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Abstract. We consider a random Schrodinger operator on I2(R) of the form
H,=—A+V,,V,(x) =Zyc(x)qw), {C;} beinga covering of R” with unit cubes
around the sites of Z* and {g,} i.i.d. random variables with values in [0, 1]. We
assume that the g,’s are continuously distributed with bounded density f(gq) and
that 0 < P(q, < %) =« < 1. Then we show that an ergodic mean of the quantity
| dx|x|*|(exp(itH,)®)(x)|* >t~ ' vanishes provided @ =g, (H,)¥, where ¥ is
well-localized around the origin and g, is a positive C*-function with support in
(0, E), E < E*(o, | f|,)- Our estimate of E*(a, | f],,)is such that the set {xe R"| V,,(x)
< E*(a,|f],,)} may contain with probability one an infinite cluster of cubes {C,}
which are nearest neighbours. The proofis based on the technique introduced by
Frohlich and Spencer for the analysis of the Anderson model.

Section 1. Introduction

Let us consider a quantum mechanical particle moving in R” and interacting with
a random potential V given by

Vol¥)= Y xexai). (LD)

ieZv

Here C;={xeR'|—3<x;=3;j=1...,v}+i and {g(w)},;+ are independent
identically distributed (i.i.d.) random variables with values in [0,1] such that
b

P(qo(w)e[a,b])zjdqf(q), |f1, =esssup|f]<o and 0 < P(g,<%)=a<1. We

a
are interested in the spectral properties of the corresponding random Hamiltonian
H, on [*(R")

H,y=—A+V,, (1.2)
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and mainly in the asymptotic behaviour in ¢ as t — oo of the quantity

ri(0) = {J dx|x|?|(exp(itH ) ¥ p)(x)[*, (1.3)

where (...» denotes the average over the random variables {g(w)} and ¥ is a
function well localized in space belonging to the spectral subspace of H, with
energy less than or equal to E, E > 0. This quantity measures the mean square
distance from the origin of the time-evolution of the particle whose wave-function
at time 0 is given by ¥,.

The asymptotic properties of r2(t) for large ¢ is a measure of the diffusion of
the particle. More precisely, when one has a finite diffusion one expects that ra(t)
behaves as

rity~ D(E)t as t— oo,

where D(E) is the diffusion constant.

Here we prove that in our model a particle will not diffuse in the sense that
an ergodic mean of r(¢)?/¢ will vanish as t — oo, provided it initially is well localized
in space and has sufficiently small energy.

Let now Sg(w)= {xeR"|V, (x) < E} be the classically allowed region. Then
depending on the distribution f of the random variables {g{w)}, Sg(w) will consist
with probability one of only lakes or of lakes and a sea (possibly more than one
sea) and it is expected that the behaviour in ¢ of rZ(¢) will be different in the two
situations. It is not difficult to show (see Sect. 2) that the study of r2(t) as t — oo
can be reduced to the analysis of &* [ dx|x|*(|G(w, E + ie,0,x)|* ) as ¢—0, with E
in the spectrum o(H,) of H, and G(w,E + i¢,0,x) = (H, — E — i)~ (0, x). Using
the ergodic theorem and Weyl’s criterium it is easy to convince oneself that
o(H,)=[0,c0) with probability one (see e.g. [8]). For such a quantity in the
Anderson model, i.e. in the discrete version of (1.2) where R” is replaced by Z” and
— Ais the finite difference analogue to the Laplacian, Frohlich and Spencer recently
developed [2,3] a very powerful technique to prove that, for the energy in a
suitable range, {|G(E +ig,0,x)|*)>, ¢ #+ 0, decays exponentially in |x| with mass
m = m(E) bounded away form zero uniformly in ¢, with probability greater than
1 — const|x|~?. Here p can be made arbitrarily large by choosing E in a suitable
way. This in turn implies that if the initial state of the particle is well localized
near zero and has energy in a suitable range, then the corresponding ra(t) satisfies

1T i)
1 _120 ) fdt—= . =0.
Their method is based on perturbation theory about an infinite sequence of “block”
Hamiltonians. The “blocks” correspond to regions where the potential V, is
singular in the sense that the eigenvalues of the corresponding “block” Hamiltonian
are close to the given energy E. Distinct singular regions are decoupled
by introducing Dirichlet boundary conditions at the respective boundaries.
As the size of the blocks increases the eigenvalues of the corresponding
Hamiltonian are permitted to get closer to E; the corresponding divergent terms
in (H 4 — E —ie)~! (small divisors problem) are killed by the exponential decay
of (H . — E —ig) " on scale of order of the size of the block. However in order
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to remove perturbatively the Dirichlet boundary conditions it is necessary to
control the tunneling between singular regions, and for this it is important that
the “blocks” are well separated from one another.

A natural candidate for the set of singular sites in our model (1.2) would be
the set Sg(w) = {jeZ"|q(w) < 2E}. In fact if AN S (w)= , then V,(x) > 2E for all
xeA so that dist(E, o-(H (w))>E. Here H,(w)=—45+V,, — 4% being the
Dirichlet Laplacian on I*(A), and o(H (w)) denotes its spectrum. Hence no
divergent terms arise in (H,, , — E —ie)” ' as ¢—0.

Actually using an argument due to Combes—Thomas it is possible to prove
that the integral kernel of (H (w)— E — i)~ * decays exponentially with mass of
the order of E'/2. Thus with this choice of the set of singular sites one could apply
the Frohlich—Spencer method for energy E so small that S (a)) has no infinite
cluster with probability one. Typically the energy threshold would be of the form
E <c¢/|f], with ¢ <1. We remark here that Frohlich—Spencer technique does not
apply immediately to the continuum case; however at least for our special model
the extension can be made without too much trouble. In what follows we propose
another choice of the set of singular sites which shows that the above result holds
even if the set S (w) has an infinite cluster. More precisely we get an estimate on
the energy threshold of the form

E< min{Eo(a), [m(g ‘(:) )} /} = E*@ /1), (1.4)

where E(o) and E (o) are small constants depending only on o and not on |f].
It is clear from the logarithmic dependence of |f|, in the expression (1.4) for E*
that if we keep o fixed and change the probability distribution f suitably, we can
still have P(q, < E*(|f|,))=a, when we let |f|, increase. (Let e.g. f,=
(/@) 110,07 + 21 — @)xp1 /2,1 By increasing |f|, =o/a (when a <1) we can have
P(q, £ E¥*)=a.) Thus if & was chosen greater than the the percolation probability
for the site-percolation model in Z” (see e.g. [5]), then the set S (w) may contain
with probability one, an infinite cluster {C;} of cubes which are nearest neighbours.

