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Integrality of the Monopole Number
in SU(2) Yang-Mills-Higgs Theory on R3*

David Groisser
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Abstract. We prove that in classical SU(2) Yang-Mills-Higgs theories on R 3

with a Higgs field in the adjoint representation, an integer-valued monopole
number (magnetic charge) is canonically defined for any finite-action ]}γ loc

configuration. In particular the result is true for smooth configurations. The
monopole number is shown to decompose the configuration space into path
components.

Introduction

In classical Yang-Mills-Higgs theories over a Riemannian manifold M, one fixes a
principal bundle

M

and studies the action functional

$ Π 2 \2) (1)
M

This functional is defined on the configuration space

% = {{A, Φ)estfx g\*(A, Φ)< 00} , (2)

where jrf is the space of I?1 > l o c connections on P, and $ is the space of βχ l o c sections
of some (fixed) associated vector bundle E. (This is the most general configuration
space. Often one considers only smooth connections A and sections Φ, but for
many applications this restriction is inconvenient. If a potential term is included in
the action, the configuration space again is smaller.) The symbols FA, dAΦ denote
the curvature of A e sd and the covariant derivative of Φ e $, respectively; norms
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are defined by fixing a metric on M, an Ad-invariant inner product on the Lie
algebra p, and a metric on E. Multiplication theorems for L2

1>loc (see [1, Chap. 9])
imply that FA and dAΦ, defined by their usual coordinate expressions, are locally
square integrable. Finite action ensures global square integrability.

When M = 1R3 and E is the adjoint bundle, one considers the flux expression

N1(A,Φ)=lim±- ί \ΦΓ\Φ,FA). (3)
Λ-OO 4 π \X\ = R

If G = SU(2), a sufficient condition that the "magnetic charge" or "monopole
number" N^A, Φ) be well-defined by the formula (3), and be integer-valued, is that
(A, Φ) e <$ be a critical point of a, (and that Φ not vanish identically). It has been
conjectured that finite action alone is sufficient to define NX(A, Φ) e TL in a natural
way.

This conjecture is true.

Theorem. Let P-+ΊR3 be a principal SΌ(2)-bundle and let E be the bundle of Lie
algebras associated to P by the adjoint representation. Let R 3 be given the standard
metric and let a metric on E be induced by minus one-half the Killing form of o^(2).
Let <$ be the space of finite-action L2

1>loc configurations given by (1), (2). If (A, Φ)
eΉ, there is a unique number M such that M — \Φ\eL6(IR3), and ϊ J M φ O then

is an integer. This integer agrees with (3) (i.e. N = N1) if

lim sup | M - | Φ | | = 0, (4)
R^oo \x\^R

provided A and Φ are continuously differentiable. There is a natural topology on <$
(see Definition 2) such that N is continuous on<£ = {(A, Φ) e ^\M φ 0}, and N: Ή-^Έ
decomposes %> into path components.

Remarks. 1. By " Λ " in "dAΦ ΛFA\ we mean inner product on E and wedge
product on forms. Similarly, the inner product (Φ, FA) in (3) is inner product only
on E.

2. The set B = <€-<β is that subset of ^for which \Φ\ eL6(R3)(equivalently, for
which M = 0). Configurations in B are in any case never of physical interest; the
action (1) has no critical points in B except ( 4 Ξ 0 , Φ Ξ 0 ) and its gauge translates.
Any symmetry-breaking potential added to the action density - e.g. (1 — |Φ| 2 ) 2 -
leads to a configuration space Ή'cΉ disjoint from B.

3. Our proof will show that, when (4) holds with MφO, N(A, Φ) is given by (3)
not only if (A, Φ)eC1, but more generally if A e L2

lf l o c and ΦeL{loc for some p > 3.
In the general case one must take some care interpreting the integral in (3), which is
defined only for almost all large R. We deal with this problem and state the
stronger version of the theorem in Sect. 2.

