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Abstract. We show that the Yang-Mills instantons can be described in terms of
certain holomorphic bundles on the projective plane. The proof uses explicit
matrix descriptions arising from monads and an analysis of the corresponding
groups of symmetries.

In this note we show that the parameter spaces of instantons on U4 can be given a
purely complex algebraic description. Precisely, let G be one of the classical groups
SU(*0, SO(/), Sp(/), and k }£ 0 be minus the Pontrayagin index (we work with anti
self-dual connections) of a G bundle P over S 4 = U4u {oo}. Denote by M(G,/c) the
moduli space whose points represent isomorphism classes of pairs:

(anti self-dual G-connection on P, isomorphism P ^ ^ G).

These "framed" moduli spaces are in some respects more natural than the usual
moduli of connections alone: M(G,/c) = M(G,k)/G, and are manifolds of dimension
4//c, 4(/ - 2)fc, 4(S + \)k respectively, for k sufficiently large.

Now fix a complex structure on [R4 compatible with the metric and compactify in
a different way to the complex projective plane:

Consider analogously the moduli space:

ΘM(GC, k)

of holomorphic bundles on C(P2 for the associated complex group, trivial on the line
at oo, ί^ and with a fixed holomorphic trivialization there. Then we shall prove:

Theorem. There is a natural one-to-one correspondence:

)
R

(One consequence of this correspondence is that, interchanging the evident
symmetry groups, we get an action of SO(4) on ΘM and of SL2(C) on M.)
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The map JR can be defined using the Penrose fibration:

Fixing a complex structure on R4 corresponds to fixing a complex plane P in C P 3

through the fiber ί^ =π~ 1 (oo), the restriction of π then gives the isomorphism
V̂Όo Ί? ̂ 4 ^ n a n ^ self-dual connection on S4 lifts, by the Ward correspondence, to

a holomorphic bundle on C P 3 and a trivialization at coeS4 lifts to a trivialization
over ί^ then R is defined by restricting this holomorphic bundle to the plane P.
Taking this point of view Atiyah, in [1], noted that restriction gave an injection to an
open subset of ΘM.

The first reasons for believing that more should be true were analytical and
independent of twistor methods. In [4] it was shown that the anti-self-dual
connections on, say, C P 2 with its standard metric correspond to certain holomor-
phic bundles; and it seems likely that similar techniques could be applied to prove
our present theorem—regarding the flat metric on C 2 as a metric on C P 2 singular
along *f ̂ , and the trivialization there as giving boundary data for the differential
equation discussed in [4]. However, we have not developed such an approach since
it became apparent that one could give an elementary proof starting from the well-
known "ADHM construction." Indeed, after reviewing this construction (Sect. 1)
and describing a general principle (Sect. 2), our proof is essentially a single
observation.

This complex description of instantons is in some ways more manageable than
the usual real algebraic statement of the ADHM classification. For example, we can
see that (at least for groups SU(/)) the moduli spaces of instantons are connected.
This follows from the proofs by Barth and Hulek of the connectivity of the moduli
spaces Ms of stable bundles on C P 2 ([3, 5, 10, 4.2]). In fact, these proofs go by
reducing first to the bundles trivial on a fixed line. There are dense Zariski open
subsets:

representing stable bundles trivial on Z^, such that U fibres over V with connected
fiber SL(^,C)/Z^, hence the connectivity of Ms implies that of ΘM. Taubes [11] has
recently proved this connectivity (for groups SU(2), SU(3)) by more direct methods.
Conversely then Taubes' results give a new proof of the connectivity of certain
moduli of stable bundles.

1. Monads and the ADHM Construction

Here we review some standard material, mostly in order to fix our notation. We
work with connections for the group G = SU(/) and correspondingly holomorphic
SL(/,C) bundles.

Bundles on C P 2 . Take homogeneous coordinates [X] = (x y; z) for the projective
plane C P 2 , with z = 0 defining the line at oo. Then by a monad we mean linear maps
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for each XeC3:

455

A* κκ-B-U *. τrr"x

between complex vector spaces of dimensions /c, 2/c + /, k respectively, depending
linearly on X:

Ax = Axx + Ayy + Azz,

such that for each X the composite BXAX :H -• L is zero. This gives six equations for
the maps Ax,Ay,Az Bx,By,Bz. We say that the monad is non-degenerate it for each
non-zero X, Ax is injective and Bx is surjective. In this case, the monad defines a
holomorphic bundle on C P 2 whose fiber at [X] is the vector space Ker Bχ/lmAx.
It is known that any bundle on C P 2 trivial on some line comes from such a monad,
unique up to the action of GL(#) x GL(K) x GL(L) (cf. [10, p. 249 and Lemma
4.1.3; 3, 5]).

Now consider bundles trivial on the fixed line z = 0. The condition on the monad
for this is that the composite:

BxAy = — ByAx is an isomorphism ([10, Lemma 4.2.3]).