The idea is the following:

Let C,(0) be a cube centered at x =0 of size I(E) ~ E™"/ and let 1,(HY (o))
be the lowest eigenvalue of H(w) on L*(C,(0)) with Neumann boundary conditions.
It was shown in [6] (see also Sect. 4) that:

PUy(HY () < 2E) < exp(— cE ™) (L)

for some ¢ >0 and all E < E (), where E(o) is independent of |f],.

Let now Z"(E) = L(E)Z", and let { C1(j) | jczv(&, be a covering of R” of cubes with
size L(E) around the sites of Z*(E). The above estimate shows that although the
set Sy(w) may contain an infinite cluster {C,}, ieZ’, of cubes which are nearest
neighbours, it does not contain an infinite cluster of cubes C,(j), jeZ*(E), where
the condition A,(HY L@(co)) < 2E is violated, provided the energy E is sufficiently
small but uniformly i |f]|,. Furthermore using Neumann—Dirichlet bracketing
(see Sect. 3) it is easy to see that if 4 < R” is such that 1,(HY ;(w)) = 2E for all
jeZ'(E) with C((j)n A+ &, then — A2 + V= 2E so that (— A2+ V, —E—ig)™!
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(x, y) decays exponentially in |x — y| with “mass” m(E) = E*/? uniformly in &. It is
then natural to define the set of singular sites on scale L(E) as
and to perform the Frohlich—Spencer perturbation argument on clusters of cubes
of the form Cg()).

As in the papers by Frohlich—Spencer [2, 3] our probabilistic estimates rely
on the following result valid for any 4 = R”:

P(dist(a(H ,(w), E) <k) < k2| A]*2p(E, | f],,)"/%, (1.6)

where p(E,|f|,) ~|f|,N(E), if k ~ E, N(E) being the integrated density of states
of the system. Since N(E) has a singular behaviour near E=0 of the form
N(E) ~ exp(— c,E~"?) (see [6]) we see that in order to have p(E,|f|,) small, it is
enough to take E < E*(a, [f|,) with E¥(«,|f|,) of the form (1.4).

We remark here that a sharp estimate of the left-hand side of (1.6) in the case
of discrete distributed {g,(w)}, say P(q, =0) =p, P(q, = 1) =1 — p, is still missing
even in the discrete case, i.e. for the Anderson model.

Needless to say, all our proofs rely heavily on the Frohlich—Spencer paper
and most of the time they are just the translation into our context of their proofs.
Therefore we do not give here all the details of the proofs, but we only discuss
the main steps where the differences between the two situations appear clearly.
For simplicity we also discuss only the case v = 3, but the only place in the proof
where the dimension enters crucially is in the exact localization rate of the initial
wave-function Y.

Notations. We fix here some notations which will be used in the rest of the paper.
For any measurable A< R, let H, (w)=—42+V, and H(w)=—4Y+7V,
be operators on [*(A), where — A% and — A% are the Laplacian with Dirichlet
and Neumann boundary conditions respectively. (For the precise definition of
these operators, see e.g. [9].) We also denote by o(H ,(w)), o(H%(w)) their spectra
and by N ,(E,0) = #{k|/,(H ) < E}, E> 0, where A,(H () < ,(H (@) < ...
are the eigenvalues of H ,(w) in nondecreasing order. It follows from the ergodic
theorem (see e.g. [7]) that lim (1/|A[)N ,(E,w)= N(E) exists almost surely and is
A1 RY

independent of w. Here | 4] denotes the Lebesgue measure of A. The quantity N(E)is
called the integrated density of states.

In order to describe precisely the degree of localization in space of the initial
state ¥ of the particle at time ¢ = 0 (see (1.3)) we also need to introduce the weighted
I? spaces (see [10]), LE, defined as follows:

Ly ={fel?|(1 + X2 fel?}, SeR,

Throughout the estimates several constants independent of E, | f],,, w will occur
and they will always be denoted by c, c,, c,, although their values may change
from estimate to estimate.

Green’s Identities. Let A= R® be given and let A,, A, be such that A, " A, =
A,uAd,=A. Let also G (w,E +igx,y) be the Green’s function of H ,(w)—
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E —ig, ie.
G, E +ie,x,y) =(H J(w) — E — ie)~ '(x, )

and let 0, G (w, E + ig, x, z), xe A, ze0A denote the outward normal derivative at
z of G, (w, E +i¢,x,y). Then we have the following two identities which follow
immediately from Green’s first and second formula:

G0, E+ie,x,y) =G 4 4,(0, E +ie, X, y)
+ [ dz(0n, G, (0, E +ie,x,2))G [, E + ie, 2,y), (1.7)

04

when xeA,, x # y, and

GA(Q)9 E + i8, X, y) = GAl|AZ(x’ y) + .f dZ GA(O)> E + i8, X, Z)(anzGAlez(w> E + iC, Z, )’)),
o4, (1.8)

when xed,, x#y, where G, , (o, E+ie,z,y) is the Green’s function for the
operator H(w) = — A + V(w) on [*(A)~ [*A,)® LXA,) with Dirichlet boundary
conditions on JdAudA;. We note that for x,yeA (4,)G,, 4, (@, E+ie,z,y)
coincides with G, (w, E +i¢, 2, y)(G 4 (0, E + ig, z,y)) and if

xeA;, yed, G, 4, (0,E +ie,x,y) =0.

Section 2. The Main Result

In this section we state our main result and show how to derive it from an estimate
on the decay of the Green’s function G(w, E + i¢, x, y) for E near the bottom of the
spectrum of H and as ¢ —0.

