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Abstract. Solutions of the Boltzmann equation are proved to exist, globally in
time, under conditions that include the case of a finite volume of gas in an
infinite vacuum when the mean free path of the gas is large enough. It is also
proved, as might be expected in this case, that the density of the gas at each
point in space goes to zero as time goes to infinity.

1. Introduction

Here, we prove that the Boltzmann equation has a unique solution, global in time,
in all space. The conditions are a) that the initial data go to zero fast enough at
infinity, and b) that the mean free path is large enough. As a special case, it is
illuminating to think of a finite volume of gas released into an infinite vacuum. In
this paradigmatic case, our results give that the corresponding solution of the
Boltzmann equation exists globally if the gas is rare enough.

The paradigm shows that infinity should be absorbing, and so it is. Under
conditions a) and b), we prove in Sect. 5 that all molecules are eventually swept out
of any finite domain. Thus equilibrium is always trivial. The fact that infinity is
absorbing shows that our results are related to earlier work of Babovsky [1], who
proved global existence in a bounded domain when the mean free path is large,
assuming that the boundary of the domain is absorbing, that is, that molecules
simply disappear when they reach the boundary. Our result is, perhaps, physically
more interesting since particles do not literally vanish in a finite time.

To arrive at our results, we use the method of Kaniel and Shinbrot [4], which
requires a global upper bound for the solution. To find this, the basic idea is that,
under conditions a) and b), the dominant process in the gas should be free flow, the
molecular interactions playing a secondary role. This suggests looking for an
estimate

f(t,x,ξ)£f(x-ξt,ξ), (1.1)

where/is the solution of the Boltzmann equation and f9 which depends on t only
through the combination x — ξt, describes a free flow. Estimates like (1.1) were
introduced by Tartar [5] for certain discrete velocity models of the Boltzmann
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equation in one space dimension. Illner [3] later applied these estimates to the one-
dimensional Broadwell model. Recently, Hamdache [2] applied inequalities like
(1.1) to a class of discrete velocity models in three space dimensions.

We carry out the argument for hard-sphere molecules. Although it is probably
possible to extend the results to other kinds of molecules with a finite cut-off, we
make no attempt to do so.

The conditions a) and b) seem to be essential for our approach. This is natural,
since we require the flow to be dominated by free streaming. On the other hand, an
interesting question is whether at least the condition on the mean free path can be
omitted. Since the Boltzmann equation is derived under the hypothesis that the gas
be rare, the condition may really be essential, but we conjecture that it is not.

2. Preliminaries

In what follows, t is the time and (x5 ξ) the position and velocity of a molecule.
Given any function defined on [0, T ) x R 3 x R 3 , we always write f*(t,x9ξ)
=/(ί, x + ξt9 ξ). This notation can be used to write the Boltzmann equation in the
so-called "mild" form

jtf\t9x9ξ) = CUΩ(t,x9ξ)9 (2.1)

when there are no spatial boundaries. We look for a solution of (2.1) satisfying

9ξ) = ψ(x9ξ)9 (2.2)

where ψ is given. When the molecules are hard spheres, the operator C in (2.1) takes
the form

i ! < ξ n) [/(, , ξV{t9 χ9 nΊ -/( t , *, ξ)f(t9 χ9

R3 Si

= β t t /) (ί, x, ξ) ~ P(f, f) (t9 x9 ξ), (2.3)

say. Notice that P(f,f)=fR(f)9 where

R(f) (t9x9ξ) = j*ί J ω (ξ - η)f(t9 x, η)dωdη
R3 Si

= π^ J \ξ-η\f(t,x,η)dη.
iR3

si is a constant, proportional to the total area of the spheres; \jsί is a measure of
the mean free path. Also

>0}, (2.4)

and

(ξ-η)]ω. (2.5)

The transformation ef:(ξ,ω9η)-^(ξ'—ω,η/) is known as the collision transforma-
tion. It is an involution, so that $1 is the identity. Other well-known properties of
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β are conservation of momentum and energy. Since we need these properties, we
record them here:

ξ' + η'=ξ + η, \ξf + \ηf = \ξ\2 + \η\2. (2.6)

All our considerations take place in spaces Sβ, β>0, consisting of the
completion of the continuous functions of compact support with respect to the
norm

. . ... . (2.7)
R3 x

If/ and g lie in Sβ9 we write / —• 0, if f(x9 ξ) _• g(x9 ξ) a.e. Then, we denote by Sβ the
set of sΛlfeSβ satisfying/^0. With this notation, we can say what is meant by
condition a) of the introduction. It is that the initial data lie in Sβ for some β > 0.

We need two other norms besides (2.7), referring to functions defined only in
R3. They are

\\f\\o= i\f(ξ)\dξ and 11/11!= ί \ξ\\f(ξ)\dξ. (2.8)
R3 R3

Clearly, the spaces defined by these norms are L1-spaces with respect to the
measures dξ and \ξ\dξ. We denote these spaces by LQ and L\9 respectively.

We solve (2.1-2) using the method derived by Kaniel and Shinbrot in [4]. Since
the context here is different, and also for the sake of completeness, we review the
method now. Let 0 < T ^ oo. Suppose we have two functions u0 and l0 such that WQ
and Po map [0, T) into Sβ, and such that ίo(ί)^wo(ί), 0^t<T. Then, we define
recursively two sequences {lk} and {uk} as solutions of the equations

7, ""Tc-t-1 ' " " / C + l - " \*kJ ^ V*fc5 ""TC/ > \^"S)

for fc = 0,1,.... Suppose that

u*0R\u0), Q\u0, u0) e Lίoc(0, T; S,+). (2.10)

Then, (2.9) has a unique solution when /c = 0. Notice that (2.9a, b) are linear,
ordinary differential equations. Accordingly, lk and uk exist when lk_x and wk_ λ do.
Also, using the monotonicity properties of such equations as well as the
monotonicity of R and Q in their arguments, it is easy to show that if lk_ ±(t) ̂  lk(t)
=iMfc(ί) =SMfc-i(ί) for 0 ^ ί < Γ , then lk(t)^lk+1(t)^uk+1(t)^uk(t) in the same
interval. Thus, it follows that all equations (2.9) have unique solutions
ll,uleC°(0, T S/) with {/k(ί)} increasing and {uk(t)} decreasing if

. (2.11)

Expression (2.11) is called the beginning condition in [4].
Suppose the beginning condition is satisfied with some Wo:[0, T)-^Sβ

satisfying (2.10). Then there are functions / and u such that lk(t)^l(t) and uk{t)[u{t)
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for all ί, 0 ̂  t < Γ, since both sequences are surely bounded below by lo(t) and
above by uo(t). Also,

l(t)^u(t)9 0^t<T. (2.12)

Now, integrate (2.9), send k to infinity, and use the dominated convergence
theorem. The result is

l\t) + f l*R\u) (τ)dτ = φ + J β*(/, 0 (τ)dτ,
o o

u\t) + ί w'i^(/) (τ)dτ - φ + j β"(fi, w) (τ)dτ.
0 0

Thus, f and M" are in C^O, T Sβ). Differentiating, we obtain

If we can show

u = U (2.14)

then/= u = / is a mild solution of the Boltzmann equation on [0, T). We call (2.13)
the separated Boltzmann system.