4. Uhlenbeck [2] has proven an integrality theorem for pure Yang-Mills
fields in even dimensions ^ 4 , valid for any compact structure group G: if

A,ioc(R 2") and FeL n (R 2 n ), then the Chern number of any vector bundle
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associated by a special unitary representation is an integer. The question in [2] is
essentially whether a connection on a bundle over R 2 π extends to the compactifi-
cation S2n. By contrast, here we essentially study how a connection on R 3 restricts
to ever-larger two-spheres, and the methods we employ are quite different from
Uhlenbeck's.

The theorem above is more or less a corollary of the following proposition,
proven in Sect. 2.

Proposition. Let (A, Φ)e^ be smooth and suppose that

lim sup | 1 - | Φ | | = O.

Then Nγ(A,Φ), as given by (3), is well-defined, integer-valued, and

1 , 1 ,
NΛA,Φ)=-— dΛΦΛFA= lim — (Φ,FA).

47TR3 A

 κ-oo4π \x\LR

y

The theorem is proven in two steps. The first step, the subject of Sect. 1, shows
that it suffices to consider continuous Φ (more precisely, Φ eBι Λoc for some p > 3)
which satisfy an asymptotic condition of the form (4). The second step (Sect. 2)
shows that for such Φ the monopole number - which we redefine for convenience
as a volume integral rather than the surface integral (3) - is an integer. (Whenever
the limit in (3) exists, the two definitions are equivalent.)

1. Reducing to the Case in which \Φ\ tends Uniformly to a Constant

Several arguments below make use of a "cutoff function" which we now define.

Definition 1. Fix a smooth function β:R 3 ->R such that 0^)8^1, β(x) = 0 for
|x |^l, and β(x)=l for |x|^l/2. For R>0 define βR(x) = β(x/R).

Notation. Henceforth, for Φe$, let Φ = Φ/\Φ\ wherever Φ#0. Also, let d^,d%
denote the formal L2 adjoints of the exterior derivatives d, dA respectively; thus d*d
and d\dA are the nonnegative Laplacians. The L2 inner product will be denoted by
<,>. The operator VA :Γ(£®(T*R3)pHΓ(£(x)(Γ*R3)^+1X the full covariant
derivative, is the tensor product connection determined by dA and the Levi-Civita
connection V on R3.

The following fact is well-known (cf. [3, Lemma 4.12]).

Lemma 1. Let V be the space of real valued functions fe L 2

l l o c (R 3 ) for which df
G L 2 ( R 3 ) . Let H be the completion of C^(R 3 ) (the compactly supported smooth
functions) in the norm | | / | | # = \\df\\2 Then for eachfe V there is a unique number
M(f) e R such that f— M(f) s H. In other words, there is a canonical isomorphism

Proof Let/e Fand define Q: H-+R by Q(g) = (d(f-g), d(f~g)}. The functional
<2 is weakly lower semicontinuous on H and coercive: Q(g) ̂ \ | | g | |\ — || /1|\. Hence
it achieves a minimum (see [4, Chap. 6], e.g.), say at g, which is unique since Q is
strictly convex. Let h =f— g then d*dh = 0 weakly. Note that Ht*^ loc(R3), since

6 by a Sobolev inequality and L6 c> L6

loc c> L2

loc. Hence hel}lloc. But any
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weakly harmonic L2

X l o c function on R" is C00 and (strongly) harmonic (see [5,
Chap. 8]), and so are all its derivatives. Let ht = dh/dx\ i= 1,2,3. Then for each i
and any R > 0,

o = < β R h i 9 d*dhty = <βRdhi9 dh

As R-+co, the first term approaches \\dhi\\\ while the second, bounded by

const •^~2||/ιι | | ^const K- 2 | |d(/-^) | | i< oo,

approaches zero. Hence ||d/z.||2 = O and ht is constant. But hί = dί(f—g)el}, so
ht = 0 for each i. Therefore/— g = h = const = M(/), and/— M(/) e H. Uniqueness
is clear. D

Kato's inequality ||d|Φ| | | 2 ^ ||rf^Φ||2(see [6], proof of Lemma 2.1a) implies that
M(\Φ\) is defined by Lemma 1 whenever dAΦeβ. This enables the following
definitions.

Definition 2. Let <# = {(A, Φ)eI}ίΛoc\a(A, Φ)<oo}. Endow <tf with the weakest
topology that renders continuous the functions

Define B = {(A,Φ)e%\M(\Φ\) = 0} and let <i = V-B.

