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Abstract. We study the iterations of the mapping

with the constraints F(l) = l, F(s) = ̂ ans
n, απ^0, and find that, except if

F(s) = s9 J^k[F(s)~] approaches either 0 or 1 for \s\< 1 as fc-»oo.

I. Introduction and Summary of the Results

In a simplified version of a spin glass model [1] (CEGM), the probability
distribution of the spin-spin interaction is given by a discrete set of coefficients απ,

Σan=U α ^ O , (1)
n = 0

and after the operation of the renormalization group, this distribution is replaced
by a new one. The operation is best described by writing the equation which gives
the new generating function of the probabilities, JVF9 in terms of the old one, F:

with F(s) = Σansn This mapping preserves conditions (1).
We want to study the iterations of (2) and find out what happens to

^k\F{s)~] = Jf\JΓ\Jf ... ^[F(s)]]] , for /c^oo,

k times

and see whether JrkF{s) approaches a limit or has a chaotic behavior. In the
sequel, we use the abbreviation

k[F(s)-] = F«\s),
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Let us summarize the results.
1) There are only two fixed points of the mapping: F(s) = s, which is unstable,

and F(s) = l. A pseudofixed point is F f c ^ ' s 0 0 " , i.e., F(s) = 0 for 0 ^ s < l , and
F(s) =1 for s = 1. There is no periodic point, i.e., the equation

Vs,

has no new solutions when k> 1.
2) Only three things happen to the iterations for /c-*oo:
i) if F(s) = s, Fik\s) = s, V/c;

ii) otherwise, either F(fc)(s)-»Opointwise for 0 ^ s < 1, and in fact for |s |< 1 in the
complex plane, or F(/c)(s)->l for | s |^2 .

We see thus that the attractors are "trivial". However, it will be seen that the
approach to these attractors is complicated.

3) F(fc)(s)->1 for fc-»oo if and only if the following conditions are
simultaneously fulfilled:

i) F(s)fs,
ii) F(s) is analytic in |s| < 2,

iii) lim F(s) exists and lim F'(2) exists,
s-+2 s->2

iv) F(2)-2F ' (2)^0 .
4) Under conditions 3), F{k)(s) approaches unity in the following way:
i) if F(2)-2F' (2)>0 strictly, Σ \Fik)(s) -11 converges for | s |^2,

ii) if F(2)-2F /(2) = 0,Σ| i 7 ( f c ) (s)-l | converges for | s |<2, while Σ|F ( f c )(2)— l\γ

converges for any y> 1. Furthermore, liminf k(F(fc)(2)— 1)^2.
5) If F(s) φ s and if any one of suppress conditions 3) is not satisfied, then

F(fe)(s)->0 for | s | < l .
6) Finally, let us indicate that similar results, using similar methods, can be

obtained for the mapping

(4)

There is no unstable fixed point. F{k) approaches 1 for fe^ oo if F is analytic in \s\ < n
and D = F(n)-n(n-\)F\n)>0. In the limit case, D = 0, we only know that F{k)

does not approach zero. In the other cases, Fik)(s) approaches zero for \s\< 1.
7) The mapping,

TO)-(f(0)) (5)

where again F(s) = Σ<vΛ αn^0, Σ α π = 1, is such that F(fe)(s)->1 for fe-^oo, |s |^ 1.
In the sequel, we shall not discuss separately the problem of fixed points

(though direct proofs exist!) because the absence of non-trivial fixed points follows
from the rest of the study.
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II. Necessary Conditions for Fik)(s)-fr0: Analyticity

First note that from condition (1), we see that if F(s) is defined in 0 ̂  s ̂  1 it can be
extended to | s | ^ l .

Assume that F(so)/so< 1 for 0 < s o < 1, then from (2) we get

So \ s0 )

Hence, iϊF(so)/so < 1, i7(fc)(50)->0 as k-+oo but since, from the positivity properties
(1) \F(s)\ ^ F(s0) for \s\ ^ s0, we find also Fik\s) -»0 for fc-> oo, |s| ̂  s0. However, since
\Fik\s)\ < 1 in |s| < 1, Vitali's theorem tells us that |F ( / c )(s)H0 for |s| < 1.

