the g metric. These two functions are
related in the following way. Let w1/2(m) be the relative volume of the orbit m,
which is defined more precisely in Appendix A. Then

(2)

For the proof of (2) see Appendix A.
Let φ(m) be w1/4(m)ψ(m). Using (2), (1) becomes

- y ΔMφ(rή) + (V+ CCP)(m)φ(m) = in^φ(m), (3)

with

CCP(m)=—(w~1 / 4Λ w1/4)(m). (4)

This is the collective-coordinate potential.
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As an example of how this works, let P be IR^ without the origin and let g be the
Euclidean metric on P. Take G to be SO(iV) acting by matrix multiplication on IR^
(although this is strictly only a free action when JV = 2). Then by sending an orbit to
its radius r, M can be identified as the positive real numbers and g is the Euclidean
metric on R + . The relative volume of an orbit, wί/2(r), is r^" 1 and

Λ h2

y 3)^j. (5)

This agrees with the previously derived result for the O(JV) linear model [6].
For computational ease, CCP can be written differently. If ψ — w ~1/4 is inserted

into (2) then it becomes

wil4APw~i/4= -w1/4AMw114. (6)

Also,

jAf=A\nf+\Vlnf\2, (7)

and so

i 2 (8)

= ~(AP\nw-$\VP\nw\2). (9)

3. The Reduced Space of Gauge Fields

In order to apply the preceding to SU(iV) Yang-Mills one must study the space of
gauge fields. This has been done by Singer and others [7] and a synopsis of their
results will be given. For notation, let Z be the space on which the gauge fields live
(such as a torus), let Λ°(g)$1U(N) denote the SU(iV)-valued functions on Z, and let
>l1<8)SU(iV) denote the SU(JV)-valued 1-forms on Z /le. vector potentials of the

form Σ Aμ(x)dxμ with Aμ e SU (ΛΓή. Let z^ be a fixed point on Z (to be thought of

as the point at oo) and let G be the group of functions φ from Z to SU(iV) such that
φiz^J^L These act by gauge transformations on /^(gSL^JV) as

ιdμφ)dxμ. (10)
μ μ

Let DA:Λ°®S\J(N)->Λί®SU(N) be the covariant derivative: DΛτ=Σ(dμτ

+ lAμ9 τ~\)dxμ and let DJ: Λ1 ® SU(JV)->Λ°® SU(N) be its adjoint: D* ΛΓ ^dxΛ

= - Σ(δμ?/μ + [Aμ, ημ~]). Let b^: A0(g)SU(N)-*A1®SV(N) be the bracket operat-

ion: fc^τ= Σ E ^ μ ? τ ] ^ χ μ a n d let fc5:^1®SU(iV)-^ylo(x)SU(iV) be its adjoint: fe^
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= — ΣD4μ> γ\μ~\- F ° r τeylo®SU(iV) we also let bτ denote bracketing on

Λ°®SU(iV) or ^OSUCiV) by components fctσ = [τ,σ] and bτ(ΣAμdxμ)

μ
?> Λμ]dxμ. A tangent vector Ve 7̂ 91 at a point A e 21 is given by an

infinitesimal change in gauge field, that is, an element B of A1 (x)SU(JV) such that if

/ is a differentiable function on 51, (Vf)(A) =--f(A + εB). lϊB,Ce TA<& there is a
natural inner product given by

g(B, Q= μ j U
Z μ Uj

This makes 91 into an infinite-dimensional flat Riemannian space with a metric
invariant under the group ^ of gauge transformations. By identifying gauge-
equivalent fields one obtains the geodesically complete space Jί = 91/^ of gauge-
inequivalent fields with the induced metric. This projection π'.SΆ^Ji defines a
principal ^-bundle and the base manifold M is not flat [7]. We need the relative
volumes of orbits of 91 under ^. The Lie algebra # of ^ is {τe/L°®SU(iV):
τ(zoo) = 0}. If JR, Se^, define their inner product to be

z ij

At a point ^4G9I the infinitesimal gauge transformation given by R is
A->A + sDAR. Using the notation of the appendix, TA :^->^ is defined by

>,. (13)

Thus w^detD^D^I^. This agrees with a lattice calculation by Lovelace [8].
We remark that there is an interesting formula in [8] giving w as a weighted

sum of Wilson loop functionals over the lattice. It was pointed out to me by Singer
that without conditions at oo there is a perfectly well-defined continuum version of
this formula. Let μXft(γ) be the Wiener measure on the space Γxt of paths in Z
starting at x at time 0 and ending at x at time t.

