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The Broadwell Model for Initial Values in L\ (R)
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Abstract. The Cauchy problem for the Broadwell model is shown to have a
global mild solution for initial data in L+(R) with small //-norm, and a local
solution for arbitrary initial data in L+(R). For data which are small in L^R),
the asymptotic behaviour of the solutions as ί->oo is determined. Moreover, it
is shown that a global solution exists for all initial values in L+(R) with finite
entropy if the //-Theorem holds.

Introduction

The Broadwell model is one of the simplest non-trivial discrete velocity models of
the Boltzmann equation and has found a lot of attention as a model problem in
kinetic theory. Nishida and Mimura [5] and Crandall and Tartar [6] have shown
that the Cauchy problem has always a global unique solution for bounded initial
data. Inoue and Nishida have studied the asymptotic stability of equilibrium
solutions [3], and Caflisch and Papanicolaou have investigated the fluid
dynamical limit as the mean free path between collisions tends to 0 [1]. Open
questions are the asymptotic behaviour of solutions as ί-»oo and the largest
possible class of admissible initial values.

The last question is of relevance because the mass conservation law suggests
L1-spaces as natural spaces in which to look for solutions of the Boltzmann
equation. However, the quadratic terms in the collision operator are a priori not
defined in L1, and this is one major reason why existence theorems for the
Boltzmann equation have only been proven for smaller sets of initial data and in
general only locally in time.

In this paper I investigate the question of solvability of the Broadwell model for
initial values in L+(R). The basic idea is to obtain an a priori upper bound of the
solution by solving a model with suitably truncated collision terms, for which I
give monotone approximations - this is done in Sect. 2 for nonnegative initial data
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with small Lf-norm. The proofs use some auxiliary results which I give in Sect. 1. In
Sect. 3, I use the a priori-bound and a modification of the Kaniel-Shinbrot
iteration scheme [4] to obtain a global solution to the Broadwell model when the
initial data have small L+-norm. This result implies local existence for any initial
values in L+. If the initial data have finite entropy and if an //-Theorem holds, then
the method of Crandall and Tartar [6] applies and global existence follows. This is
done in Sect. 6.1 have no proof of the //-Theorem for the solutions constructed in
Sect. 3, but I give a semi-formal discussion in Sect. 5.

In Sect. 4, the asymptotic behaviour as ί-»oo of the solutions constructed in
Sect. 3 is determined. The methods I use combine techniques introduced by Tartar
[7], Kaniel and Shinbrot [4], and myself [2].

Notation. Let α e R . Da will denote the differential operator dt + ocdx. For α = + 1 ,
— 1 and 0,1 will write D +, D _ and D, respectively, λ denotes the Lebesgue measure
on IR, ^ ( R ) the class of all Borel sets, and L+ the set of all nonnegative functions in
[}. The letter C will denote different constants in different formulas.

1. Some Auxiliary Results

Let T > 0 be arbitrary but fixed, and let Ω = [0, T ] x R.

Lemma 1. Let /zeL+(R), / e L + ( Ω ) . Then the initial value problem

a) Daw=f-w2

(1)
b) w(0, ) = Λ

has auniquenonnegativemild solutions e C([0, T] ;LX(R)) in the sense that w2 e I}(Ω),
DawEU(Ω) and a) holds in I}(Ω), b) in I}(R).

Proof Let ϊN(x): =min {/(x), JV}, JV = O, 1,2,..., and let wN be the solution of

Daw=fN-w2, w(0,-) = Λ- (2)

All the wN exist, are uniquely determined and satisfy

0 ^ w N ( t , x ) ^ w N + 1 (ί,x) a.e. in Ω.