Theorem 2.1. Let g,eCZ(R), g =0, and suppgp<(0,E), and let for any
Yel3(R?), ®,=gu(H,)¥. Then the quantity

rg(t) = fdx [x?|(e" e @,)(x) )

is well defined for any 0 <t < o0, and there exist two constants E («), E,(«) depending
only on o and not on |f|, such that if

E <min {Eo(a), I:ln(}li{[(:) > :| _2/3} = E*o,]|fl,,) = E¥,

then
T 2
fim 29 o,
T- o 1 t

Actually Theorem 2.1 follows from the next more general result which will be
proved in Sect. 3.

Theorem 2.2. Let E*(a,|f]|,) be as above. Then
lim & [ dx(|x| + D[ {|G(w, E + ie, 0,x)|*>]"* =0
>0

uniformly in E for E in a compact subset of (0, E*(a,[f],))-
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Next we show how to derive Theorem 2.1 from Theorem 2.2. We fix
0 < E < E*(o,]f],,), and first prove that for any 0 <y <1
1 T 2
lim — j dtrE(t)
T- aT t

=0. 2.1)

Set ¢ = 1/T. Then we get:

1T vk ee
dr £ E __ dte ~at2
TRy

=282 j dE’{ [ dx|x]*[(G(w, E" + ig)®,)(x)[*>, (2.2)

where for the equality we have used a vector-valued version of the Plancherel
theorem (see [9], Lemma 1, p. 142). We divide the integration in (2.2) in three
parts:

E
282 [ dE'< [ dx|x[?(G(o, E' + ig)®,)(x)|*
E*
+ 582 [ dE’ ([ dx|x?(Glw, E' + ie)D,)(0)[*>
E

+ saz Ojo dE' ([ dx|x*\(Gle, E' + ie)D,) (%), 2.3)
E*

where E > 0 is such that suppg, < (E, E).

We start by discussing the first and the last term of (2.3). Since G(w, E’ + ie)®,, =
Jop(H,)¥, where

gE(x)

Sopx)= T eC‘”(R) for E'e(— 00, E)U[E*(a,|f],), )

and ¢ sufficiently small, we have
§dx[x?|G(e, E' + ie)® | < || f, e (H ) F; - 12 | Il (24)

To estimate | f, z(H,) [ 1212, We use a lemma whose proofis given in Appendix B.
Lemma 2.1. Let feCZ(R). Then
1S CHDls 5 5 11+ lsupp £1]

4

d da*
el BRgFe

}, where  h(x) = xf(x)

and |supp f| is the Lebesgue measure of supp f.

Using the lemma we get that for ¢ sufficiently small || f;, ;.(H,,)[|?; - 12 is bounded
uniformly in w,¢,E’, E'e(— 00,0)U[E*(o,|f],),0), and that for large |E’| it is
bounded by (¢/|E’|?). Thus the first and the last integral in (2.3) are uniformly
bounded in ¢ for ¢ small enough and when multiplied by &? they vanish in the limit
e—0.

We now discuss the second term in (2.3). It clearly suffices to show, uniformly
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in E'e[E,E*(o,|f],)], that
lim &? [ dx|x* ([ dy|G(e, E' + ie; x, y)| |®,(y)])* ) = 0. 2.5)
By “expanding” the square and using the Holder inequality with respect to the
w-integration {...», we get that (2.5) is bounded by:
lim &2 { dx|x|*(| dy{<{|G(w, E' + ie, x, y)| > *}/*
£=0
AP HH2. (2.6)
We now observe that using the stationarity of V,,
(<1G((I), E' + i£, X, .V)|4>)1/4 = (<lG(CU, E' + iS, O’y - x)l4>)1/4 = K(y - x)’
Using |x| = |x — y| + |y| and Young’s inequality, we bound (2.6) by:
2lim e2{ ([ dx|x|K(x))* [dy(<{| @, (y)|*)"
+(JdxK(x))? [ dy(<ly@ (01 >)!2}. 2.7
To estimate | dy(<|y®,(»)|*>)"* we need the following lemma which is proved in
Appendix B.

Lemma 2.2. Let feC(R). Then | f(H,)l,;_,s< C.

From the lemma we get that | (y)| = cl(l +1y/?)~! uniformly in w and from
Lemma 2.1 that @ |i wliez <c,. Hence:

[dy({y@u(n)*3)V2 = (fdy(l + [y7) =212
(dy(1+ )22, (»)[* )2 < o0,

and analogously for |dy({|®,(y)|*>)"/?. Thus, using now Theorem 2.2, the limit
as ¢— 0 in (2.7) vanishes uniformly in E'e[0, E*(o,|f],,)], and (2.7) is proved.
We now complete the proof of Theorem 2.1.

2 17
Let T, = Sup{tE[l,n]’ldeLES(——S) = jd rE(S)}
1<T<n
Clearly T,., 2T, Suppose first that {T,} is bounded Then in this case
2
t
lim —jdt () < o0, and
T—*oo
— 17T — 1 1
lim - dr E(t) Fla VE(” (2.8)

T—»oo n— o

for all #€(0, 1), using (2.1). Since the quantity lim TI dt(r(t)/t) by assumption is

T- o0
finite, (2.8) implies that it is actually zero. If T, — o0 as n— oo it follows from the
definition of T, that

1Y sy — 17" rE(s)
Th-r»roloTjdt ;= lim n{ - (2.9)
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Now
LU r‘zf(t : Tj"d ril
Tn 1 t r]Tn 1 nnT
n r?g(t) 1T VE(t)
S |dt +— | dt
Tn ! Tn r/i t
ie.
1 Tn 1 Tn 2(¢
_j dtrE([) SU—n)'= j dtrE[(), (2.10)
T

which again implies using (2.1) that
(t)
fim - {dt Y —o.
[‘l—-I»I:o T1 5
Section 3. Exponential Decay of the Green’s Function

In this section we prove Theorem 2.2. As in Frohlich—Spencer [2], see also [3],
it is sufficient to prove the following lower bound on the probability that the
Green’s function G(w, E + ig, x, y) decays exponentially for large distances [x — y|:

Theorem 3.1. Givenany p > 0, there exist two constants E(a, p), E,(a, p) independent
of |fl, such that if

. [ /1 o
E< mm{Eo(a, p),[ln(%)} } = E*(,|fl,, D),

em(L)(NL(E)’ |1x])
P<|G(w, E +i¢,0,x)| < max {e'MENN"‘EV"*“, (e )2 -
X

then

Jorany NeZ, N >0, and some constant K , independent of E. Here the “mass” m(E)
satisfies m(E) = cE' * and L(E) = c(0)E~''? for some constant c(x) independent of E.