/ i t

Formally, dμXft(y) = exp[ - - J
Formally, dμXtt(γ) = exp[ J

L V 2 0

l

dσ

2

dσ\@yxt with @yXft as the formal

measure on such paths y. Then if χ is the character on SU(iV) corresponding to

the adjoint representation

00

lnw=-limff J f-'χfPexpf-§Av(σ)dσΛ)dμxtdtdx [13]. (14)
s-+0 Z 0 ΓXjt \ \ γ JJ

4. Application to Yang-Mills Fields

The CCP for Yang-Mills can be derived by writing the quantum Yang-Mills
equations in a Schrόdinger-type form [9]. Let the space time b e R x T 3 with Γ3 a
finite volume 3-torus and let the metric be the flat (H ) Lorentz metric. The
following can be considered as the continuum limit of the Kogut-Susskind lattice
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Hamiltonian. For the Yang-Mills Lagrangian

Λ F<\ (15)

Fμv = dμAv - dvAμ + [Aμ9 Av~\, (16)

we pick the local gauge condition Ao = 0 to derive the Hamiltonian,

H=hΊ Σπia(x)πia(x)d3x- - ^ J Σ TrFy(x)Fy(x)d3*, (17)

Z i,a lQ Z i<j

with the Gaussian constraint

ΣV=Σ(V+C^πi])=o. (18)
i i

(Here 1 ̂  i, j ^ 3 and a is a Lie algebra index.) Hereafter, we use the positive definite
Euclidean metric on Z = T3. The commutation relations

= - ihδijδ3(x - y)δab (19)

can be formally represented by

^--'"dbr (20)

then as an operator on a function / on 91, H becomes

(Hf) (A) = - ~- (Af) (A) + —2 || F(A) \\ 2f(A), (21)

with

and

" x)d3x. (23)

This Laplacian is the same as the geometric Laplacian on the space of irreducible

gauge fields on T3 and the Gaussian constraint D( says that / is a gauge-

invariant function on 91. We can apply (3) to conclude that as operators on
functions on Jί,

Φ=m^ (24)

with w = άQtD%DA\^ φ = w1/4f and

C C P = ^ - ( d a l n w - i | F a l n w | 2 ) . (25)
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If suitably regularized the terms in CCP can be computed. For a trace class
operator T, let Sp(T) be the trace of T. If T can be represented by (T/)(X)
= SK(X,Y)f(Y)dY for a continuous kernel K(X, Y\ we have Sp(T)
= )κ(X9 X)dX. Let GA be (D%DA)~\ the background-field Green's function for a
scalar in the adjoint representation. Let {QJ}1-!^1 be an orthonormal basis for
SU(iV) under the Killing-form inner product, with [ρ j? ρk] = cmQx. Let {/j}JLi be an
orthonormal basis for /l°®SU(iV) consisting of eigenvectors of D%DA with
eigenvalues {λj}jLv

In order to treat D\DA acting on ̂  we must first restrict the domain to functions
which are sufficiently continuous to have a value at z^, by introducing Sobolev
spaces (see Appendix B). The effect of using ^ instead of yl°(x)SU(JV) can then be
subtracted from all determinant calculations. For brevity we will only show the
calculations on /L°(χ)SU(JV), as the subtracted terms will go away in the large
volume limit. The variation of D\DA under a variation of A is

αε
(26)

ε = 0

The method of zeta-function regularization [10] gives

Jε
= lim

ε = 0

with given by

EA=\i (28)

Although, this only literally exists for Re (5) >\, it can be analytically continued to
give a finite value at s = 0.

For the second variation of lnw, we have

dε:

ε=0

lndQt(D*D)A+εη=limSp~
s-»o dε

26*b,

The first term of (29) is

ε=0

1 °° *

0 0
(29)

(30)
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Using the identity

jj j fj (31)

the second term of (29) is

^ ϊt sί
o o

= (rt,Σ(2bDΛfj + DAbj.){λJ<s+υ-GΓ V)(λj-DADA)(2b*DAfj + bfjD*A)ή .

lndet(D*D)A+=(η,θAη> (33)

J

Thus we can write (29) as

ds2

with

^ j ^ ( 3 4 )

This is a well-defined self-adjoint second-order pseudo-differential operator
(ψdθ2) [11].