From (2), it follows that

wN(t, x + at) + f Wχ(τ, x + ατ) dτ = h(x) + J fN(τ, x + ocτ)dr. (3)
o o

Thus w]V(ί, + at) is bounded by the integrable function

τ, +aτ)dτ
o

and monotone increasing in N. Hence there is a limit w(ί, + αί) in L\ (R). Clearly,
w^(ί, x + αί) converges monotonically to w2(ί, x + αί) for almost all x. From (3), for
all ί G [0, T] and almost all x

t t

J w£(τ, x + ατ)dτ ̂  h(x) + J /(τ,
o o
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By Beppo Levi's theorem,

t t

lim J wjy(τ, x + aτ)dτ = j w2(τ, x + aτ)dτ .
o

Passing to the limit N-+ co in (3), w is seen to be a mild solution of (1) in the sense of
the definition. The properties w2 eI}(Ω), DaweI}(Ω) are easily read off from (3),
and from f t

w(t,x + at) + j w2(τ, x + ατ)dτ = h(x) + ] /(τ,

it follows that weC([0, T]; L^R)).
To show uniqueness, assume that w is a second solution. Then

D(w — w) — w2 — w2= — (w + w) (w — w),

which implies w = w a.e. in β. D
Now let fl9f2eI}+(Ω) such that f^fi a e > and let Λl9 h2eI}+(R) such that

hί^h2 a.e.

Lemma 2. //Wj denotes the mild solution of

Daw=fi-w2, w(0,') = hi9 ί = l , 2 ,

ί/zew W!^w 2 a.e. m Ω.

Proof. Left to the reader. D

Now suppose that fuf2 el}+(Ω) such that fγ :g/2 a.e., and gί9g2 eL1+(Ω) such
that gι^g2 a.e., and let

Lemma 3. The unique solutions wt of the linear Cauchy problems

D<LW=fi-9iW> w(0, ) = h, i = l , 2 ,

satisfy w 1 ^ w 2 a.e. in Ω.

Proof. By inspection (the statement is read off from the explicit solutions).

2. A Truncated System

Let f,g,heI}+(R), and let γ-max{ | | / | | L i , ]|g||Li, | |h| |Li}. On Ω9 consider the
Cauchy problem

D 2 ( 0 ) /

Dw = 2(ut; - w2), w(0, ) = A. (4)

Definition, (u, v, w) is called a mild solution of (4), if

a) w,t;,w6C([0,Γ];Ii(R))

b) D + W , D _ U , D W G L 1 ( Ω )

c) W 2 ,UI;GL 1 (Ω)

d) (4) holds (a.e. in Ω) in the sense of I}(Ω), and the initial conditions hold in



344 R. Πlner

Theorem 1. Ify ^ 1/4, then (4) has a mild solution (w, ϋ, w), which is the limit of the
iteratively defined functions

uo(t9 x) =/(x - 0 , vo(t, x) = g(x +1),

a) Dwn = 2(unvn-w2

n), wπ(0, ) = Λ

b) D + t<M + 1 = w 2, uΛ + 1(0, •)=/, (5)

c) D_vn + 1=wϊ, υn + x(09 ) = g,

n = 0,1,2,.... The iterates un, vn and wn are well-defined and form a non-decreasing
sequence. Furthermore, there is a non-decreasing sequence of functions un, vn, wn

eL 1

+ (R) and there are u, ΰ, W<ΞL}+QR), such that

and

l | f i π l l L i , l | ϋ n | | L i , | | w n | | L i ^ 2 y , n = 0 , l , 2 , . . . , (6)

and

un(t, x) S un(x -1) <; u(x -1)

a(t,x)<.u(x-t)

) ™

)^w(x)

ί, x) ̂  w(x)

a.e. in Ω.

Proof. The plan of the proof is as follows: I first prove the existence of all the
iterates; on the way, (6), (7) and the monotonicity are obtained. The existence of
(ΰ, ϋ, w) and (u, ϋ, w) then follows from Beppo Levi's theorem.