For such bundles we can reduce the symmetry of the monad by choosing bases for H,
K, L so that BxAy = lk = identity matrix. Further, the three conditions:

BxAy=-ByAx, ByAy = 0, BxAx = 0

imply that we can normalize the bases so that the maps are given by:

Ik

Ik

Bx=(0 1 0) By=(-\ 0 0)

The two equations BzAy = — ByAz, BZAX = — BXAZ mean that we have:

, Bz={-a2a1 b\ say,

and we are left with the remaining matrix equation:

BzAz = 0 o [ α 1 } α 2 ] + ba = 0.

The restriction of the bundle to the line z = 0 has a natural frame given by the last
£ basis vectors of K ^ c 2 f e + ίf, and so we have the description of Barth:

Proposition 1. The space #M(SL(/,C),/c) is the quotient of the set of matrices
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(α1 ?α2,α,b) satisfying:

(i) [ α l 5 α 2 ] +ba =

S. K. Donaldson

(ii) for all λ, μeC 2 , [ α2 + μ\ is injective and (λ — aιoc2 — μ b) is surjective,

a

by the natural action o/GL(/c,C):

>peGUk,C).

J

Bundles on C P 2 and the ADHM Construction (See [1, 2] for more details.)

Now regard C P 2 as a plane in C P 3 by taking a fourth coordinate w. We consider
analogously monads for bundles on C P 3 trivialized on the line /oΰ=(z = w = 0), so
we set:

Ax = Λxx + Ayy + Azz + Aww, etc.,

having matrix representations:

/0

A =

Bx = (0l0), By = ( - 1 0 0), Bz=(- α2 α2 b\ Bw=(-ά2όcι b)

with non-degeneracy conditions and three equations:

(a) [ α l 5 α 2 ] + /?α = 0,

(b) [ά 1 ,ά 2 ] + fiα = 09

(c) [α 1 ? ά 2 ] + [ά 1 ? α 2 ] +bά + ba = 0.

Finally, we introduce the "real" bundles corresponding to instantons. The
quaternions: U(l, I, J, K = IJ) act on C 4 ,

J(x,y,z9w) = (y, - x,w, - z),

and we seek monads for bundles on C P 3 with an isomorphism J*(δ) = δ*, trivial on
all real lines. Then the space K acquires a Hermitian metric and L becomes
isomorphic to //*, so we may consider the adjoint A* as mapping K to L and, for

4 , the complex linear map:
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The quaternions act on L@L by:

and we demand that J / commutes with the quaternions, that is :

jtfqX(v) = q^χ(v) for veK,qeH.

This implies that the kernel of jrfx is constant along the fibers of the Penrose
map:

and descends to give the fiber of the bundle over S4 carrying an anti-self-dual
connection.

In our matrix description we suppose the bases are chosen in the obvious way,
compatible with the real structures (so in particular the induced frame at oo is
orthonormal). Then the reality condition becomes:

-Bzz-Bww \ /A*z + A*w\ _ fA*w-A*

A*z + A%w) \Bzz + Bww ) \Bzw- Bwz

that is, A* = BZ9 A* = - Bw.
So we can eliminate the - variables:

ά1=— αf, ά2 = αf; α = b*, b=— a*.

Moreover, the non-degeneracy conditions for a monad of this type on CP 3 are the
same as those ((ii) of Proposition 1) for the restriction to CP 2 since $0X is surjective
if and only if s^qX = qs^x is (for geH*), and CP 2 sweeps out CP 3 under H*.
Substituting into the three equations (a), (b), (c); (a) and (b) become adjoints and (c)
becomes :

[α l 9 α*] + [α 2 Jα*] + bb* - a*a = 0.

The whole setup is invariant under U(k) and we are able to state the description of
Atiyah, Drinfeld, Hitchin and Manin:

Proposition 2. The space M(SU(/),/c) is the quotient of the set of complex matrices
(α1,α2,α,b), satisfying conditions (i), (ii) of Proposition 1, and also:

(iii) [oq,α*] + [α2,αj] + bb^ — a*a = 0

by the action of U(k)

2. Geometric Invariant Theory and Closest Points

Next we describe some general machinery which will lead immediately to the proof
of our theorem. We give a minimal account and refer to two articles [7, 9] which
contain extensive discussions and applications of these ideas. The precise fact that
we use is due to Kempf and Ness [6].

Suppose the group GL(fe, C) acts by some linear representation on CN with the
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subgroup U(fc) acting isometrically. Then in Mumford's Geometric Invariant theory
there is a definition of a "stable point" ("property stable" in [8]) in CN. Roughly
speaking, the GL(fc) quotient of the set of stable points has a good structure. The
definition is this:

Definition. The point x in CN is stable for GL(/c,C) if and only if the map
GL(fc) -> C^ #ι—• gx is proper.

