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Abstract. After proposing lattice gauge field models in which the Migdal
renormalization group recursion formulas are exact, we study the recursion
formulas analytically. If D is less than 4, it is shown that the effective actions of
D-dimensional ί/(l) lattice gauge models are uniformly driven to the high
temperature region no matter how low the initial temperature is. If the initial
temperature is large enough, this holds for any D and gauge group G. These are
also the cases for the recursion formulas of Kadanoff type. It turns out,
however, that the string tension for D = 3 obtained by these methods is rather
big compared with the one already obtained by Mack, Gopfert and by the
present author. The reason is clarified.

1. Introduction

A decade ago, Migdal [1] proposed renormalization group recursion formulas
which are rather simple but are believed to approximate the real systems fairly
well. After his works, Kadanoff [2] reconstructed similar recursion formulas by his
decimation methods. The most surprising feature of these recursion formulas is
that the recursion formulas of D-dimensional lattice gauge models are equivalent
to those of (D/2)-dimensional statistical mechanical models (with nearest neighbor
interactions). One advantage is that these recursion formulas have a closed form
and then they may be solved analytically.

But it remains to see to what extent these approximate formulas are close to the
real systems. We answer this question by solving the recursion formulas
analytically. The answer is quite negative at least when D is less than 4: the effective
dimensions are too close to two if D<4. Thus these methods give larger string
tensions compared with the real ones.

Before writing down these formulas, we propose special lattice gauge field
models in which the recursion formulas of these types are exact. This may help the
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Fig. 1. Realization of the construction of the model in which the Migdal recursion formula is exact.
Actions for the plaquettes on the vertical planes are zero or infinite

reader to see what may be wrong in these formulas. This idea was borrowed from
[3]. We first consider a 3-dimensional case setting a rectangular box of size λN x λN

x (λN -1) in Z 3 with its corners at (Tx, T2, Γ3), Tt = 0 or λN (λN -1 if i = 3). Here λ is
an integer such that ^ 2. Let G be a compact group and let U(G) be one of its
representations. Let Ξ be our rectangular box.

(i) Choose the temporal gauge. Namely set Gs vb= 1 for the vertical bonds

(ii) For each plaquette (unit square) p on xί — x2 planes in 2, there
corresponds the standard Wilson-type action:

p p) p Y \ b
beδp

where β = (2gl)~1 is the (initial) inverse temperature.
(iii) The actions for the plaquettes on xi—x3 and x2~x3 planes (vertical

planes) in Ξ are zero (β = 0) or ferromagnetically infinite (/? = oo), depending on
where they are. For example, x2 — x3 planes are indexed by xx = 0,1,..., λN. Let xγ

= p1λ
rι+p2λ

r2+..., where pt= 1,2, ...,Λ-1 and r1<r2<... (positive integers).
Then the x2 — x3 plane at xx is partitioned into non-overlapping parallel rectangles
of equal sizes λN x (λn — 1). They are separated by a distance one in the x3-
direction. There correspond the ferromagnetically infinite actions (β = oo) to the
plaquettes in each of these rectangles. In other words, vb and υv are set equal when
b = (x, x + e2), and b' = (x\ x' + e2) are in each of these rectangles and nearest
neighbors to each other, β is set at zero for other plaquettes in this x2~x3 plane
which are not contained in these rectangles. (xί =0 is regarded as λN.)

(iv) Repeat (iii) for the plaquettes on the xx — x3 planes in 2.
This method is easily extended to higher dimensions, which is left to the reader.

Our construction may be well understood by Figs. 1 and 2 which correspond to
D = 3 and λ = 2. Note that β is set at zero for vertical plaquettes iϊrί = 0 (i.e. x^x^
= odd in this case.)