Hence, if Fik)(s) does not approach zero, we have F(s)/s ̂ 1 for 0 ̂  s ̂  1. This
implies the following necessary conditions:

^ 1 , for any k. (6)

Let us now look at the recursion relations for a(k) following from the definitions
(2) and (3). They are

„?+!)= Σ $>aV + δn0(<$γ. (7)
p+q=n+1

If

1^= Σ af (notice If = \), (8)
p = «

we get from (7)

/? + 1 ) >Γ Σ + Σ λafaf, (9)
[_p^n, q^n+ 1 q^n, p^n j

i.e.,

Assume now that F(k) does not tend to zero for fc->oo. Then from (6), we get
a{k)^ 1, and hence

i.e.,

n

and, by inserting in the bracket in (10):

M ^ 1 < -z-

(11)

Iΐ+ί) 2 n '

Iterating this inequality, one gets, using Iq

p)^ 1,

aik)<I(k)<2nx2-\ (12)
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Hence F{k)(s) = ̂ a(k)sn is analytic in \s\ < 2. Furthermore, using the explicit bound
(12), we get a bound on Fik) which is independent of k:

l (13)

III. The Condition F(2) - 2F(2) £ 0

Consider the quantity

Dik\s) = Fik)(s)-sFik)/(s). (14)

By differentiating (2), we get

? ί ! ^ ? H l ( 1 5 )

Assume thatFik)(s)-h0 for fc->oo. Then the F(fe)'s are bounded by (13). Take
l < 5 0 < 2 , and assume D ( f e )(so)<0. Then from (15) we get D{k+1\so)<0 and

Dik+1)(so)
so so

since F(k)(s0)> 1 for s o > 1. Therefore, if D(0)(s) = F(s) — sF\s) is negative for one
particular s0, l ^ s o < 2 , then

\50/

However, Fik\s) is bounded by (13) and (2-\s\)F/{k)(s) is also bounded by (13).
For k large enough, this is a contradiction. Hence a necessary condition for F{k\s)
not to approach 0 in 0 < s < 1 is

Di0)(s) = F(s) -sF'(s)^0, Vs, 1 ^ 5 < 2 . (16)

If (16) holds, we can integrate (16) from 1 to s and get

(17)

This means that F(s) and F'(s) which are increasing functions of s have limits for
5 = 2 that we designate as F(2) and F\2). Hence we have shown the

Theorem. If Fik\s) does not approach 0 in 0 < s < 1, then

£ ( 0 )(2) = F(2) - 2F\2) ^ 0. (18)

From the positivity of the an% it is easy to see that (18) implies (16).
Let us now assume

D ( 0 ) (2)>0.
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We can take the limit of Eq. (15):

= F(k\2)D(k\2), (19)

and

D(k)(2) = F(k~ D(2)F ( f c- 2 ) ( 2 ) . . . F(2)D ( O ) (2). (20)

But D(/c)(s) is a decreasing function of s, so

and

oo

We see that the infinite product ΠF{k)(2) is convergent. So F(fe)(2)->1 for k-*co
o

and, since

(from convexity)

Furthermore, V|s |^2 the infinite product Π F{k)(s) converges. Therefore, we
k = 0

have the

Theorem. // F(2)-2F(2)>0, then F{N\s)^l as iV^oo, when |s |^2, and the
00

infinite product γ\ F(N)(s) converges for \s\ ^ 2.
iV = 0

00

This implies, of course, that Σ (F(N)(2) — l) converges.

IV. The Limit Case F(2) = 2F(2)

If

Di0\2) = 0, (21)

we get from (19), D(/c)(2) - 0. The only easy result in this case is that D(0)(2) = 0 is a
sufficient condition to guarantee that F(k)(s) does not approach 0 in 0 < 5 < 1.
Indeed, we still have F{k)(s) ^ 5 for 1 < s < 2, and by convexity F{k\s) Ξ> s for 0 ^ s < 1.
Let us show that iϊF(0) > 0, one can, in fact, get a lower bound on F{k)(0) for k large
enough. Replacing F and F' by their power expansion, one gets from (21)

*o= Σ (n-l)2nαn, (22)
n = 2
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and hence 4Σan<a0. Combining with Σ α n = 1, one gets
2 0

where [x] + = x for x ^ 0, 0 for x ^ 0. Hence

The graph corresponding to this inequality is presented in Fig. 1:

1

Fig. 1 Jk)

(24)

It is easy to see that after a finite number of iterations, one gets

(25)

One can generalize this technique to get more refined lower bounds, but we shall
prefer to use a completely different method.