In particular, the GL(/c) orbit of a stable point x is closed in C^ and so contains a
vector, say x itself, closest to the origin. Writing down the infinitesimal form of this
gives an equation satisfied by x: μ(x) = 0, where μ: CN -• lϊ(fe). For example, take the
adjoint representation of GL(fc). Then if a matrix α is closest to the origin in its orbit

= 2<<5&[α,α*]>=0 for all <5#,

that is: μ(α)Ξpχ,α*] = 0 .
Moreover, it can be shown [6] that this closest point is unίgue in the GL(fc) orbit

up to the action of the unitary group U(fe), as the reader can check in the example
above. So we have the following general principle of Kempf and Ness.

Proposition 3. For any representation as above and any GL(fc) invariant subset
W a CN, all of whose points are stable for the action, the quotient W/GΊJk) is naturally
equivalent to the quotient (μ~1(0)n W)/\J(K).

In practice the stability of a point can be tested by the:

Hubert Criterion ([8, Theorem 2.1, Proposition 2.2]). The point x is stable for
GL(fe,C) if and only if it is so for all l-parameter subgroups. That is, if for allgeGlXk)
and integers {wl}J

c

=1 {not all zero):

gά\2Lg{tw\...,tWk)g~γ χ^Qθ as ί->oo.

Now we apply these ideas to our problem. Take GL(/c,C) acting on the vector
space of matrices {a1,(x2,a,b) as in Proposition 1. The unitary group preserves the
obvious norm and computing the quantity μ(a1,a2,a,b) as before, we get
fortuitously:

δKa^a^aM^δhJ^δllaJ^δlla^ + δM2

,[α1,αf] + [α2,α*] + bb* - a*a},

i.e.,

μ(oc1,θL2,a,b) = [α l 9 αf] + [α 2,αf] +bb* -a*a.

Moreover, we have:

Lemma. Suppose the matrices (oc1,(x2,a,b) correspond to an element of
$M(SL(/,C),/c); that is, satisfy the two conditions (i), (ii) of Proposition 1. Then the
point (oc1,a2,a,b) is stable for the action o/GL(/c,C).
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Proof. Suppose, on the contrary, that some (α1 ?α2,α,b) is not stable. Then by the
Hubert criterion and the GL(/c) invariance we may suppose that:

is bounded as t -» cojor pt = diag(twHW2.. ΛWk)wι ^ w2 2; g; M^ . Suppose first that
some w is positive, say vv1 > 0 and wx = w2 = = ws > ws+1. Then considering the
action on b we must have the first s rows identically zero

hence

Likewise p acts by t14'1""'-' on the (ί,j)ιh-entry of the α's so:

J ^ a n d [«i'α2]=( *

Suppose now(α l 5α2,fl,i) satisfy condition (i): [α 1 ? α 2 ] + bα = 0. Then MίiM2, and
so M\,MΎ

2 commute—hence have a common eigenvector v\{λ — M\)v =
{Mτ

2 — μ)u = 0. Then the row vector (vτ 0) annihilates the image of (λ — αχ α2 — μ b),
contradicting property (ii).

In precisely the same way if some wf is negative, we get a vector in the kernel of

OLχ+λ

α2 + μ Hence every point satisfying (i), (ii) is stable. (In fact, for points in the
α

closed variety satisfying (i), stability is equivalent to (ii).)
With this small lemma we have the proof of the theorem, for G = SU(*f),

immediately in our hands. For we take W to be the set of matrices (α1,α2,α,b)
satisfying the conditions (i), (ii) and substitute Propositions 1 and 2 into Proposition
3, exploiting the fact that the equation μ(α1,ot2,α,b) = 0 is the extra condition (iii).

For the sympletic and orthogonal groups, one can follow the same path, working
with the corresponding self-dual monads. Alternatively, argue in the obvious way,
regarding a symplectic or orthogonal holomorphic bundle as a bundle $ with an

isomorphism <f-><f*. For each trivialization on ί^ $,$* both carry unitary anti-
self-dual connections, and if the trivializations are consistent with /, the connections
will, by the uniqueness, be also—that is, the connection then reduces to the
corresponding compact group.

We have given this proof in an unashamedly computational, coordinate based,
fashion. However, it is interesting to note that the discussion of Sect. 2 can be
abstracted and the map μ then appears as a moment map for the action of U(fc) ([7,
9]). On the other hand, as explained in [4], the anti self-duality equations in the
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context of holomorphic bundles can also be interpreted as the vanishing of a
moment map, but this time for the infinite dimensional gauge group. Perhaps the
geometrical reason for this coincidence lies in the ideas of E. Corrigan and W. Nahm
on the dual nature of the ADHM construction—transforming commutator
equations for differential operators into formally similar commutator equations for
matrices.
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