Let gi0Xvp) = exp[βReΎτU(vp)]. Then this system obviously satisfies the
following recursion formulas of Migdal:
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Fig. 2. Iteration of the recursion formulas for this system. This corresponds to D = 3 and λ = 2. Two
rectangles, each containing 4 plaquettes, are combined with each other with their boundaries
identified. Internal bonds are independent

*ΓJ π fp->p) Π dvbf, (i)
|_ pCΛ beΛΌ J

where A is a rectangle of size λ x λ (in the unit oϊλn~1) containing λ2 plaquettes in it,

be A0 bonds which are inside of A, dvb the Haar measure, s = D — 2 and v= Yl vb,
bedΛ

where the product is taken following the direction of the boundary of A. λs is the
number of the rectangles of size λxλ to be gathered. By suitable gauge
transformations, we have

Aβ. (2)

Here Jί is chosen so that g(υ = \) = \. This is called the recursion formula of
Migdal type (M type for short).

By replacing λN x (λri — 1) by λN x (λri + 1 — 1) in step (iii) in the previous
construction, we obtain the lattice gauge model that satisfies the Kadanoff
recursion formulas exactly (xί = 0 and x1=λN are regarded as λN~1):

g{»=WΊ ίg(n~' VΓ'). Φn~' W - i)T Π dυt. (3)
This recursion formula (called the Kadanoff type) was originally obtained by
Kadanoff by his potential moving methods. It is recommended to draw figures that
correspond to Figs. 1 and 2. It is easily seen that more vertical plaquettes have
β = oo couplings in this system.

These are equivalent to the renormalization group recursion formulas of
statistical mechanical models with nearest neighbor interactions. In this case vt is
replaced by st e Se if dimensional sphere for example), υvϊx by ssl9 v υ^ by stsi+1,
vλi-1 by Sχi-γ s' and finally g{n\v) is replaced by g{n\ss'). Moreover λs becomes
λ2{D~l) in this case.

These recursion formulas may look quite simple, but it is rather hard to
investigate these analytically except for the case of 5 = 0. There have been some
computer experiments, see [4, 5]. See also [6], but unfortunately the details of [6]
remain to be seen.
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In the case of the D dimensional (7(1) lattice gauge model or in the case of the
(P/2) dimensional XY-type model, we replace v by θ e [ - π, π), υt by 0f e [ - π, π)
and i^Vi *s replaced by θi — θi^v Then it is explicit that these two different models
have the same recursion formulas. In this case we start with the Villain action,

g(°\θ) = const Σ exp | - | (0 + 2nπ)2 1, (4a)

or with the action of the XY model type:

0(O)(0) = exp[j8(cos0-l)]. (4b)

Both are entire analytic in θ and are of course, periodic in Reθ with the period 2π.
Our main results do not depend on the choices of the initial action and the
recursion formula. Our main results are:

Theorem l.Ifs<2 and \θ\^π,

\g^n\θ)-l\Scomt(λs-2T(β/2) (5)

uniformly in n. Thus g^-*l as n-^oo.

Theorem 2. Let g^(θ) = g(n)(0) + Σ g{n)(k)eikθ and let Σ g{n\k) = δn. Then
kΦO feΦO

(6a)

\ (6b)

where δ is a constant less than 1 and no>0 is also a constant which depends on β.
Ineq. (6b) holds whenever s is less than 2.

Theorem 1 means that the effective actions are driven to the high temperature
region by the Migdal-Kadanoff recursion formulas if s < 2. Theorem 2, which is
immediate from Theorem 1, means that the string tension is bounded from below
by (λ)~2n°. This corresponds to the inverse of the correlation length in the case of
the statistical models.

Remark L (1) We can say that the Kadanoff formulas are more ferromagnetic than
those of Migdal because the former have more vertical plaquettes with β = oo than
the latter. But this difference is not seen for D<DC = 4.

(2) As is understood from our models, these recursion formulas implicitly
assume the hierarchical structures in the models. In fact it is difficult to obtain the
renormalization group recursion formulas in a closed form without introducing
any hierarchical structure. See [7-9] for other kinds of hierarchical models.