Remark. An alternate description of the topology above is as follows. Let Fbe as in
Lemma 1, with the topology induced by the isomorphism V=H®Έί, and give
Ωk(AdP) the L2 topology for fc = l,2. Define i :%-+Ω2(AdP) x Ω^AdP) x V by
ι(A, Φ) = (FΛ, dAΦ, |Φ|). The topology on <β is the one induced by the inclusion i.

Definition 3. Define N': ^ ^ R by

N'(A,Φ)=±-S dAΦΛFA.
4π ^3

Define the monopole number N: ^->1R by

) \ N ^ φ ) ^ (A,Φ)EB.

(We will soon see that in fact ΛΓΞΞO on B.)

Remark. The path components of ^ are, in fact, labeled precisely by the values of N.
We defer the proof of this fact to the appendix, since it uses ideas developed in
Sect. 2.

Lemma 2. For Aestf let HA be the completion of the space of compactly supported

sections of E in the norm \\φ\\HA — MAψ\\2'
( a ) / / (A, Φj) and (A,Φ2) are in <& and Φ2 — Φ1£HA, then

N'(A,Φί) = N'(A9Φ2).
(b) Given (A,Φ)e(£ there exists a unique Φf such that Φ'—ΦeHA and

d*dAΦ' = 0 (weakly).
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Proof, (a) Let φ = Φ1 — Φ2. Since dAφ and FA are in L2,

|ί dAφ AFA\ = lim f j8 Λ ^φ Λ F ^ lim |J(dβR)φFA\,

by Stokes' theorem and the Bianchi identity {dAFA = 0). Since dβR=O for |x| ^
the last integral is bounded by

ί M6Y'6

(Holder's inequality). Using Kato's and Sobolev's inequalities,
|| φ || 6 ^ const ||d\φ\ \\ 2 ^ const | |dAφ || 2 < GO, SO φ e L6. Since ||d/^ || 3 is independent
of R, the expression above tends to zero as R-^oo.

(b) The functional Q(φ) = a(A, Φ + φ) is strictly convex, weakly lower semi-
continuous, and coercive on HA. Hence it achieves a unique absolute minimum,
say at φ. Then Φ' = Φ + φ solves d%d^ = O weakly. D

Lemma 3. Suppose (A, Φ) e Ux l o c, dAΦeU, and d*ίdAΦ = 0 weakly. Then Φ is
continuous (in fact ΦeIFίtloc and dAΦeIF(ΊR.3) for 2<^p^6) and

lim sup |M-|Φ|| = 0,
R-+ao \x\ZR

where M = M(\Φ\) is given by Lemma 1.

Proof. The local integrability conditions on {A, Φ) together with d*AdAΦ = 0 imply
that ΦeΠul0C for 2 S p ύ 6 (see [7, Theorem 5.5.3]). By the Sobolev embedding
theorem Φ is continuous (in fact C 1 / 2 ). Hence

\Φ\\dAΦ\2 = \Φ\-\\dAΦ\2-{ΦJAΦ)2)

is a well-defined distribution. By Lemma 1, 0 = M(|Φ|) — \Φ\eH^β1Λoc, and we
compute d¥dg = \Φ\\dAΦ\2^.O (weakly). By the weak maximum principle (see [4,
Proposition VI.3.2]) # ^ 0 everywhere, so 0 ^ | Φ | ^ M ( | Φ | ) and ΦeL 0 0 . The
inequality

which is formally a result of integration by parts and a Sobolev inequality (for a
proof see [6, Appendix B]), therefore implies VAVAΦeU. Since VAΦ = }
Sobolev's and Kato's inequalities imply | | # | | 6 ^ l |Φ| |ool l^^l l2 < 0 0 a n < l

Therefore geϋx. But functions in Z f̂ΊR") for p>n have uniform decay (see [4,
Proposition III.7.5]), so lim sup |#| = 0. D

The proof above also yields the following corollary.

Corollary. N' = 0 on B.