Let now xeR* be fixed and let A4 be a large cube around O containing x.
Applying the first Green’s identity (1.7) to G(w, E + ie, 0, x) and

G a® 4, E +1g,0, x), we get
G(w, E +1i8,0,x) = G s _ (0, E +ig, 0, x)

+ | dz{0,.G s _ (0, E +i£,0,2) } G(w, E + ie, 2, X).
oA

(3.1)

Using the Combes—Thomas argument (see e.g. Simon [9]), one shows that
both G(w, E +ie,x,y) and G g3 _4(w, E +ie,x,y) decay exponentially in |x — y|
as long as ¢ # 0. To control the normal derivative of G 3, (w, E + ie, x, y) at the
boundary dA we use the following lemma which will be proven in Appendix A.



Absence of Diffusion 205

Lemma 3.1. Assume yedA is not one of the corners. Then

0,,G (0, E +ie,x,y)| S ¢ sup | |G (o, E +ig,x,y")|
[y —»l=
for some ¢ >0 and any x with |x — y| > 1.

From the lemma it follows that the second term in the right-hand side of (3.1)
is bounded by cexp(—m(E) dist(x,04)). Hence G,g*_,(w, E + ie,0,x) converges
to G(w, E + i¢,0, x) as A7 R? uniformly on compact sets and it is really enough to
prove the statement of Theorem 3.1 for G ,(w, E + i¢, 0, x) provided the constants
E*(a,|f1,,p), K,, m(E) are independent of A for large A.

The Singular Sets. We specify here our choice of the set of singular sites which
allows us to perform the Frohlich—Spencer induction argument also in the case
when the set Sy(w) = {xeR*|V,(x) < E} contains an infinite cluster of cubes {C;}
which are nearest neighbours. First we fix the energy E > 0 and define our basic
length scale L(E)=n((1 4+ 0)/(1 —a))"Y2E~ Y2, Let now Z*(E) = L(E)Z>, and let
Cp(j) = Cp(0) + j,je Z3(E), with C(0) = {xeR*| — L(E)/2 < x; < L(E)/2;i=1,2,3}.
On Z*(E) we will consider the norm

ljlg = max - L(E)~!
i=1,2,3
Definition. A site jeZ*(E) is said to be singular iff
7,(HY, () S 2

We will then denote by S, the set of all singular sites. We are now in a position
to given an inductive definition of the singular sets S; of strength i. Assume that
S§y28,2...28,S,c Z*E) for all k with 0 <k < i have been defined. Then we set

Sis =8~ 8, (3.2)
where ¢ = U ,CY is the maximal union of components C/ such that

Condition A(i).

a) Cfc< S, for all B, (3.3)
b) diam,C¥ <d, (3.4)
¢) dist,(C, S, ~ cﬂ) >2d,,,, (3.5
d) dist(a(H(C—?)O )E) Zexp(—dl?), (3.6)

where d, = d,(E)=[L(E)] ([ 1 denotes integer part), d; = d§’*" and

Cl = {jeZ’(B)ldist, (j, C) < 4d.}, (3.7
and for any set D < Z3(E), D° = | ) C,(j). Here diam, and dist, are measured
jeb
using the norm ||;. Recall that H, has Dirichlet boundary condition on 04 for
any set A (see Sect. 1).

Definition. A set Ac Z3(E) is k-admissible iff 64 mC_f= &, i=0,1,....k. Ais
admissible iff it is k-admissible for all k.
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Following Frohlich—Spencer we will prove in the next paragraph the following

exponential decay estimate on the Green’s function by using iteratively the Green’s
identities (1.7) and (1.8).

Theorem 3.4. There exists a constant E («) >0 such that if E<E («) and A is a
k-admissible subset of 7*(E) with AN Sy, , = &, then for arbitrary real ¢

|G yol, E +ig, X, y)| = exp[— m(E)|x — y|],
provided |x —y|=ZLL(E)d,,,. The “mass” m(E) satisfies: m(E)=c,E'* with
¢, = ¢,() independent of A and k.
We postpone the proof of Theorem 3.4 till the end of this section.

Our next step is to estimate the probability that a given site ieZ3(E) belongs
to §% In the next section we will prove the following:

Theorem 3.5. For any p > 0 there exist two constants E y(a, p), E4(a, p) independent
of |fl., such that if E<min{E,(a,p), [In(|f],/Es(® p))]1~ >3}, then for all icZ*(E)

P(ieS9) <d; ™.

The proof of Theorem 3.5 is deferred to Sect. 4. Combining now Theorem 3.4
and Theorem 3.5 (see Frohlich—Spencer [2], Sect. 6 for details) we get the basic
probabilistic estimate

Theorem 3.6. Given any p > 0, there exist two constants E(a, p), E(, p) independent

of |fl, such that if E < min{E(a,p), [In(|f1./E (% p)]~ >} = EXw|f1,,,p), then
the following event holds with probability at least 1 — 177

={w|IA < Z(E),0e A, A admissible,

l
‘é ln[biﬂé max|b|, <1,
2 beoA

and

|GA0(Q)9E + iS,X,J’)l é e—m(E)|x—y|

for |x —y| 2 L(E)IP*}.
The “mass” m(E) is as in Theorem 3.4 and | > L(E).
We now turn to the proof of Theorem 3.3 but with G(w, E + ie, 0, x) replaced
by G (o, E + i, 0,x), A being a cube of size L-L(E) centered at the origin, L > 1.
As we already pointed out this is enough to obtain the result for G ,(w, E + ig, 0, x).
Fix N = 10, N integer, and assume first |x| = L(E)(N/2). Let [;= [2|x|47/L(E)],
j=0,1,...([ ] here denotes integer part), and let F, be the event in the
probablllty space described in Theorem 3.6 with [= 1. Usmg Theorem 3.6 we have