The trouble with Eq. (15), in the case D(2) = 0, is that it reduces to 0 = 0.
Differentiating (15) leads to an equation on the second derivatives of F{k){2) and
F(k + 1)(2) which do not necessarily exist. An interesting quantity to consider is

Δ=F-sF'-' -F".

It is easy to see that A is monotonously decreasing. Hence

We have also

A(s)>(2-s)2F"(l) for s ^ l .

(26)

(27)

(28)
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The iteration of A is given by:

( F ^ F ^ ) 2 ( 2 9 )X) ()
s s

In Appendix I we prove the inequality

{F-sFr)2<2FA. (30)

Therefore,
A^(s). (31)

s

Iterating, we get

AiN+ί)(s) > ( "v° v 1 Π F(k)(s)A(s), (32)
\ s J k=o

and using inequalities (27) and (28) together with F(k)(s)/s > F(fc)(2)/2, we get,
assuming F"(l)φO, i.e., excluding F(s) = s,

k = N 1

Πr F{k)(2) < G3)
_[ Γ ^ ' f / / ( \ ) ( 2 — s)2(s—l)N+ί'

Optimizing with respect to 5, we find with s = 2 — 2/iV,

k = N Γ N2

(34)

In the limit of large N, we have

(35)

(36)

Σ εfc^21niV + const. (37)

This means that, in an average sense, εN goes to zero. However, we cannot exclude
from (37) the existence of an infinite sequence of %'s not tending to zero. The only
safe thing we can say is

If we define εN

we can rewrite

by

(34) as

F(N)(2) =

4 *

l+£iv ?

^ 2 . (38)
N-+oo

To prove that εN goes to zero, we will use the fact that successive e's are
correlated. Specifically, from

= (FiN)(2))2 + OF(iV)(0))2 < (F( iV)(2))2 + 1, (39)
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we get

(40)

In Appendix II we exploit this inequality to obtain

% - P > ^ ^ , (41)

and

Π ^ ( 2 ) > - ( ε # - M + 2)2. (42)
k = M q

If we combine the inequality (34) with the set of inequalities (42), we get

P (p \ 2

CN2

P> Π H r *(N1 + l)2(N2-N1 + l)2...(Np-Np-1 + l)2. (43)
k=l

In Appendix II we also show that this set of inequalities is very constraining
and allows us to get an upper limit on v(x), the number of &l larger or equal to x:

2n-2

v(x)<nn~1 - + n , (44)
\xj

for any integer n ̂  1.
Noticing that v(l) = 0, if F(s)φs, we get the Stieltjes integral:

£ (εk)
2«=]x«l-dv(x)-]=iax«-1v(x)dx. (45)

/c = 0 0 0

For any α >^ we can find an n such that from (44) we get a convergent upper bound
00

to the last integral in (45). In particular, to prove that Σ (%)2 is convergent, it is
sufficient to take n = 3. Hence we have shown k = 0

Theorem. Σ(εfc)
2α converges for &>\.

On the other hand, we have the

Theorem. // D{2) = F(2) - 2F'(2) - 0, Σεfe must diverge.

We begin the proof by summing Eqs. (15) to get

where

N

(47)



Iterations of Mapping of Spin Glass Model 361

Assume that Σεk converges, then ΠN(2) tends to a limit L for ΛΓ->oo, and
TlN(s)<L. We can also start after a finite number of iterations so that F{N)(0)
> 16/25, according to (25).