Proof. Let (A, Φ)eB and let Φr be given by Lemma 2b. By Lemma 2a,
N\A,Φ/) = N\A,Φ). The weak maximum principle implies |ΦΊ^M(|ΦΊ), and
since M(|Φ'|) = 0 we conclude Φ'ΞΞO. Hence N'(A, Φ') = 0. D
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Lemmas 2 and 3 imply that to prove integrality of N we need only consider
configurations for which \Φ\ is continuous and approaches 1 uniformly at spatial
infinity.

2. Integrality of N(A9 Φ) when \Φ\ tends Uniformly to a Constant

To stress the main ideas, we first prove that N is an integer for smooth (A, Φ)
satisfying the asymptotic condition (4) with M = 1. Later we relax the smoothness
constraint.

Proposition. Let (A, Φ)e^ be smooth and suppose that

lim sup | 1 - | Φ | | = O.

Then N(A, Φ) e Z, and

lim-!- ί (Φ,FA)=limj- J (Φ,FA)

Moreover, restricting Φ to large two-spheres determines a homoίopy class of maps
from S2 to iS2, and N(A, Φ) is the Brouwer degree of this class.

Proof Let Ro be large enough that |Φ(x)| ^ if |x| ^Ro. On the set U = {\x\ ^
there is an orthogonal splitting E = EL®ET, where the "longitudinal" line bundle
EL is the stabilizer of Φ and the "transverse" 2-plane bundle Eτ is the orthogonal
complement of EL. On U let Φ — Φ/\Φ\, and let ΦR = Φ\\X\ = R. The endomorphism

restricted to

E T 77T1
R = h l|x| = R5

where R^R0, satisfies J2= — 1. Therefore J defines a complex line bundle

for each R ^ JR0, on which J acts as multiplication by I. Fix a global trivialization of
P momentarily so that Φ may be regarded as a map from R 3 to <?̂ (2).
Topologically, LR = Φ = *K, where i£ is the canonical bundle of C P 1 ^ (unit
sphere in g). Thus the Chern classes are related by

c1(LΛ) = deg(ΦΛ)c1(K)= -2deg(Φ Λ ) , (5)

where the orientations are redefined, if necessary, to make the sign in (5) correct.
The value of deg(Φκ) is independent of R^R0 and of the choice of trivialization
[since π2(SU(2)) = 0].

By orthogonal projection the connection A on E\υ induces a connection A on
Eτ\v, defined by setting
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for s e Γ(ET). The curvature FA, viewed as an End(Eτ)-valued two-form, is given by

FA(s) = dΛdΛs = (\FA9 s] - (dj, s) Λ dAΦ)τ.

Using [ £ Γ , £ Γ ] C £ L and [ £ L , £ Γ ] c £ Γ , one finds that FA(s)=fA[_Φ,s], where

fλ = {Φ,FA-\ldAΦJAφ-\).

Complexifying induces a connection on the line bundle LR with curvature form

Since

(5) implies that

Ci(LR)=-^- ί ω,

1 χ

The covering homotopy theorem implies that the left-hand side of (6) is
independent of R^R0. We examine the limit as R->oo of the terms on the right
arising from FA and [dAΦ,dAΦ~\ separately. For R^2R0,

ί (Φ,FA)= ί (1-/W(<W
\x\ = R \x\ = R

= - ί ^2«o(Φ'^)+ ί O - ^ J ί ^ Λ ^ . (7)

The ίίjδ integral is independent of R^2R0. Also, for such R,

so \dAΦ\iL2\dAΦ\, and the last integral in (7) is absolutely convergent as R-^oo.
Hence P

lim J (Φ,FA)
R-+O0 \χ\=R

exists, and since the left-hand side of (6) is independent of (large) R we conclude that

lim ί {ΦXdJ^M
R^<x> \x\ = R

exists. This limit must be zero for otherwise || dAΦ || 2 would be infinite. Therefore, by
(5) and (6),

l i m ^ - I ( Φ , F J = d e g ( £ Λ o ) e Z . (8)

To complete the proof we must replace (Φ, i7^) in (8) by (Φ, i7^). But

J (Φ-Φ,FA) = J (i-/y(Φ-Φ,

+ J | ^ Φ - ^ Φ | | F J . (9)
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For |x| ^ ,R0, \dAΦ — dAΦ\ ^ \dΛΦ\, so the last integral above -*0 as JR-• oo. The first
integral on the right in (9) is