T

Let u0 =/, v0 = g, wo(x) = h(x) + 2 j" uovo(τ, x)dτ.
o

Notice that
T T

ί Suovo(τ9x)dτdx=S
1 0 R 0

R 0

Hence uovo eI}+(Ω), and by Lemma 1 w0 is well defined. Clearly w o(ί,x)^w o(x),
and || w01|Li ^ y + y2 ^ 2y. This proves (6) and (7) for n = 0. As w0 is nonnegative and

t t

wo(t, x) + 2 J wg(τ, x)rfτ - Λ(x) + 2 J uovo(τ, x)dτ,
0 0

T

it follows that 2 J J wl(τ,x)dτdxSy + J2 In particular, Woeίi+fΌ).
R 0
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Now assume that um vn and ύn, vn have been constructed such that (6) and (7) are
true. As unvn EI)+(Ω), it follows from Lemma 1 that wn(t, x) exists a.e. in Ω and is
nonnegative. By (5) a),

t

wπ(ί, x) = h(x) + 2 f [ u Λ - w2] (τ, x)dτ
o

^ Λ(x) + 2 I fin(x - φ~n(x + τ)dτ - 2 J wπ

2(τ, x)dτ,
o o

and therefore

2 ^ί ^n(τ
R 0

ί

Consequently, «„ + i(ί, x + ί) =/(x) + ί w2(τ, x + τ)dτ, and
o

vn + 1(t,x-t) = g(x) + j w2(τ, x - τ)dτ
o

ί t

are well defined, because J w2(τ, x 4- τ)dτ and J w2(τ, x — τ)dτ exist for all ί ̂  T and
o o

almost all x. Let

Γ

n̂ +1 (*) = ̂ W + ί v^2(τ, x - τ)dτ,
o

Γ

wn(x): - Λ(x) + 2 J unυn(τ, x)dτ.
o

Clearly

Now note that u1 ^ M0 and vί ^ ι;0 a.e. and that therefore, by Lemma 2, w1 ^ w0

a.e. Inductively one shows that a.e. un + 1^:un, vn + 1^vn and w/ί + 1 ^w π , and from
this the corresponding inequalities for the ύn9 ΰn and wn follow.

Beppo Levi's theorem implies that the un, υn and wn have limits ΰ, v and w in
LVίΩ), and that the ύn, vn and wn have limits w, v and w inL^CIR). Also, the relations
ΰ(t, x) ^ u(x — t), ϋ(t, x) S v(χ + 0 a n d w(ί, x) ^ w(x) hold a.e. in Ω.

From (5), I know that for all ίe[0, Γ] and almost all x

ί

(8)
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Notice that w2 is non-decreasing as n->oo, that w2(ί, x)->w2(f, x) a.e. in Ω, and that

T

2 1 J w2(τ, x + τ)dτdx ^ y + (2y)2 ^ 1/2.
R 0

Thus

T

lim J J (w2 -
w^coR 0

which implies that for almost all x

T

f (w2 — w2)(τ,x + τ)dτ->0 as n-»oo.
o

Let n->oo in (8). It follows that

t

ΰ(t, x + 0 =/(x) + I w2(τ, x + τ)dτ
o

holds a.e. in Ω. The corresponding equations for v and w are obtained similarly.
This completes the proof. D

Remark. For γ > 1/4, a standard domain of dependence argument shows that (4)
has a local mild solution in the sense of the definition. There is, however, in general
no mild solution for arbitrary T, as the following example shows:

Let f=g = h=l. These initial data are inI}loCt+(R)9 and (4) reduces to the
system of ordinary differential equations

ύ = w\ u(0)=l, w = 2(u2-w2), w(0)=l (9)

(note that necessarily v = u).
Equation (9) has a local solution satisfying w(ί)^w(ί). Thus

d

Jt

This differential inequality implies that 2u + w becomes infinite after a finite time,
and there is no global solution. To treat the case where the initial data are inίλ^it
is sufficient to multiply the initial values given above by 0 outside of a sufficiently
large interval.

3. The Broadwell Model for Initial Data with Small ίί-Norm

As before, let Ω = [0,T]xR, /, g9 /IGL 1

+ (R), y = max{||/||Li, ||flf||Li, ||Λ||Li}.
I consider the following Cauchy problem for the Broadwell model:

D + u = w2-uv, w(0, •)=/>

D_v = w2-uv9 υ(09-) = g9 (10)

Dw = 2(uv — w2)9 w(0, ) = h.