K
P >1--2 3.8
(be)—l X (.8)
if ESE*(a,|f],,P)

Let now A4; c Z¥E), j=0,1,2,..., be a sequence of sets associated to the
events F,. Let y;=0(A9). We set G(x,y)= G (w,E +ig,x,y) and G(x,y)=
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Golw, E +ie, X, y). Using the Green’s identity (1.7) we have
G(0,x) = Gy(0,x) + [ dz(0,.G,(0,2))G,(z, x)

Y0

+ [ dz [ d2/0,,Go(0,2))(8,.,G (2, 2))Go(2/,X) + ... . 3.9)

Yo Y1

Using the definition of the sets 4;, 49 we see that in the above expansion both
0,,G; and G, are evaluated at sites with distance at least

|x[4’
2L(E)

L(E)( 2) > LE)P/*,

Hence from Theorem 3.6 and Lemma 3.1 they are estimated from above by
cexp[ — m(E)(}|x|4' — 2L(E))], where ¢ is independent of E, N, w, and
m(E) = ¢, E'/*. Inserting this estimate in (3.9) we get that

IG(0,x)| < cexp(—m(E)|x]), m(E) = ¢, E'/? (3.10)
For all weﬂF,j, ie. with probability greater than 1— K(p)/N? provided

J
E < EXoulflyg,p) ‘
Suppose now |x| < L(E)(N/2). Let [,=N4&"'j=0,1,...and let F=
{weQdist(o(H (), E) = exp(— m(E)(N/ALX(E))}.

To estimate P(F) we use the following result due essentially to Wegner [10] (see
also Frohlich—Spencer [2,37] which will be proven in Appendix C.

Lemma 3.2. Let A <= R3 be a bounded measurable set. Then

P(dist(o(H (o), E) Sk) < ¢, | APk 2 N(E + k)12 |1/

w

where N(E) is the integrated density of states for H, at the point E and A2 A is
the smallest cube containing A.
Thus using the above lemma we get

P(F) >1- (4NL(E))9/2.Q‘m(E)(N/B)L2(5)|f| gZN(E + e“m(E)(N/MLZ(E))' (3'11)

Now we observe that from Theorem 4 in [6] N(E) < exp(— CE ™ *?)for E £ E(a, 1).

Hence, using the estimates L(E)=c,E~ "2, m(E)=c,E"* we get that for

E < E*(a,|f],,p) the right-hand side of (3.11) is greater than
K'(p)

—

1

(3.12)

for some constant K'(p) > 0.

We now estimate the terms in the expansion (3.9) for weFn () F; (where
i>1

F;=F,) Termsinvolving G, or d, G; when j > 0 can be estimated as in the previous
case, | x| = L(E)(N/2), since they are evaluated at sites with distance greater than or
equal to N4/ L(E). The zeroth order term G,(0, x) is estimated by the next lemma (see

Appendix A for a proof).
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Lemma 3.3. Let A = R? be a bounded, measurable set. Then

N N S
|G (@, E +ig,x, y)| < Ix — y| dist(o(H (w)), E)

Furthermore from Lemma 3.1 and Lemma 3.3 we get

1

C
10,6021 = 1 o (@l B

Hence for weFn ) F;, the expansion (3.8) is bounded from above by
J>1

N * . . .
clxl“exp(m(E)sz(E)>|:1 + Y e""“””‘“““(N4“lL(E))ﬂ <
i=1

(3.13)
N
< [xl” 1e><p<m(E)zLZ(E)> < |x|” "exp(m(E)(NL*(E) — |x]))
for E < E*(a,]|f],,, P). Combining now Theorem 3.6 and (3.12), we get
Kll(p)
P(Fm(ﬂ Fj>;1— NP (3.14)
j>1

for some constant K”(p).

Proof of Theorem 3.4. We give here the proof of Theorem 3.4. Since however the
argument is the same as the one given by Frohlich and Spencer [2,3] we limit
ourselves to prove the result for special sets 4 = Z3(E). The extension to general
A < Z*E) can be done asin [2, 3]. The proof is based on an induction argument. Let
0, denote the following statement

|G yo(w, E + ie, x, y)| < exp{ — my(E)|x — y|},
if |x—y|=1d,I(E), assuming A is (k —1)-admissible and AnS,= . Here
k
m(E) = mO(E)<1 =90 Y d;'* ), my(E)=E'>. We observe that since d,~ E~ 1z

i=0
if E is sufficiently small, m(E) = cE"/? uniformly in k.

Proof of 0, Let Ac Z3(E) be such that AnS, = . Then, using Neumann—
Dirichlet bracketing (see [9]) we have

— A%+ V= — A%+ ngg(—AgEer V,) = 2E, (3.15)
since A is non-singular. Hence dist(c(H ,o(w)),E) = E, and using the Combes—
Thomas argument we infer that

|G 4o(@, E + e, x, y)| S exp(— E'2|x —)|) (3.16)

for all [x — y| = +d,,.
Thus we have proved that 0, holds. Next we assume 6, to be true and prove
0. , for special 4 = Z>(E).
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Lemma 3.4. Let RP = 7Z3(E) be a k-admissible region containing a component C%
of S{ and such that
(i) 34y, SdiamyR{<3d, .,

(ii) dist,(ARE, CF)>0, C as in (3.7).
Then there exists a constant E(o) such that if E < E(w),

|G (@, E + e, x, y)| = exp[ — (m(E) — p(E))x — y| 1.