ύ\\dβR\\3\\FΛ\\2( J ( 1 - | Φ | ) 6 V / 6 , (10)

since dβR = O for \x\^R/2. Arguing as in Lemma 2a, the expression (10) ->0 as
R^co. Hence Φ may be replaced by Φ in (8) as desired. D

The crux of the argument above is that the right-hand side of (6) is
automatically an integer because it is the Chern number. If we only assume
A e L 2

l l o c we cannot make this statement directly because the induced connection
form on LR need not be continuously differentiable. However, the statement is still
true in a measure-theoretic sense.

Lemma 4. Let {A, Φ) ec€. Suppose that Φ e Bίtlocfor somep>3 and that \Φ\ ^
r^R0. (Since L\Λoc c» C°, \Φ\ is continuous.) Then

ί {Φ9FΛ-ildΛΦ,dΛφ-]) (11)
\x\ = R

is a measurable function of R^R0, and f(R) = cί(LR) for almost every R^

Proof For |x|>.Ro?

 t n e 1-form dAΦ = \Φ\~ 1(dAΦ — (Φ,dAΦ)Φ) is locally square
integrable since dAΦel}loc and ΦeC°. Hence

and |(Φ, FA)\ e L2

loc c> I\oc as well. Fix 1^ > Ro and let J be the annulus Ro ^ \x\ ̂
If / is the interval [_Rθ9 i^J, then J = I x S2, so Fubini's theorem implies that/(jR)
is measurable on J and defined almost everywhere.

Let {(Au Φt)} be a sequence of smooth configurations such that At->A strongly
in ΰx{J) and Φ^Φ strongly in BX(J). Since JB\>1OCC> C°, Φt-+Φ uniformly, and we
may assume without loss of generality that each Φt is nonvanishing on J. Hence the
bundles (LR)f arising from Φt are all isomorphic to the LR arising from Φ. If f^R) is
the integral (11) with (A, Φ) replaced by (Ah Φf), then f^R) equals the Chern
number n of the bundle LR, independent of R e / and i. Thus for all such R, /,

(R-R0)n= f 7 ^ ) ^ = j d r Λ ( Φ ί ? ^ - i [ ^ Φ , , ^ ΦJ). (12)

The last integrand converges strongly in I}(J), so as /-• oo we may erase all the Γs in
(12). Hence

Uf(r)-n)dr = 0
Ro

for all Re I. It follows that f(r) — n integrates to zero over every measurable
subset of /, and hence f(r) = n almost everywhere in /. As Rx was arbitrary, we
are done. D

To further mimic the proof of the proposition, we need one last definition and
lemma.
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Definition 4. A measurable function/: [0, oo)->R has an essential limit at infinity

/'written ess lim f(r)\ if there exists a set ί/C[0, oo) of measure zero such that
\ r-+oo /

lim f(rn) exists for every sequence {rn} -> oo which lies entirely in the comple-

ment of U. (An essential limit is necessarily unique.)

Lemma 5. Let (A, Φ) satisfy the hypothesis of Lemma 4. Then

ess lim J (Φ,FΛ), ess lim J (Φ,FΛ)
R-*oo \x\=R R^oo \x\ = R

exist and are equal to J dAΦ A FA.
R3

Proof Let Ro, Rx, J, I be as in Lemma4, but now assume R1>2R0. Let
(Ai,ΦΪ)->(A9Φ) just as in Lemma 4. Equation (7) is valid for (Ab Φt), so for

] dr f {ΦbFΛ)=] dr\- J (ΦhFA)dβ2Ro+ f (l-β2Ro)FAiΛdAίΦλ.
2R0 \x\=r 2R0 (. \x\£r \x\^r J

Taking limits as ί-*oo and arguing just as in Lemma 4, we find that

g(R)= J (Φ,FA)=- J (Φ,FA)dβ2Ro+ f ( 1 - ^ ^ Λ ^ Φ (13)

for almost every R. Again the first integral is independent of R and the second has a
limit as R-±co, so ess lim #(.R) exists. The arguments that this limit is the same

with Φ replaced by Φ and that

esslim J ( Φ , F J = J dΛΦΛFΛ
R->oo R3

are similar modifications of those given in proving the proposition. We omit the
details. D

We may now prove the theorem stated in the introduction. For convenience we
rephrase the statement.