Then we get, summing the geometric series in (46):

a contradiction.
00

The convergence of Σε£ can now be used to prove the convergence of
o

00 00

\1-Fik)(s)\, or equivalent^ Π F{k)(s) for |s|<2.
k = 0

From (39) we have

Σ
k=0

Hence

Σ (1 -(F(k\0))2) = 2ε0-2εN +1 + ίε2. (49)
k = 0 0

The right-hand side is bounded for arbitrary N and this therefore convergent. It is
00

also obvious from the monotonicity of/7 that Σ (1 — (F{k)(s))2) is convergent for

For 1 ̂  5 < 2 we have to use a more complicated argument. If we write F{k)(s)
= 1 + εk(s), we get from the mapping equation

(50)

Introducing

we notice that xk->0 for fc->oo, and we get

5_1 oo / Λ * + l

Σ ^ [l-(F ( ( t )(0)) 2]. (52)
S k N \ J

Thus we get a bound on εk(s) and can establish the inequality

c \ oo

<- Σ (l-CF(fc)(O))2). (53)
I — S k^=N

oo

Therefore, the infinite product Π F(k)(s) converges for 0 ̂  s < 2 and this can be
k = 0

extended, using positivity, to |s| < 2.
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00

We have already said that when D(2) = 0, the product Π Fik)(2) must diverge.
k = 0

One could ask how fast. This depends on details of the initial F(s).
If F"(2) and F"'(2) exist (as limits from s<2), one can obtain the equation

)^2) + 2F(N+ 1}/"(2) = FiN\2) 13F(N)"(2) + 2F(JV)'"(2)] . (54)

By exploiting this equation, we prove in Appendix III that

C1N
2<UN(2)<C2N\ CX>0. (55)

Then, assuming that the F(N)'s are sufficiently smooth functions of N, one can
obtain their asymptotic behaviour:

1 d W (56)

where the relative error on F{N)— 1 is uniformly in s of the order of 1/N. This is
again explained in Appendix III.

If F"(2) or F'"(2) and F"(2) do not exist, the situation is more complex. If F"
exists but F"\s)~{2-sy\ Πiv(2)~iV2-α, if F"~{2-s)-\ ThtW-N1"*-
However, this is far from covering all possibilities! F;/ can be singular at s = 2
without behaving like a definite power of 2 —5. This is described in Appendix IV.

V. Generalization of the Results to Other Mappings

First, for completeness, we treat the simple case

, the recursion relation reduces to

n(k+l)_n(k) , s π(k)

and by iterating this relation from k = 0, we find

Σ ^ l for fc^oo. (59)
n = 0

Hence

F(fe)(s)->1 for fc^oo,

Now, consider the mapping

(60)
5

Here things are very similar to the case n = 2, except that there is no unstable fixed
point analogue to F(s) = s. The results are as follows:

i) If F(s) is analytic in |s |<n, and if F(ή) and F'(ri) exist, and if F(ή)
— n(n—l)F'(ή)>0, the iterates F(k)(s) approach 1 for /c->oo, \s\S-n.
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ii) In the limit case F(n) = n(n-l)F\n), Fik)(s) remains finite and F(k)(0) is
lower bounded by 1 — (1/n— 1), but we have not carried out a detailed analysis to
see if i7(fe) approaches unity.

iii) Otherwise, F{k)(s) approaches zero for | s | < l .
The methods being essentially the same as in the case n = 2, we feel that we only

have to give a few indications. First, one shows that if F(so)/so/n~ 1 < 1 for a given
0 < s 0 < l , necessarily F(k)(s) goes to zero for fc-^oo. Taking the limit so->l one
deduces that if Fik) does not approach zero,

J (61)

which is the analogue of (6). Then, using the recursion relations

< + 1 ) = Σ α<%>...<> + <Uα«)». (62)
ri+r2+ ... +rn = q+ 1

One proves the analyticity of F(k) inside \s\ < n and one obtains inside this domain a
bound independent of k. Next, one introduces the analogue of (14):

DW(s) = Fik)(s) -{n- l)sF'(k)(s), (63)

which satisfies the recursion relation

' g Z f (f(fc>(0))". (64)
s

One proves that D{k) has to be positive for 1 < 5 < n and one deduces that if F{k) does
not go to zero, then

(65)

[ N Ί n - 1

Π F{k)(ή) has an upper bound
fc = O J

independent of AT. This leads to the desired result. In the limiting case, one cannot
exactly carbon-copy the reasonings because more terms appear when one
differentiates equations more than once. Our guess is that nothing changes, but we
leave it as an exercise for the reader.