Remark. 1t is worthwhile to observe that, using condition A(k), i.e. Egs. (3.3)—(3.6),
one has disty(CE S, ~Cl=2d,,, so that REA(S,~Cl)= . In particular
RENS,., =D

Proof of the lemma. Let R=Rf, C=Cl C=CF and let BcZ3E) be a
(k — 1)-admissible set such that R ~ B is (k — 1)-admissible and

C>BoC,

distz(0B, {j(x),j()}) = d,, (3.17)
disty(~ B,C) < 3d,,

where j(x)eZ>(E) is such that xeCy(j(x)). From the definition of the cubes Cp(j)
we see that j(x) is uniquely defined.

The existence of the sets R and B has been shown in [2], Appendix D.

We also set Q =R~ B, y=0(B°, 7 =0(C°, and assume for simplicity that
x, y€Q°. The cases xeQ°, yeB° or vice versa can be treated analogously (see [2]
for details).

Using the Green’s identities (1.7) and (1.8), we write

GRO(U)9 E + isy x’ y) = GRo(x5 y) = GQOIBO(X’ y)
+ f dz(&,,z GQO]BO(X) Z))GRO(Z, y)
Y

= Ggo(x, y) + | dz(0, G olx, 2))

{Gopplz:y) + [ 42/ Gol2,2)(0,, Gooypolz'- M)}
= Ggo(x,y) + | d2(0,,Ggolx, y))
[ dz' Gol2,2')(D,, Gol2'» ). (3.18)

Since QN S, = & and Q is (k — 1)-admissible, we can apply 0, to Gy to get
IGgolx, y)| = exp(—my(e)|x — y). (3.19)
Furthermore since L‘e‘f dist(z, {x,y}) > 1d,L(E) for E sufficiently small, the
exponential decay of Gy(x, y) for |x — y| 2 $d,L(E) and Lemma 3.1 imply that
zey implies that |0, Ggol(X, y)| < ce ™™=l

z'ey implies that [0, Gyo(z',y)| < ce™ ™=, (3.20)
To estimate Ggo(z, z') when z,z'ey, we use the following result.
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Lemma 3.5. Let u,weB°. Then

exp(d,'*)

|Grolw, E + ig,u,w)| = ¢ .
lu —w|

Proof. From the Green’s identities we obtain the following two expressions for
Grolw, E + ig,u, w) = Gro(u, w):

Grolu, w) = GBDIRO(ua w) + jdz’(@,,z, GBOIRO(ua 2'))Go(2', W),
v

Gro(u, W) = Goprolth, W) + § d2(0,,, Geojgo(t, 2))G gol2', W).
7

Alternating the above expression we get an expansion for Gyo(u, w).
Grolu, w) = Geo(u, w) + | dz(0,,Ggo|ro(U, 2))G o rol2, W)
y

(3.21)
+ [ d2(8, G o, 2)) § d2'(D,, G pogolzs 2))Gol2', W) + ... -

Y

In (3.21) terms like Ggo(u',w’) are estimated using Lemma 3.3 and condition
A(k) by

(Goolat, )| < CZPET)

= | ’

. (3.22)
—w
Terms 0, Geo(z', z) always appear with |z — 2’| = 1 L(E)d,. Hence using Lemma 3.1
and (3.22) they are bounded by ¢, exp(d;’?). Terms like Gpgojgo, O 0, Gpojgo>ZEY,
always coincide with G, and anzGQo,zey, and they are evaluated at sites z,z’
where z'ey and zey such that |z —z'| 2 L(E)d, = id,L(E). Thus we can use 0, to
estimate Gy, and Lemma 3.1 to estimate 0, GQO, and to obtain for both of them
a bound of the form ¢, exp(— my(E)|z — z'|). As a result the right-hand side of (3.21)
can be bounded by:

cexp(dl/z)

"~ Z [c, exp(— m(E)d,L(E) + d;*) 71 1(1", (3.23)

n=

where [7](]y]) is the surface measure of y(p). Such factors arise when we estimate in
(3.21) integrals of the form [dz'(1/|z' — z|), z€7.

v
Using now the estimates m,(E) = ¢, E'%, L(E)~ E~'? and d,(E)~ E~ "%, we
casily obtain that for E sufficiently small (3.23) is bounded by cexp(d\/’?)/
|u — w|, which proves Lemma 3.5.
We now return to the proof of Lemma 3.4. Inserting the estimate on Gro(u, w)
given by Lemma 3.5 in (3.18), and using (3.19) and (3.20) we obtain

|Grolx, y)| = exp(—my(E)|x — y])

exp(—myE)lx — 2| + d,/* — m |z’ —y))
|z —z| '

+C[dzfdz (3.24)
v v
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Hence
|G ro(x, y)| < exp(— m(E)lx — yD[1 + clyl*exp(dy/? + m(7d,L(E) + L(E)))]
< exp(— (myE) — w(E))lx — yl),
with u(E) =45E"2d}/?, provided that E is so small that
1 + cly|? exp(d, + m(7d,L(E) + L(E)) < exp (8m,L(E)d,).

Let now the set A = Z3(E) appearing in Theorem 3.4 be such that diam,4 <
3d,,,. If AnS¢ = I, then 0, , follows immediately from 0,. If 4~ S¢+ &, then
we can take the set R of Lemma 3.4 to be equal to 4, and 6, , follows from
Lemma 3.4. If now diam,A > 3d, . ,, we can repeat in our context the proof by
Frohlich—Spencer of Lemma 3.3 in [2] without any problem and get 6, ,, for
general A.

Section 4. Probabilistic Estimates

We prove here the basic probabilistic estimate given in Theorem 3.5. Define for
a fixed site ieZ>(E), p; = P(ieS?). Then clearly

p;< Y. P(Dis a component of S%).