2. Proof of Theorem 1

We first remark that

(θ + ia)\ ̂  g^\θ) exp | J a2λ, (Villain), (7a)

ia)\ <, g^\θ) exp Γ(l + s)| α 2 l , (XY), (7b)
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where a is any real number for the Villain action and a e R and \a\ ̂  C (C = 2 for
example) in the case of the XY model type action. Inequality (7a) is immediate from
Eq. (4a). Since cos{θ + id) = cosθ + cosθ(coshα-l) —z sinθsinhα, (7b) is also
trivial. Here ε->0 as C->0.

Lemma 1. In the case of the Villain action,

\ λ-{2~s)n(^\a2

for any real a, and in the case of the XY model action,

^n\θ) exp £\ a

(8a)

(8b)

for real a such that \a\^λ2nC.

Proof We consider

M) gWφ+ia) = (jrrιUg^φ + ia-θ1)...g^(θx^ί)Udθir, (9a)

K) g^φ + ia) = {jry^y°χθ + ia-θί)...gVχθλ2-i)YUdθi. (9b)

Since g(0)(θ) is analytic and is also periodic, we can change the contour of dθ{ from
— π-»π to — π-Hαi-^π + ϊflj. Namely we can replace 9t by θ̂  + ̂  . We choose at

= a(λ2 — ΐ)/λ2. Then a — a^a/λ2, ai — ai + 1 = a/λ2 and aλ2-.x = a/λ2. (This means
that \a\ ̂  Cλ2 in the case of XY model action.) Then using (7a) and (7b), we have

exp

exp

Villain,

XY

for both of the recursion formulas of M and K type. This proves the lemma for
n = 1. The proof is completed by induction. Q.E.D.

Note that 0 < g(n)(θ) <; 1 for real θ. This comes from the condition g{n)(θ = 0) = 1
and #(w)(0) ̂  gin\θ). The latter is immediate since g{n)(k) ^ 0, which is also explicitly
shown by using <7(0)(fc) ̂  0. Thus if s < 2, g(n) tends to a bounded entire function as
n-^oo. This is the main idea in this paper.

Lemma 2. Let g(n)(θ) = 1 + anθ
2 + δg(n)(θ), where \θ\<Lπ and δg{n\θ) = O(04). Then in

the case of the Villain action (taking n large for the second inequality),

(10)

(11)

for both types of the recursion formulas, where

For the action of the XY model type, β is replaced by (1 +ε)β.
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Proof. By the Cauchy integral formula

2 m a x | ^ ( z ) |

<; R " 2 exp (/1s" 2 )Ί y j JR2 , (Villain)

where the contour is chosen as \z\ = R and Lemma 1 has been used. To minimize
this upper bound, we set R2 = R2 = (λ2's)n(2/β). Similarly

\δg(n)\ =
4

and we again set R2 = R2. Since s>0, Rn<λ2nC for large n. Then these estimates
still hold by replacing β by (l+ε)/J in the case of the XY model type
action. Q.E.D.

Theorem 1 obviously follows from Lemma 2.

3. Proof of Theorem 2

Let g{n)= Σgin\k)eikθ, where Σgin\k) = 1 by the definition, and g^(k) = g{n\-k)
k k

since g(n) is even. Let

δn= Σ g^n\k) = 1 — £/(w)(0). (12)
/c*0

Using ^(M)(0) = (2π)~1 \g{n\θ)dθ and Lemma 2, we have

0<δ n ^constR~ 2 , (const^π2 for large Rn) (13)

for both types of actions. Choosing n0 sufficiently large, we assume δno = δ <ξ 1. We
set g{no)=g for simplicity. They obey the following recursion formulas:

(M type)

(14a)
fcΦO

(K type)

gikγ)...gikχs)γ. (14b)
J

)γ.
J

Since <?(0)(/t)^0, these recursion formulas mean g(n)(k)^0.
We first consider the recursion formula of M type. By definition
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On the other hand

Ί\(\-δ)λ2
$i= Σ g{1\k) = ̂ -Ί\(\-δ)λ2+ Σ g(k)λ2eikΎ- const parti

fcΦO (] feΦ J J

Thus choosing (5 small enough,

δ^2λsδλ2^{Kδf2, (15)

where K is a constant smaller than 2λs. This means

δnSKλ2 + λ4 + - + λ2n -(δ)λ2nS(K3/2δ)λ2n. (16)

Replace « by rc — n0 and K3/2(5 by <5 to complete the proof of Theorem 2 for the
recursion formulas of the M type.