The Laplacian A^lnw is Sp(θA); then

^ (35)

Using (8) we can write CCP to make the trace act on a nicer operator than ΘA.
Let {σj£°=1 be an orthonormal basis of KerD^ Because the geodesies in Jί are
projections of geodesies in 91,

Σ-ΊΓΪ lndet(D*D)^+ ε σ

k dε F=()

k , (36)
= Σ (σk, lim Σ { - 2 λ J ^ + 2 % b f j + 4bDΛfj

k \ s-^ O j

Because the projection operator on KerD^ is I — DAGAD% we have

with
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This is a ψd0o. Then

h?f+i<EA,EA». (39)

5. The Large-N Limit

The pure SU(JV) Yang-Mills theory has a large-JV limit in the sense that if g2N is
fixed then for any loop L,

WL(A)= (^TrPexp ( - p ds)) (40)

approaches a limit as JV->oo. We can think of {WL} as coordinates for a linear
space Of with the manifold J(N of SU(JV) gauge-inequivalent gauge fields
embedded in iV as φΉ{JiN) by sending AεJίN to φN(A) = {WL(A)}εifr. For
AεJlN, the SU(piV) field

0

° ^ - ~ " piV (41)

0 0

in JipN has WL(I) = WL(A) for all L; if {Ni}?L1 is a sequence with Ni\Ni+1 then

ΦNS^NΪ^ΦNZ^NZ)^ ~^(/)Ni(^Nι)-*- gives a chain of submanifolds of W. If

x G U φΉi{JiN), then the leading term of (V+ CCP^.^/Cx)) in i should dominate
i

in the large-AT limit.
There has been confusion in the literature on the role of the kinetic-energy term

in the large-iV limit. In the Hermitian matrix model the total potential vanishes
and the large-JV is given by constraints on the wave function from the geodesic
incompleteness of the base manifold M [5], In our case the base manifold is
geodesically complete and we conjecture that Yang-Mills is similar to the O(N)
linear model in that the kinetic contribution will be nonleading order in N.

Lovelace has speculated that only the | VM In w\2 term of (8) contributes for large
N [8]. Before showing this we must make a regularization of the trace in (39). First,
suppose that MF is the operator for multiplication by a continuous function F on
L(Z). To define Sp(MF) suppose that Z is latticed by I points in Z. Then for large /,

Sp(MF) as defined on the lattice is /JjF(x)dx/vol(Z). In order to extend this
z

definition to other φd0o's, let a(z, ξ) be the symbol of <%Λ, so

( * ^ / ) ω = ^ 3 ίίe« z-y ) ξa(z, ξ)f(y)dydξ. (42)

If a0 is the zeroth order part of α, we define

"Sp" (%A) = I J ao(z, ξ)dzdξ/vo\ (S*Z), (43)
s*z

where S*Z is the cosphere bundle {(z, ξ) ε T*Z: \ξ\2 = 1}.
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This regularizes the most singular part of Sp(%A) in terms of a lattice spacing.
Computing a0 from (38) and using the fact that "Sp" is tracial, we obtain

\ ^ (44)S p W = \ ^ r lim
3 vol(Z) s-o

From (39),

^ ( ^ l ) ) ( 4 5 )

For a fixed xe[j φNi(J?N), let At(x) be ^/(x) (this exists for large enough i).
ί

Clearly, ||F(^(Jc))||2~Ni. The eigenvalues of (D*D)A acting on g consist of p2

copies of the eigenvalues of (D*D)A; thus lim S p G ^ y ~Nf. Because EA is made of
s-+0

copies of pΈA strung along the diagonal, (EΛi(z)9EAiii)y~Nf. Then

1

*V/ 4

and (46)

It is in this sense that in the large-iV limit the dominating terms in the total
potential are

+ Ϊ£-<EA,EAy. (47)

To write EA more explicitly, define the kernel ({DA)iG<Z+ ι))(x, y) of DAG<Z+ υ by