Dc23(E)
ieD

Let now Z3(E,n) =2"Z%E), n=0. With each site xeZ3(E,n — 1) we associate a
cube c,(x) centered at x with sides of length (measured with | |) 2" parallel to the
lattice axes. Then c,(x) will be called an n-cube. For n =0 we set Z3(E, — 1) = Z*(E)

and ¢,(x) = x. Given D = Z3(E), let C,(D) be the minimal family of n-cubes which
no(D)
cover D, let |C(D)| be its cardinality and let V(D)= ) |C,(D)|, where ny(D)

n=0
is the smallest integer such that 2" >2 diam.D. Let also C, D) {cneC (D)}

distg(c,, ;) =22.2°"3 for all c,eC/D), c,+c,}, and let V'(D)= Z |C.(D)|. In

order to prove Theorem 3.5 it is sufficient to prove, following Frohllch Spencer
([2], Sect. 6), the following two estimates:

(a) Let D= {ieZ*(E)|dist,(i, D) < 4d;_ }. Then P(dist(c(H 5 (@), E) < e=4%)
S OE|fl)d;-)° 2e @2, with 0 < $(E,|f],,) <y for an arbitrary >0 pro-
vided E £ [In(]f],/E(n,2))] % for some constant E(y,) independent of | f,|.

(b) P, =<{ypy =P (Ji such that D is a component of S¥) <exp[ — K,(E)|D|—
K'(E)V'(D)], where K,(E) and K'(E) are both independent of |f|  and arbitrary
large for E sufficiently small.

Estimate (a) can be settled using Lemma 3.2 with k=e K 1 One finds
O(E,|f]..) = C|fILY*N(2E)"/2. We have here used the fact that for E small enough
exp(— d1/21)<E Using now the bound N(E)<exp(—cE *?) for E small we
see that (a) is satisfied. To estimate P, we make use of the following result, the

proof of which is just a copy of the proof of Lemma 5.2 in [2] and is therefore
omitted:
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Lemma 4.1. Let [ = {0} u{neZ|n = In(dy(E))/In(2)}, and let for any nel,n>0, j(n)

be the smallest integer such that d;, = 2". Let furthermore for any ce C(D),n> 0,

Xne = X feoidist(a(HEDI(w), E) Sexp(~ d!2),

where C D = {ieZ*(E)|dist(i, Cn D) < 4d,,}. For n=0define 1, = 1 foleesor Then

PDé <l_[ n Xn,c>'
nel ceCn(D)
It is easy to see that if ¢,, ¢, belong to C, (D), then if d(E) is sufficiently large,

ie. E is sufficiently small, then ¢, "D nc, "D = . This implies the independence
of y,., when ceC, and nel. Thus, from the lemma and the Holder inequality we
infer

PosIT IT Cted™@ ™, O<r<1. (@.1)

el ceCn(D)
For n > 0 we can estimate ( y,, . » using Lemma 3.2 with £ = exp(— 2"/?), and obtain
n/2
> S US 1P (e4djin LAE)”? exp(— 32V)N(E +¢ 72 )], (4.2)

Since n = Ind,(E)/In2, we can take E so small that exp( — 2"'?) < E. Using again the
bound N(E) £ e~ €7, the right-hand side of (4.2) is bounded by

(d33exp(— $27 ), 43)

J(n)

provided E < [In(|f|,/E, ()]~ %3 for some constant E,(x).

Next, usingd ) < 2"5’4 we see that (4.3) is bounded by a decreasing function of n
ife.g.r =0.8.In conclusion if E < [In(|f],,/E,(x))] ~’* for some constant E,(x), the
left-hand side of (4.2) is bounded by:

[d,(E)*?exp(— 3do(E)'?)]rmo®(1 — )= e /%", (4.4)

with r=0.8, and K'(E)— + o0 if E—0.

To estimate <y, . » we first observe that using translation invariance it is enough
to estimate the probability that the origin of Z3(E) belongs to S,. To do this let
us define new random variables &;(w) as follows

0 if glw)=1/2,
£ o) = . qw) =1/
12 if glw)>1/2
Using our assumption on the distribution of the g;’s, we get that P(¢,=0)=a.

Furthermore since &,(w) < g,(w) for all ieZ3, we have

P(0eS,) = P(4 1(HCE(0)( w)) £2E) < P<'11< - AgE(O) + Z éi(a’)Xc,> = 2E>~ (4.5)

This last probability has been estimated in [6] and it is bounded by:
exp(—cE~3*?), ¢>0 (4.6)

for all E < E(a). Combining now (4.6) and (4.4) we see that if E<min {E(2),
[In(]f1o/E;(2))]~ %3}, where E(x) and E,(«) are two positive constants independent
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of | f1,, then
P, < exp(— Ko(E)|D| — K'(E)V'(D)), (4.7)

with K (E) = CQE)~*/* and K'(E) » + o as E — 0. We emphasize here that in the
definition of K'(E) (see (4.4)) | f|., does not appear. This proves (b).

Appendix A. Some Estimates on G (w, E +ie, x,y)
We prove her Lemma 3.1 and 3.2.

Proof of Lemma 3.1. Let A be one of the corners nearest to y and assume first
dist(A4, y) £ 1/2 \/3 Let A,cA be a cube of size 1/\/5 such that
yedA, and dist(y, B) = dist (y, 4), where B is any corner of A,. Clearly such a cube
always exists and 04,04+ . Let us fix xeA, with |x— y| =1, and let g(z)
=G (o, E +ie, x, z) when ze A,,. Since x¢ A, the continuous function g is the weak
solution of the Dirichlet problem

v=( @—E—is)g in A9,
v=g on dAy~ 04,
v=0

on A4, oA, (A1)

where for any set 4 S R", A° denotes the interior of A. We write g=w + u,
where w and u are the unique weak solutions of the problems

Aw=(V,—E—ig}g in A,

A2
w = O on 6/10, ( )
and
Au = 0 in Ag»
u=g in 04, ~ 04,
A3
u=0 on0A,NoA. (A-3)

Using the method of strong barrier functions (see Courant—Hilbert, Vol. 11 [1],
p. 343), we get that

105, W= 1]V, — E — ie] |9, (A4)