Let γ ̂  1/4 and let (ΰ, v, w) be the solution of (4) given by Theorem 1.1 will construct
a solution of (10) as limit of the following coupled system of iterations, which is
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modeled after the iteration scheme introduced by Kaniel and Shinbrot [4]:

ulo = υι

o = wι

o = 0,

a n d

D+uh

n + 1={^)2-uh

n + 1v
ι

n, < + i{09 •) = / ,

D-ii-(wί) 2 -ί + 1 i ι£ + 1(0, >) = g, (lla)

Dwh

n+1 = uh

nv
h

n-(wh

n + i ) \ wJ + 1 ( 0 , . ) = Λ,

D+uι

n+1=(wι

n)
2-uι

n + ιυl uι

n+1(0, •) = / ,

D_υι

n+1 = (wι

n)
2~vι

n+1u
h

n, υι

n+1φ, ) = g9 (lib)

Lemma 4. The functions uι

n, uh

n, v
ι

m υh

m wι

n and wh

n are well defined by (11), are in I}(Ω)

and satisfy a.e. in Ω,

(12)

/or α// rc^O.

Proof. The proof is by induction. The existence and monotonicity properties for
n = 0,1 follow from Lemmas 1,2, and 3 in Sect. 1. Assume the existence of all the
iterates in (11)and(12)have been shown for n^m. Then vv^rgw^, vl

m^v^ a.e., and
Lemma3 implies that a.e. uζn+ι'^uι

m+u and similarly it follows from v\4+ 1^w^
and ? 4 ^ t 4 - i that uh

m+ι^uh

m. All other inequalities follow likewise. D

Relation (12) implies that there are uh, uι, υh, v\ wh, wιeI}+(Ω), such that
uι

nsu\ uh

n\iUh, vl

nsvl, vh

n\vh, wι

nSw\ w*\wh a.e. in Ω. Since uι^uh^ύ and
vι^vh^v a.e. in Ω and because ΰ v is integrable over Ω, it follows that u^+ί'V

ι

n

-+uhvι in Lx(ί2) as n->oo by the dominated convergence theorem. Similar
convergence statements hold for all other terms on the right of (11).

Using convergence in I)(Ω) and the monotonicity properties, one shows

ul=(W'Y-ulv" M ( ° ' ) = H(

in the mild sense.

Theorem 2. //y is sufficiently small, then necessarily uh = u\ vh = v\ wh — wι a.e. in Ω,
and (M, ϋ, w) = (w\ ϋΛ

5 w
h) is α mild solution of (10).
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Proof. Note that uι(t9x + ή^uh(t,x + t)^ύ(t,x + t)g:U(x) and υι(t,x-t)^
v\t, x - i) ̂  ϋ(t, x - ί) S- v(x) for all t e [0, T] and almost all x e R. Also,

uΛ(ί, x - 0 =f(x - It) + f ((wh)2 - uhυι) (τ, x - It + τ)dτ
o

a.e. in JΩ. Therefore, for almost all x e R,

J(u f c -M I )(ί^-ί)Λ=Π((w h ) 2 -(w I ) 2 )(τ,x-2ί + τ)dτdί
0 0 0

+ ί f (tιV-ttV)(τ,x-2ί + τ)dτdί. (14)
0 0

Almost everywhere in Ω, wι ^ wΛ, and a.e. in R

T T

w\T, x) + 2 j (wΌ2(τ, x)dτ = ft(x) + 2 f MV(T, x)rfτ,
0 0

w\T, x) + 2 J (wz)2(τ, x)dτ = Λ(χ) + 2 J uV(τ, x)dτ.
0 0

Substracting and integrating, / get

T T

ί ί ((wh)2-(wι)2)(τ,x)dτdx^l J (uhvh-uιvι)(τ,x)dτdx.
R 0 R 0

I use this inequality to estimate the first term on the right of (14). The result is