Now, take /0 = 0 and any u\: [0, T)-+Sβ satisfying (2.10). Equations (2.9) with
k = 0 give easily 0 = / o ( ί ) ^ Ί ( 0 ^ w i ( ί ) Thus, without further hypotheses, the
beginning condition reduces to

«i(ί)^«o(0 (2-15)

We summarize: To solve the Boltzmann equation in an interval [0, T),
0 < Γ ^ o o , we have only to find a u0 satisfying (2.10) such that (2.15) holds on
[0, T), and then to verify (2.14). Precisely, we have

Lemma 1. Let φeSβ and l0 = 0. Suppose there is a function u\: [0, T)-^Sβ such that
(2.10) holds. If in addition, the beginning condition (2.15) is satisfied on [0, T), then
the separated Boltzmann system (2.13) has a solution (l,u)eCι(f),T,Sβ)

3. The Beginning Condition

In this section, we show that the beginning condition (2.15) can be satisfied globally
(T= oo) when condition b), that the mean free path is large, is satisfied. First, we
have to say what we mean by a large mean free path. Let φeSβ . Then, the function

^2φ(x,ξ) (3.1)
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is in LQ. In the following we assume that

*πs/\\ψ\\0<\/L (3.2)

Since (3.2) gives an upper bound on st9 it may be interpreted as saying that the
mean free path is large.

Now, when /0 = 0, (2.9b, c) give

or, what is the same thing,

ί ί
32

We now suppose, striving for an estimate (1.1), that u0 has the form uo(t9x,ξ)
= v(x — ξt, ξ). In this case, it follows from (3.3) that the beginning condition (2.16) is
satisfied if

φ(x, ξ) + J ί ί ί ω (ξ - η)v(x + τ(ξ - ξ% ξ')v{x + τ(ξ - η% η')dωdηdτ ^ v(x9 ξ).

(3.4)

We note that

η)\\ (3.5)

by (2.6). Thus, if we set

uo(t9x9ξ) = v(x-ξt9ξ) = e-nχ-M2w(O, (3.6)

(3.4) is satisfied if

ί ί ί ω (^^^l^^-^^>M^«τ^(0; (3.7)
3 S 2

here ψ is defined in (3.1).
We are looking for a non-negative solution of (3.7). When w^O, on the other

hand, (3.7) is true for all ί^O when it is true for t= oo. Also,
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where θ is the angle between x and ξ — η. Thus, we have

0

SinceO£ω-{ξ-η)£\ξ-η\,(3.7)

V
II

holds

0

oo

ί e~*
— oo

1 |

\ξ-n\\

if

ψ(ξ) + s/. 1 / J ί j w^wMdωdη = w(ξ). (3.8)

Thus, the beginning condition is satisfied by the function (3.6) when w satisfies
the integral equation (3.8). We show that this is the case when (3.2) is satisfied.

Define an integral operator W.L^Wi^L1^3) by

W(w) (ξ) = ψ(ξ) + s f J wMwffldωdη, (3.9)
3 S ?

where ε = ̂ ] / - . VFis well-defined because of the involution property of/ and

Fubini's theorem.
Let w^O and integrate (3.9). The result is

ί ί w^wMdωdηdξ
R3 Si

ί f w(ξ)w(η)dωdηdξ
lR3Sί

(3.10)

Also, if wl9 w2, ^0, a similar calculation shows that

1 - w 2 | | o . (3.11)

Equation (3.10) shows that PFmaps the set of non-negative functions in the ball of
radius Ro into itself if

(3.12)

while (3.11) shows that t^is a contraction on this set if

4 π ε # 0 < l . (3.13)

Inequalities (3.12) and (3.13) can both be satisfied by choosing Ro so as to satisfy

and this is possible when 8πε||φ||0 < 1. By the definition of ε, this is the case when
(3.2) holds. Thus, (3.8) has a non-negative solution and the beginning condition can
be satisfied globally when we have (3.2).
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Since W is a contraction, the solution of (3.8) is of course given by
w= lim Wk(ψ). If | |^ f c (ψ) | | 0 ^2 |M| 0 (which is true when fc = 0), it follows from

(3.10) that | | ^ + 1 ( ψ ) | | o ^ M | o + 8πε| |y>| |^2|M|o, by (3.2). Thus,

l|W(ψ)llo^l|w!|0^2||φ||0forall/c. (3.14)