Theorem. Let <£ be the space ofl3lloc configurations given by Definition 2. Let <&, B,
and N: ^->IR be given by Definitions 2 and 3. Then N is integer-valued. Moreover
N is continuous on <£, and for (A, Φ) e <£,

ess lim (4π)" ι J (Φ, FA) = ess lim (4πM)" x J (Φ, FA) = N(A9 Φ) (14)
R-+co \x\ = R R ^ c o \x\=R

exist, where M = MQΦ\) is given by lemma 1. The configuration (A, Φ) determines
a homotopy class of maps from S2 to S2 and a complex line bundle over S2, and
N(A, Φ) coincides with the degree of these maps and with the Chern number of the
line bundle.

Proof. Let {A,Φ)e^. By Lemma2 there exists Φ' such that (
N(A, Φ)=N(A, Φ% and d^dAΦ

f=0 weakly. By Lemma 3, Φ'eEιloc for some p>3,
and \Φ'\-+M uniformly at spatial infinity. If M = 0, then JV = O, so assume MΦO.
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Replacing Φr by Φ'/M, we may assume M = l , Lemma 4 then applies, and the
function/(i?) of (11) is the constant Cι(LRo) eZfor almost every R^R0. Together
with Lemma 5 this implies that

esslim J (Φ\ldAΦ\dAφ-])
Λ-oo \x\ = R

exists. This limit must be zero since dAΦ'eI}({\x\^.R0}). Equation (14) then
follows from Lemmas 4 and 5. Now Φf determines the line bundle LRo and the
homotopy class in Maps(S2, S2) discussed in proving the proposition, and (A, Φ)
determines Φ'. Hence (A, Φ) itself determines the line bundle and homotopy class.

Continuity of N on <£ follows immediately from Definitions 2 and 3.
(A proof that the {N = constant} subsets of ^ are connected is given in the
appendix.) G

Appendix. The Path Components of <&

For fceZ, let %k = {(A, Φ) e <«\N(A, Φ) = k} and let fk = <βkc\<έ. We will
show that the path components of ^ are exactly the %!k. Since JV is clearly
continuous on ^, it suffices to show that each c€k is path-connected. Essentially,
this was shown by Taubes in the appendix of [3], but since he only considered
smooth configurations we paraphrase his argument.

Theorem. C6k is path-connected for each keΊL.

Proof Below, r = |x|, x = x/\x\, <S2 C R 3 is the two-sphere of radius r, and S2 is the
unit sphere in d&(2).

Fix k, and let e:Sl^>S2 be any smooth map of degree k. Fix a global
trivialization of P (henceforth "reference gauge") and define Φ o eΓ(AdP) by
Φ0(x) = (1 — β(x))e(x) in this gauge. Define a connection form by Ao = — [Φ o , dΦ 0]
in reference gauge. Then dAoΦo = 0 for r ^ l and |JF^o |^const r~2 for r ^ l .
Lemma 1 shows that M(|Φ|) = 1, so (A0,Φ0)e(£. We will show that any
configuration in c€k can be joined to (Ao, Φo) by a continuous arc lying in <i.

Let (A,Φ)e<&k9 let M = M(|Φ|), and let Φr be as in Lemma 2b. Since
£M>(y4,(l -t)Φ + tΦ') and ίh->(yl5 M " ^ are continuous: [0, l]->$, there exists a
curve Ci(ί) in ^ connecting (A, Φ) to (A, M " ιΦ') = (A, Φj). By Lemma 3, Φγ is in
L 6

l j l 0 CcC° 5 |1 — \Φγ\\ has uniform decay, and dAΦι elίnϋ. Fix a positive ε< 1/4
and an arbitrary smooth section Φ(

2

1} of AdP over the closed unit ball. There exists
a smooth extension of Φ^1} to some Φ2, defined globally, such that for n = 2,3,4,...,

and

(b) for p = 2 and p = 4, J \dAΦ2 — dAΦ1\
p^ε/2n.