VI. Concluding Remarks

Returning to the case n = 2, we see that if we forget the origin of the problem and
think of the equation as describing a dynamical system, we see that there is no
room for a chaotic behaviour, irrespective of the choice of the initial F. In a naive
way, one could say that the behaviour F{k)-*0 for 0 < s < 1 is infinitely more likely
than F( fc)->1. However, we should remember that in this initial problem an

represents the probability for the variable x to be in the interval 2"", 2~n~x. So if x
has a bounded probability distribution near x = 0, the analyticity of F(s) in |s| < 2 is
automatic. What is not automatic is D(2) ̂  0. F(fe)->0 corresponds to a free system
in the limit. F{k)-+1 is more difficult to interpret since a0 corresponds to a large slice
2 < | x | < 1. This means that the interactions are either strongly ferromagnetic or
strongly antiferromagnetic.
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Appendix I

Proof of the inequality [F-sF'f <2FA. From F(2) = 2F(2) we get

ao= Σ > - l ) 2 χ .
n = 2

We have

00

F-sF'= Έ
n = 2

F= Σ «
n = l

To prove (Σ wΓ ) 2 < Σ Λ Σ wi> f°r uv vb wί > 0> it is sufficient to prove uf < ̂ w,-. If we
call x = s/2 it is sufficient to prove

for 0 < x < 1, n^2. One has to study the roots of P(x), which, fortunately, has at
most four positive roots, since the polynomial has only five terms different from
zero. For n ̂  6 one proves that

and, with the boundary conditions,

Pf Y
x=l

one succeeds to prove that F is positive. The cases w = 2,3,4,5 are more delicate,
but the positivity can still be established.

Appendix II

From

we get, with

F^(2)=l+εN9 (AII.2)

and hence
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Indeed, either sN + 1<sN and the latter inequality is obvious, or sN+1>εN and then
εN+1εN>Sχ. From (AII.4) we get

f"r~4 (AIL5)f r 4
bN bN+ί z

By merely adding (AII.5) for successive JV's, we get
1 ?

εN-P GN
(AII.6)

and hence the inequality (41) follows. Now, we want to get a lower bound on
M M

Π Fik)(2), i.e., on Σ log(l+βk). We use
k = N k = N

- ^ — for x > 0 , (AII.7)

X

and

N N+ί

Σf(Q> J f(t)dt if f'(x)^O, (AII.8)
fc = O 0

and get, from (AΠ.6) or (41):

N , P 2dq | 1 +

Σ ln(l + ε J k ) > ί - ^21n . (AII.9)
k=N-P+l 0 2 - i

[-q+ 1 \

Hence, using ε^ < 1 in the denominator of the argument of the logarithm, we get

N 1

O F ( k ) ( 2 ) > - ε 2 ( P + I ) 2 . (All 10)
k=N-P+l 9

N

Combining this inequality with (34), which says that Π F{k\2) grows at most like
o

N2, we get (43), which we repeat here in a slightly weakened form

c>|ίV

The bracket is a monotonously increasing function of the Ni+1—Nt considered
as independent variables (including N1=Nί—0). Suppose now that v(x) numbers
ε2 are larger than x. It is always possible to pick n of them, e£l9 εl2,..., ε^n, in such a
way that
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where [x]= integral part of x. Hence

Hence

and

JL_/O\2(»-1)
1ίj + n. (AII.ll)

Appendix III

There is no need to prove in detail the equation

"(2) + 2F{N +1}'"(2) = F(N)(2)[3F(iV)//(2) + 2F(iV)'"(2)], (AIII.l)

with, naturally, F(N\2) = 2FiN)/(2). It is straightforward algebra. This equation
shows that if F//(2) and F"(2) are finite, we get

), (AIIL2)

and, from (34)

(AIIL3)

A similar bound holds for F{N)"(2) but the latter one can be greatly improved by
using the following trick: from the Cauchy inequality we have

;, since \F{N)/(s)\ < 1 in |s |<2,
2 - N

and hence

2)< ^ - + C ( 2 - S ) Π N - I ( 2 ) .