Suppose next that xpeLι

onL\. If weL\, we have, from (3.9),

+ e ί ί
3 3

= Wli + ̂ ί ί 1 (\ξ\ + \η\Mξ/)M*i')dωάηdξ

= IIVII i + 4 ί ί J (\ξ'\ + \η'\Mξ)w(η)dωdηdξ. (3.15)
^ 3 3 S Ϊ

However, |ξ'| + l»7ΊSl/2l/|ξΊ2 + l»/12=l^l/|ξ|2 + W2^l/2(|ξH-W). Using this
inequality in (3.15), we find

||0 | |w||1. (3.16)

Thus, Wmaps Ll

oc\L\ into itself. Applying (3.16) to Wk(ψ), we get

\\Wk+\ψ)\\a\\ψ\\i+2πε\/2\\Wk(ψ)\\0\\Wk(Ψ)\\1

where (3.14) and (3.2) have been used. An induction now gives

^ \\ψ\\ i Λ= Thus, if ψ eLlnL\, the solution of (3.8) lies in the same space. We

1/2-1
need the fact just proved to show that Lemma 1 may be applied, for we have to
show that Q(u0, u0) and R(u0) satisfy the conditions of the lemma. We proved in the
course of deriving (3.8) that Q*(u0, u0) e 1/(0, oo Sβ), and in a similar way one sees
that u*0R\u0) G L^O, oo S£).

Thus, we have

Lemma 2. Let φeSβ and define ψ by (3.1). If (3.2) holds and ifψ e L\r\L\, then the
separated Boltzmann system (2.13) has a global solution (/, ύ) with (ΐ*,u*)\ [0, oo)

4. The Boltzmann Equation

To solve the Boltzmann equation itself, it remains to show that / = u, (I, u) being the
solution of the separated Boltzmann system (2.13). We do this by estimating u — I in
a suitable norm, namely, that defined by

mfMβ=ϊsupe>W)fXt,x,ξ)\dξ.
3 t
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We denote by Cβ the set of all/such that/* e C°(0, oo Sβ) and Mfmβ < oo, and by
Cβ the non-negative functions in Cβ. Because 0 ̂  l(t) 5Ξ u(i) :g uo(t), and because of
(3.6), I and u lie in C^.

Subtract (2.13a) from (2.13b) and integrate the result. Because of (2.13c), we find

(μ* -1") (0 = ί [β V u-t) + Q\u-l,l) + u*R\u-l) + (u*- /*)#<(/)] (τ)dτ.
o

Thus,

•//-/• -^supeβW ][Q\u,u-t) + Q\u-l,l) + u*R\u-ϊ)
x 0

(4.1)

We begin by estimating the first term on the right of (4.1). It is

j * ί sup eβW Π ί ω (ξ - φ ( τ , x + τξ, ̂  (w - 0 (τ, x + τξ, η^dωdηdτdξ
WL3 x OR3 S?

IR3 x 0 IR3SJ

e/ϊ |y |2(ίi - /) (τ, y + τη\ ^)~]e~^2 + ^2)dωdηdτdξ,

where we have written z = x + τ(ξ — ξ'), y = x + τ(ξ — η/). But, according to (3.5),
Izp + lj p^lx^ + lx + τ ^ - ^ ) ! 2 . Thus, the first term on the right of (4.1) is surely
bounded by

00

si \ supf f j ω-(ξ-fOsup[y|z|V(τ,z,f)]
R3 x 0 R3 SΪ «

• sup | y w V -1") (τ, y, η^e-'^^
y

f= s/ \ supf ί ί

• sup [e"wXu* - /") (τ, y, ifθ]e""x+τ(4~*)|2dωdί/dτdξ

ί ί ί sup[eMV(σ,z,0]sup[e^V-0(ί?,)>,>?)>
R 3 R 3 S+ σ,z ρ,y

/ (4.2)
* o

Estimating the time integral as in Sect. 3, we find that (4.2) is bounded by

2πj^γ(π/β)mumβmu — lmβ.
It is a straightforward matter to verify that the other three terms on the right of