} (uh-uι)(t,x-t)dt^(l/2) j } (uhvh-uιvι)(τ,x)dτdx
0 R 0

+ (1/2) j 1 (uV-ttV)(τ,x)dτd:x.
R 0

By the triangle inequality

ί (uh-ul)(t,x-t)dt^(l/2)\ f [MV-«Z)
0 R 0

(15)

Moreover, I have the estimate

r r
I j uh(vh-vι)(τ,x)dτdxS ί ί u(x-τ)(vh-v')(τ,x)dτdx
R 0 R 0

= J ί«(z)(u'1-Di)(τ,z + τ)dτίiz
R 0

g | |M||L, sup ί <y-V)(τ, z + τ)rfτ. (16)
zeR 0
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T T

Let |||(M,ϋ)|||: = supί M(ί ,x- ί )Λ+supJ i?(ί,x + ί)Λ, then |||(ιΛ ϋ*)||| and \\\(u\υι)\\\
x 0 x 0

are finite, and (15) and (16) imply an estimate

|||(!i\ vh) - (u\ υι)\\\ S C y\\\(u\ vh) - (u\ υι)\\\, (17)

where C is a fixed constant. If γ < 1/C, it follows that uh = uι and vh = vι a.e. in Ω, and
then necessarily also wh = wι. The proof is complete. Π

4. Behaviour as t->oo

For initial data which are admissible in Theorem 2, the asymptotic behaviour of
the solutions as ί->oo is easily described. The following lemma is helpful.

Lemma5. Let feI}+[0, oo). Then the Cauchy problem

f2 φ)u f u , uφ) = a>0. (18)

has a unique, absolutely continuous and nonnegative solution u, and lim w(ί) = 0.
ί->oo

Proof. One easily verifies that (18) has a unique, absolutely continuous and
nonnegative solution. For ί o > 0 and t^t0, it follows that

u(t)-u(to)=]f(τ)dτ-]u2(τ)dτ9 (19)
to to

hence

OO

Let ε > 0 . There is a ί0 such that u(to)<ε/2 and j f(τ)dτ<ε/2 [otherwise a
to

contradiction to (19) results], and therefore u(t)^ε for all ί^ ί 0 . Π

Theorem 3. For the initial data which are admissible in Theorem 2, the solution
(w, v, w) of (10) satisfies

a) lim w(t, x) = 0 for almost all x e R
ί->oo

b) w(ί, + ί ) α^ίί t;(ί5 —t) have limits in I}QR) as £->oo.
c) lim w(t, ) = 0 intiQR).

ί^-oo

Proof a) is an immediate consequence of Lemma5 and the fact that u-vel}
([0, oo) x R ) . [So far, I have only shown u*υeI}(Ω); as T > 0 was arbitrary,
and as \\u v\\Lι(Ω) is bounded independently of T, it actually follows that u-vel}
([0, oo) x R).] For b), the argument given in [7] is applicable. I repeat it for the

d
convenience of the reader. Let u + (ί, x) = u(t, x +1), v _ (ί, x) = v(t, x — t). Then — u +
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and — z;_ are in I}([0, oo) x R). Thus
ot

J |M + (ί2,x)-M+(ί1,
R

J — u+(t,x)dt
fi 3ί

dx

R
— u + (t,x)dtdx,
ot

and it follows that t/ + (£;. ) is Cauchy in L*(R) for every sequence {ί J l e N such that tt

->oo. Hence there is a function u+ el}(β) such that lim \\u + (t, •) — M + | | L I = 0 .

Similarly, there is a ϋ_ sl}(R) such that ' " ^

lim ||u_(ί, -) —1?_ll̂ i = 0 .
f->oo

c) As in b) one shows that there is a w ^ e L ^ R ) such that

lim ||w(ί, )- w oollL i r = 0 a ) implies that woo(x) = 0 a.e., i.e. w^^O in L^R). •
f->oo

Roughly speaking, Theorem 3 depicts the following asymptotic behaviour as
£-*oo:w decays to 0, and the long-time behaviour of u and v is approximately
given by free flow.