Optimizing with respect to s, we get

F iN)"(2) < C/ΓLv _! (2) < C'N. (AIII.4)

On the other hand, we have, in the case F(2) = 2ί"(2)

F"(2)(F(2) -1) >|(F(0)) 2. (AIII.5)
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This inequality can be proved by substituting the expansions

F'(2)=Σφ-l)Γ2

fl,,
2

F(0)=Σ(n-l)2"απ,
2

and using the Schwarz inequality.
So from (AIII.4), (AIII.5), and FN(0)> 16/25, we get

Πv(2)

and since ΓLv~*°° for AΓ->oo

(AIΠ.6)

ε arbitrarily small for N big enough, and hence

l/ΓU+i - ]/ fΰ^ C' > 0. (AIΠ.7)

Therefore,

CXN
2 < Π Fik)(2) < C2N

2 . (AIIL8)
k = 0

At this point it is tempting to assume that ΠJV(2) behaves like N2 and to assume
that ε^ = εN(2) has a smooth behaviour in N:

Substituting into the recursion equation for F(N\2) [Eq. (39)], we get

~N2

Substituting this in turn into inequality (52) we get, for 5 < 2

s-1 8

and, in fact, since (εΛΓ(5))2 = O(l/iV4), we find

It is clear that this asymptotic behaviour holds for fixed s<2. However, we can also
investigate the neighbourhood of s = 2 for N large. We remark that εN(s) and εN(2)
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2
will be of the same order of magnitude for s > 2 because F/(AΓ)(2) < 1. Therefore,
we use a scaling variable,

z = (2-s)N, (AIII.12)

and assume

'©+..., (AIII.13)
N N2

and substitute into the recursion equation, using (AIII.10). We get a Riccati
equation for φ:

2zφ\z) = (z + 2)φ{z) + φ\z) - 8 . (AIIL14)

This equation [2] has a unique regular solution at z = 0:

φ(z)=-S—. (AIIL 15)

This solution has all the right properties: ^(0) = 2, hence F{N\2) = 1+ (2/JV)
+ O(1/JV2), f ( 0 ) = - i ,

We can find an interpolating formula for (AIII.ll) and (AIII.15)

4 ^ (AIΠ16)

Appendix IV

The cases F"'{2) = oo, F//(2) = oo. Here ΠΛΓ(2) rfoβ5 noί behave like N2. Consider
first F"(s)->oo for 5^2. We have the representation (46)

F zF'-
2-S Σ ( f W ( 0 ) ) 2

with

/2\ N I . (AIV.2)

Using

L
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it is not difficult to get

F-sF'

369

2-s

F-sF'
2-s

<C2 Σ

(AIV.3)

(AIV.4)

and if F"~C/(2-s)a

and, using the above inequalities, one gets

(AIV.5)

If F"(2) is finite, F'"(s)-> oo, the situation is more complicated. We shall only give a
very succinct account.

From the recursion relation

3F"iN+1\s

we get, by summation

Σ

5 N =

(AIV.6)

(AIV.7)

as well as the inequality

2\N

j " + sF'tr\. (AIV.8)

If we assume F'"(s)~C/(2-s)a, we can use (AIV.8) together with F//{N\s)
< 1/2 — s to get a bound on

After optimization, one gets

(AIV.9)

where ε can be chosen arbitrarily small.
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Inserting in the right-hand side of (AIV.7), up to a certain N, using F — sF' < 1,

and adjusting s, one can manage to get

N«< Σ π ^ r . (AIV.10)
/c = oΓL(2)

The converse is obtained by using (AIV.9) together with

F"{N)(2)(FiN)(2) - 1) >

This leads to the inequality

which can be shown to imply

ΓL»(2) >CN2~«, (AIV.ll)

which, in turn, can be reinjected into (AIV.10) to get

ΠΛΓ(2) <CN2-\ (AIV.12)
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In memoriam

This work, to which Jurko Glaser contributed more than his share, will be his last one. Jurko
died on 22 January 1984. Although he knew he had an incurable illness, he continued to
collaborate very actively with us, showing great courage and unfailing enthusiasm. We shall
always remember him as a remarkable physicist, a man of great culture, and a wonderful friend.

P.C., J.-P.E, A.M.
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