Hence \Φ2 — Φι\ decays uniformly and ̂ Φ 2 eL 2 ( ]R 3 )nL 4 (R 3 ) .

For ίe[0,1], (A,(l-t)Φ1 + tΦ2) = (A,Φ2ιt) = c2(t)eV, and \Φ2J->1

uniformly as r->oo. Thus M(\Φ2a\) = i (Lemma 1), so c 2 : [0, !]-><<ί is continuous,



Integrality of the Monopole Number 377

and it joins (A, ΦJ to (A, Φ2). Similarly, let R^2 be such that r^R/2 implies
|Φ2(x)|Ξ>l/2; then there is a curve c3(ί) connecting (A,φ2) to (A, (1 -βR)Φ2)

=μ,φ3).
Next, let A4t = A-t[Φ3,dAΦ3'], ίe[0,1], and define c4(ί) = G44>f,Φ3). From

the formula FA+η = FA + dAη+j;[rι9η']9 the fact that dAΦ3eU (since dAΦ2el5\
and the fact that |Φ3 | is bounded, it follows that tv-±FAΛt is continuous:
[0,1]-*L2. Hence c4(t) is a curve in Ή from (̂ 4, Φ3) to

Let C7 = {r^R} and note that dΛ4Φ4 = 0 on (7. Let AutP = PxSU(2) be the
Ad

bundle whose sections are gauge transformations, and let ^ be the unit sphere
bundle of AdP. In reference gauge, define Φ'5 by Φ'5(x) = Φ0(x/R). lϊge AutP is in
the fiber over xεU, set π{g) = Adg(Φ'5(:x)); this defines a fibering of (AutP)^ over
ίf\υ. The reference gauge gives a bundle isomorphism

( A u t P | ^ ^ y ^ ( A u t P I ^ ^ ) x [R, oo).

For r^R, Φ4|S2 is homotopic (as a map from S2 to S2) to Φ4|s^ = Φ2 |s£, hence to
Φilsέ The Theorem of Sect. 2 (or rather its proof) shows that degΦJsj^fc, so
Φxlsi and Φ5I5J are homotopic. The homotopy lifting property of fibrations (see
1.11.7 of [8], e.g.) implies that there exists a smooth section g of AutP^ which
covers Φ4; i.e. satisfies Φ4 = Adg(Φ'5). This g can be extended smoothly to all of R3.
Since Maps (R3, SU(2)) is connected, there exists a smooth h: R 3 x [0,1]->SU(2)
such that ht = h( ,t) satisfies ho = identity and hί = g. Then
c5(ί) = (Ad/ιt~ ̂ ylj + ft^ 1dh;\kάh; 1(Φ4)) defines a curve in ^ from (^4, Φ4) to
some (A5, Φ5) (with Φ5 = Φ'5 on [/).

On {r^R/2} write ^ 5 = Aξ + ̂ 5, with AL = (Φ5,A5)Φ5. Since (^5,Φ5) is a
gauge transform of (A3, Φ3), we know that dAsΦ5 vanishes on U, and it follows that
Aτ

5 = — [Φ5,dΦ5~] for r^R. By construction Φ5 is radially constant on U, so
^ 1 \dAτ

5\^const r~2, and hence FATeI}(U). But F^5 = F^τ
SO dA^f 6L2(ϋ). It follows that c6\t) = (A5-t(l~βR)AL

5,Φ^
is continuous: [0, l]->^. Write c6(l) = (A6,Φ6); a continuous rescaling of
the R 3 variable connects (A6 j(x)dxj, Φ6(x)) (in reference gauge) to
{R-1A6ij{x/R)dx\Φ6{xlR)) = {AΊ,ΦΊ). Then for r ^ l , Φ7^Φ0, dΛlΦ7 = 09 and
^[71Φ7 pointwise, whence AΊ = A0 for r ^ l . Finally, c8(ί) = (l —0(^7^7)
+ t(A0, Φo) connects (AΊ, Φ7) to (^0, Φo). D
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