5. The //-Theorem: A Semi-Formal Discussion

The weakness of the global existence theorem proved in Sect. 3 is the smallness
condition on the initial values. In the next section I will show how local existence
follows from Theorem 2 for any initial data in l}+. If the initial values have in
addition finite entropy and if the //-Theorem is true, then the argument of
Crandall and Tartar [6] is applicable, and one actually gets global existence.

Unfortunately I have no rigorous proof of the //-Theorem for the solutions
given by Theorem 2. Also, I do not know whether the solutions depend smoothly
on the initial values (in the sense of LX(R)), even though this seems reasonable to
expect.

A formal proof of the //-Theorem can be given following the classical lines: Let
ε > 0, consider the solution (M, υ, w) of (10) given by Theorem 2 on a set Ωo: = [ί0, ί j
x R, where tQ ^ 0, and let

Ωε: = Ωon{(t,x); ε^u(ί,x), υ(t, x), w(ί, x) S 1/ε}

As D+u, D_v and Dw exist a.e. in Ωε, so do D + (u logu), D_(u logι;) and
D (w log w), and I have

D + (u -log u) + D _ (v - log υ) + D(w log w)

= (1 + log u)D + u + (1 + log v)D _ v + (1 + log w)Dw

= (w2 — uv) [log (uv) — log w2] ^ 0.

After integration over Ω31 get

J D + (u logu)df<ix+ J D^(υ-logv)dtdx+ j D(w logw)dtdx^0.
Ωε Ωε Ωε
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Note that all integrals exist. As ε \ 0, Ωε blows up to the set

ΩΌ = {(ί, x) e Ωo u(t, x), υ(t, x), w(ί, x) > 0} .

Now suppose that

lim j D + (w logw)(ί, x)dtdx = $ u log u(t1,x)dx — j w log w(£0, x)dx,
ε^oo Ωε R R (20)

that the integrals on the right exist, and that the corresponding identities hold for
v and w. Then, if [/ = (w5ι;5w) is a shorthand for the solution of (10), and if

H(U)(t):= J (u-logu + v- logv + w logw)(ί,x)dx,
R

it follows that

H ( l O ( ί i ) ^ H ( ϋ ) ( ί o ) . (21)

This is the //-Theorem. The gap in this "proof" is clearly Eq. (20). For bounded
solutions, considered in [6], (20) is easy to verify, and (21) follows. For the L1-
solutions given by Theorem 2, (20) remains to be shown.

6. Large Initial Data

Theorem 4. The Broadwell model (10) has a local nonnegative mild solution for all
initial data inI}+(JR).

Proof This follows from Theorem 2 by a standard domain of dependence
argument. At time t = 0, split the real axis into finitely many intervals Ij such that

with γ as in Theorem2. Let Jj = lj_1uljκjlj+1, and let fj = Xj.' f gj = Xj -g and
hj = χj3 - h. By Theorem 2, (10) has a global mild solution for the initial values f p g j
and hj. For each x e Ij there is a time tj > 0 such that the domain of dependence of
(ί, x), where 0 ^ t ^ ί̂  , is contained in J j . In other words, the solution at (ί, x) does
not know what the initial data look like outside of J ; . Therefore all the solutions
constructed above can locally be glued together to a solution of the original
problem. D

Corollary. If f9g,hel}+Λoc(R) and if there is a δ>0 such that J (f+g + h)
I

(x)dx^y/3 for each interval I of length :g<S, then the Broadwell model (10) has a
local nonnegative mild solution for the initial data f g, and h.

Proof The reasoning from the proof of Theorem 4 can be repeated literally.

Global Existence. Let U0 = (f,g,h)e(ti+(R))3 and assume that H(U0)<oo. By
Theoem 3, (10) has a local solution belonging to the initial values (/, g, h), and the
semi-formal discussion from Sect. 5 suggests that this solution satisfies the H-
Theorem
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Theorem 5. If for every Uo as above the local solution to (10) satisfies the H-Theorem,
then the solution to (10) exists globally.