In the case of K type, we first note Jf^(\ —δ)χ2 + s, which follows from (14b).
Moreover

Σ §(k1)...g(ki.)\»
;Σki = k j

Σ S(k1)...g(ki.j\
λl

= ^ r ~ 1 { i — ( l — ί ^ V 2 ,

where we have used Σ §(k) = 1 in the second line to obta in the third line. T h u s we
have k

λ2 (17)

as before. This completes the proof of Theorem 2.
As an immediate corollary of this method, we have:

Theorem 3. For any dimension D, if β is small enough, then g(n)(0)-> 1 asn-^oo. More
numerically

δn= Σ g{n)(k)^{δ)λ2{n~n°\ (18)
fcΦO

where δ<\ and n0 is a constant which depends on β.

It is almost trivial that this theorem can be extended to some non-abelian
models. (In this case, eίkθ are replaced by spherical harmonic functions.)

4. String Tension and Discussions

To calculate the string tension in the present system (D = 3), consider a n x 1 - x 2

plane Σ (of size λN x λN) in Ξ. Let

(19)
bedΣ
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where the sum over dΣ is ordered along dΣ in the usual way. In our formula, the
integration over {θb;be dΣ} is left to the final step of the recursion formulas. Thus

h{N)(Σθb)Udθb -g(*

where g{N\\)^(Kδ)λ2{Nno) and 0<ί-g{N\0)S(Kδ)λ2{N~no\
Then the string tension σ defined by —\og(W}/λ2N (N^> 1) is bounded from

below by

Since Kδ is now a fixed small constant, n0 is defined so that

(A2-*)-»o(0/2);$fixed small const.

Namely n0 is chosen as the solution of

Then the string tension is bounded from below by

2

const(j8) 2 " s (22)

where s = l for D = 3.

Theorem 4. For D = 3,

σ ^ const β~2 (23)

within the Migdal-Kadanoff recursion formulas.

Of course, we should imbed dΣ in Z 3 and should take the thermodynamic limit.
But the situation will not change at all since the system is now in a high
temperature region by the iterations of the recursion formulas. (This check is left to
the reader.) Thus we encounter a difficulty which we think serious, because we
already know

conste~ClVj/^^σ^conste~^, β>l, (24)

where c2 = c1 = (0.2527...)π2. See [10] for the lower bound and [11] for the upper
bound. This obviously contradicts Ineq. (23). For D = 2 (s = 0), this is exactly
solvable and σ= -\ogg{0)(\)^\ββ which agrees with Ineq. (22) (g{0\0)= 1).

Thus it may be fair to say that the present formulas are too close to the two
dimensional system when the dimension D is less than the critical Dc = 4. One may
replace λs = λ (D = 3) in Eq. (2) or Eq. (3) by λ2~ε to strengthen the ferromagnetic
interactions or to increase the effective dimensions. But this turns out to be not
enough. Essentially speaking, this discrepancy comes from the fact that the present
formulas lack the information about the change of the activity of the equivalent
Coulomb gas system [10, 11] which is responsible for the factor exp(-cβ) in the
string tension. It should be mentioned, however, that the present recursion
formulas exhibit the flow of the effective temperature very precisely.
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It remains to see what happens when D = 4 and G is a non-abelian compact
group. In this case β may decrease very slowly, as is predicted by the
renormalization group method on the continuum space-time, and then these
formulas may become rather precise. It is also interesting to see whether or not
these formulas exhibit the Kosterlitz-Thouless transitions for the present abelian
systems at the critical dimensions, which may be checked analytically. The work in
these directions is in progress. We hope that we can report on these matters in the
near future.
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