Then

Wl+ l)Kf®QP))(χ) = Σ ί ΦAWT %(χ, y)f(y)dy® Qq. (48)
q Z

EA = lim Σ 2cpqr((DA)iGt+ \p{x, x)dxi®ρr. (49)
s-» 0 p,q,r

6. Remarks

It has been shown that the name "collective-coordinate potential" is a misnomer in
that the CCP can be evaluated in a wholly coordinate-free manner. The large-iV
total potential (47) is finite and smooth, a property due to the fact that when doing
an n+1 dimensional Yang-Mills theory with n odd, the regularized Green's
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function will exist and be smooth when taken from a point to itself. For even n
there will generally be a pole in s when computing limG^+1)(x,x).

A collective-coordinate potential was previously computed by Sakita using
Wilson loop functionals as coordinates for Jί [4]. Our expression differs from his

h2

because of different kinetic energy terms on Jί. Sakita uses —^gμvψiμv> whereas

we use the coordinate-invariant expression — —-—z=(yggμyψ,Λv. Thus the
2 yg

potentials will also be different.
It may be possible to extend the preceding methods to other field theories with

large symmetry groups, such as gravity and string models. For Yang-Mills,
assuming the kinetic energy is nonleading order in JV, the master field should be
obtained by minimizing (47) for large JV.

Appendix A

The hypotheses of Sect. 2 essentially define a principal G-bundle [12] π:P^>M
with a right G-invariant metric g on P. The Lie algebra ^ of G has a representation
q by vector fields on P given by sending an x e ^ to the vector field,

(p eτx). (A.1)
r = o

Let <5>^ be any inner product on ^. For a point peP, define a linear
transformation Tp by

<X,TJ>y> = ff(9(X)J,,β(y)J,), where X , 7 e ^ . (A.2)

Then w(p) is defined as detTJ,. This is a G-invariant function and so can be
considered as a function on the space of orbits M.

Proposition. If f is a G-invarίant C2 function on P, then

J pJ V J ) M\ J } M * V * /

Proof. At a point p e P, define the vertical space ΨP to be the tangent space of the
G-orbit at p, i.e. span(g(X)p). Define the horizontal space H to be the orthogonal
complement V£. If X e ̂  and #eτx denotes the action of e on P, then for any
horizontal vector field H, (Re-Tχ):i:H is horizontal and

d

is horizontal. Let {ej and {βα} be G-invariant orthonormal bases for V and H,
respectively. Then {π^ej is an orthonormal framing of M, and if V, V are the Levi-
Civita connections on P and M,

π+(feeβ) = Vπeπ+eβ. (A.5)
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We have

Δ*f= Σeff+ Σe2J~
i α i

Σ g{eb Vee, + [e,, ej)ej

eι,eJ)eJ. (A.6)

Let {X7 } be an orthonormal basis for ̂  under < )^ and let ft = q{Xj). Then if

Σ CyX , eJ j e J

eh Σ Cijίfp eJ - Σ (e«Cy)/Λ e j

Because

we have

(A.7)

Now

<XfeJ TpXt} = g(fk,β = flf ( Σ 4 M β m ? Σd f a βΛ = Σd k m d l m , (A.8)

so Tp = ddτ and

detc=(detd)-1=(detT ;,)-1/2 = w-1 / 2. (A.9)

If (,)M denotes the inner product on M,

ΔMw-^ and
-w~ 1 / 4 zl M w 1 / 4 .

For a more geometric interpretation of this extra term, let K(m) be the mean
curvature normal to the orbit above meM, when projected onto M. Then

W1 '4 =4divMK - | (K, K)M. (A.13)
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Appendix B

We want to treat the operator D\DA on the L2 space of elements of /L°(x)SU(JV)
vanishing at z^. However, this condition does not make sense on L2 functions; we
work instead on Sobolev spaces Hτ [11]. If T>\ά\mZ then elements /, g of Hτ are
continuous functions and </, ̂ >H T = </,(1 — V2)τg}l3. Then

(D1DA)Hτ = (ί - V2yτDA{l - V2)TDA. (B.I)

Let VeHτ be such that <K,/>H τ=/(zJ; we have V=(\-V2yτδZoo. Then

(B.2)

This extra term can be carried throughout the determinant calculation.
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