(4.1) have the same bound. Hence,

However, wumβ^muomβ=\\w\\o^2\\\p\\o by (3.14), and so

\ \ \ \ l (4.3)
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If we now strengthen (3.2) to read

ί : = 1 6 π ^ [ / ^ | | V | | o < l , (4.4)

(4.3) gives mu — lmβ^qmu — lmβ with q< 1, which is impossible unless u = l.
We summarize our results in

Theorem 1. Let φeSβ, and define ψ by (3.1). //(4.4) holds, and ifψ e L^nLl, then
the initial-value problem (2.1-2) for the Boltzmann equation has a global solution

β. This solution is unique.

Proof Everything but uniqueness follows from the earlier discussion in Sects. 3,4.
On the other hand, uniqueness follows exactly the proof that u = I given above.

5. Some Remarks

Remark 5.1. In the introduction, we interpreted (4.4) as a condition that the mean
free path be large. It is clear, however, that the dimensionless condition (4.4) may
also be interpreted as a condition that the initial data be small.

Remark 5.2. The way we have derived the bound u0 also shows that the monotone
sequence {fk} defined by f0 = 0, and

^ / Λ ^ δ U Λ ) , fk+ί(Q)=Φ

is also bounded by u0. Thus, the mild Boltzmann equation without the loss term,

^ f(θ)=φ,

also has global solution under the conditions of Theorem 1.

Remark5.3. The fact that f\t,-)eSβ for all t permits the prediction of the
asymptotic behavior of the solution as ί-»oo. In fact, f(t,x,ξ)^uo(t,x,ξ)
= e~β\χ~ξt\2w(ξ), where weLl. Clearly, the form of u0 implies that

lim/(£,x,ξ) = 0 a.e. in R 3 x R 3 .
f-+oo

If WGLQΠL0 0, we can even say more. Consider the spatial density

ρ(t,x): = Sj(t,x,ξ)dξ.

Clearly,

^ R 3 ί 3 R3

and if w is bounded it follows that

| = θί-y 1 as ί->oo.

Remark 5.4. One might think that the global existence proof given in Sects. 3 and 4
immediately translates into a local existence proof if φ e Sβ, even if condition (4.4)
is violated. Unfortunately, this is not the case. The reason is that the integral
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t

j e~β\x+s(ξ-η)\2^s c a n n o t ^ e m a c j e s m a i i (uniformly in ξ and η) by just choosing t
0 .

sufficiently small. Of course, this integral is globally bounded by

this is not sufficient for local existence. On the other hand, local existence is true if
one considers more special initial data. For details, see [4].

Remark 5.5. The space Sβ arose in a natural way in the verification of the beginning
condition, given in Sect. 3. For the proof that u = /, then, we had to introduce the
norm given by (4.2). However, once this norm and the corresponding space are
given, we can also use a contraction mapping argument to prove the global
existence theorem.

Let φ e Sβ , let ψ be given by (3.1), and suppose that (4.4) holds. In Cβ, let Bq be

the ball ^q>, where \<q< 1.

Theorem 2. Suppose that φeSβ and that (4.4) holds. Then, the initial value problem
(2.1-2) has a unique global solution in Bq when qe(j91).

Proof. Consider the operator M :Cβ-*Cβ defined by

(Mf)\t, χ,ξ):= φ(x, ξ) + ί C*(f, f) (τ, x, ξ)dτ.
_ o

For q= 16πj3M /— ||v?||θ5 M maps Bq into itself and is a contraction. All the details

for this fact are already contained in the formulas (4.1)ff., and we leave the
elaboration to the reader.

Remark 5.6. Note that the conditions in Theorem 2 are slightly less restrictive than
those in Theorem 1. On the other hand, the solution given by Theorem 1 is
automatically nonnegative, whereas we do not know this for the solution given by
Theorem 2. We conjecture that standard methods can be applied to prove the
nonnegativity also in the more general case, but make no attempt to verify this.
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