Proof This follows with an argument first used by Crandall and Tartar [6]. I need
to show that the local solution does not leaveI}+(ΊR), or, more specifically, that no
point measures develop. To do this, I have to prove that a solution on an interval
[0, T) consists of uniformly absolutely continuous measures in the sense that for
any ε>0, there is a <5>0 such that for all t e [0, T)

λ(M) < δ^> j (w + υ + w)(t, x)dx < ε. (22)
M

If (22) holds, then the solution can be continued to a larger time interval [0, T + η).
Global existence follows if (22) holds indepentently of T.

I show (22) by contradiction. Assume that [0, T) is the maximal existence
interval for the local solution. Then (22) must be violated, i.e. there is an ε > 0 such
that for all 5>0 there is a t e [0, T) and a Borel set M c R with λ(M)<δ, but
j

M

By the //-Theorem, we have a uniform bound for H(U)(t):

j (M \ogu + v logι? + w logw)(ί,x)dx^C. (23)

Because of the finite propagation speed, it is no restriction of generality to assume
that the solution has compact support K for all ίe[0, T). From
x log + x ^ x logx + 2/e, it follows that

j (w log+u + i log+i + w log + w)(t9x)dx^H(U)(t) + C, (24)
R

where the constant C depends on K.
By assumption, there are sequences δt-^0, {tt} C [0, Γ), and there are Mt e

such that λ(Mi)<δh but

Mi

By passing to subsequences, it is no restriction of generality to assume

From (23) and (24), I have f (w

Now let m ^ l be arbitrary, and let MiΛ\ ={x6Mj;u(i i ?x)^em}, M ί f 2 : =
{x 6 M; M(ίi9 x) < ^w}. Then

Φύ ί u(thx)dx= j u(tbx)dx+ j u(ti9x)dx
Mi Mi, i M l ; 2

^(1/m) f w(ίί,x)log+t/(ίί,
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Choose m such that C/m<ε/6. Then choose i such that em δi<ε/6, and the

contradiction ε/3 ̂  em ^ -f C/m < ε/3 results. The proof is complete. D

Corollary, //ίfte assumptions of Theorem 4 ZioZd, ί/iβπ the Broadwell model (10) /ιαs a

global solution for all initial data in I^ l o c (IR) which satisfy

f (/• log/+# loggf + Λ log/z)(x)rfx<oo
M

/or eαcft bounded measurable set M.

Proof This follows from the local existence theorem (Theorem 3) and the domain

of dependence argument used above.

References

1. Caflisch, R., Papanicolaou, G.: The fluid-dynamical limit of a non-linear model Boltzmann
equation. Commun. Pure Appl. Math. 32, 589-619 (1979)

2. Illner, R.: Mild solutions of hyperbolic systems with ϋ+ and L°J initial data. Transport Th.
Stat. Phys. (to appear)

3. Inoue, K., Nishida, T.: On the Broadwell model of the Boltzmann equation for a simple discrete
velocity gas. Appl. Math. Optim. 3, 27-49 (1976)

4. Kaniel, S., Shinbrot, M.: The Boltzmann equation. I. Uniqueness and local existence. Commun.
Math. Phys. 58, 65-78 (1978)

5. Nishida, T., Mimura, M.: On the BroadwelΓs model for a simple discrete velocity gas. Proc. Jpn.
Acad. 50, 812-817(1974)

6. Tartar, L.: Existence globale pour un systeme hyperbolique semi-lineaire de la theorie cinetique
des gaz. Ecole Poly technique, Seminaire Goulaouic- Schwartz, 1975

7. Tartar, L.: Some existence theorems for semilinear hyperbolic systems in one space variable.
MRC Technical Summary Report (1980). Commun. Pure Appl. Math, (to appear)

Communicated by J. L. Lebowitz

Received October 18, 1983