To estimate [0, u| we use the Schwartz reflection principle (see [4], p. 28). For
simplicity we assume that A, has three faces F, F,, F; on 04; the case when the
faces on 0/ are only two can be discussed along the same lines. We then construct
a new cube /A, and a new harmonic function @ from A, and u as follows. We
reflect A, with respect to the hyperplane through F, to get a new set 4 ; then we
reflect A, U A, with respect to F, to get a set A, and finally we reflect A,u A, U4,
with respect to F, to get A, and define A, = A,u 4, U4, U 4;. Clearly ye A, and
dist(y,04,) = 1/2 \/3 Let now u,(x)=u(x), if xed, and u,(x)= —u(x*),
if xe A, where x* is the reflection of x with respect to F; u,(x) and #(x) are defined
onA,uA,UA,andon A, in the same way, but with u(x) replaced by u,(x) and u,(x)
respectively. Since u=0 on F, UF,UF;, according to the Schwartz reflection
principle, i is again harmonic and |i|, = |u|_, by construction. Since y has positive
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distance from the boundary of A, we can now use interior gradient estimates for
harmonic functions ([4], Th. 2.10) to get

s
v

100,91 = €11V, — E — ie] g1, + lul.,.- (A.6)

Since it is easy to see that [ul < c,|g],, we get:

10,,ul =10, ] < lul,,. (1.5)

Thus we have proved:

10,91 = calgle, = ¢5 exp(—mlx — ). (A7)

In the case dist(y, 4) > 1/2\/5 we can use a similar argument if we construct the
cube A, in such a way that yedA, and y is the middle point of the face of 4, which
contains it.

Proof of Lemma 3.3. Following Simon ([10], p. 479) we write, using the resolvent
identity
(Hfw)—E—ie) ' =H () + 1)+ (1 + E +ie)(H J(w) + 1) 72
+ (14 E +ie)*(H J(w) + 1) "*(H J(w) — E —ig) . (A.8)
Using now a result of Simon ([10], Th. B.7.2), the first term in (A.8) has kernel

bounded by c¢,/|x — y|, while the second one has bounded kernel. To estimate the
third term we use the following inequality valid for any y,¢eL*(A)

[, (H (@) + 1) X(H j(0) — E — i) {(H J@) +1)" ') (A9)
SN IH @) + 1) 7 i o | (H 4l@) — E —ie) ™ 5 [ (H 4(@) + 1) 7y o
where ||, , denotes the operator norm from I? to LY. Again using the results of
[10], I|(H Jw)+ 1)~ Y, and |(H ,(w)+1)""|,, are bounded uniformly in w.
Hence the left-hand side of (A.9) is bounded by
¢, (dist(E, a(H (@)~ [yl [ ¢l - (A.10)

Taking now ¢ and  to be smooth approximations of Dirac’s delta-function at
the points x and y respectively, we get from (A.10) and from the continuity of the
kernel of (H ,(w) + 1) *(H ,(w) — E —ig)~* (see [10]):

[{(H () + 1)"%(H j(w) — E —ie) "' }(x, )| < ¢,(dist(E,o(H [(w))) "' (A.11)

Appendix B. Proof of Lemma 2.1 and 2.2
We prove here Lemma 2.1 and 2.2. It is clearly enough to show that

1A+ X)) (H A+ X5, (B.1)
or

I+ )T L (H ) X2, (B.2)
satisfy the stated bound.
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Following Simon [10] we write f(H,) = (1/2r) [ d f(A)e"*~. Hence we have to

compute [eitto x2] = (¢t x2pitHo _ x2)itllo Now

A
C’llH“’XZé’_“'H"’ — XZ _ 21/1 +4‘[dﬂ€m““’X‘ pe—lun
0

2 u
=x?—2i\+8[du|du e ope W Ho, (B.3)
0 0

From (B.3) we see that
L+ [x [P e e, x2T(H , + 1), S e (U +[AP). (B.4)
from which it follows:
T+ (X1 LA (H), X1 (Hy, + 1) 7 5 S e [d2AIF)I + [27). (B.5)
To prove the result for (1 + |x|*) " '[f(H,), x*], we write it as:
(14 X))~ Ix2f(H ) + (1 + x?) 7 f(H ) H XX (H, + 1)
+ (L4 X)) fH)HH, + 1)
+(+x)" f(H)IXAHJH, + 1) (B.6)
The first term is obviously bounded while the second and third term are bounded
using (B.4) for the functions f(x), h(x)= f(x)xeCZ(R). The last term is equal
to (1+ x|~ f(H,)2i—4xp)(H,+ 1)~ Since p(H,+ 1)~ is bounded, it is
sufficient to show that (1 + |x|*)~' f(H_)x is bounded and for this it suffices to
repeat the steps (B.3) to (B.6) with x? replaced by x. Collecting all the estimates
together we finally get:
I+ X2 LA H XD 20 < €l f |, + ¢, [dARAIA +141%)
+oy [dAIF )1 +14P)
4
dx*

+ h

d4
!

Saolfl, + C2|5upr|< >’ (B.7)

where [supp -f| denotes the Lebesgue measure of supp f.

Proof of Lemma 2.2. Write f(H,)=(H,+ 1)"'g(H,), where g(x)=(x+ 1)f(x)e
Cg(R). Using Lemma 2.1, [|g(H,,)| ;2,2 is bounded uniformly in w. Since, using
a result of Simon [10], |H,, + 1| 2oLy is bounded uniformly in w, we get the result.

Appendix C. Proof of Lemma 3.2

We prove here Lemma 3.2. Following Wegner [11] and Frohlich—Spencer [2] we
write:

P(dist(o(H ,(»)), E) <k) = P(N(E + k, H ,())) — N(E —k, H ,(w)) 2 1)

E+k d
< f— '
:<E[ dE T N(E,HA(w))>

k
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E+k
=— Y [ dE'| ] (dg;f(ay)

ez® ETF J

A+ JFLGNAFD

[ dq; £(g)9,N(O, H (w) — E') (C.1)
<lfl. X [ 11 (gf(g)

c,r‘ieAZ;Q j%lc_,"’\/i#@
[N(E, H 4 ))I N(E, HA(Q)))Iq -1l

where N(E, H [(w))|, =, = #{keN|1k<— A+ Y xchj> gE},
J#i

NAFQD
and N(E, H ()], _“—#{kew< Bty xcq,+xc>§E}.
J#I

NAFD
Since N(E, H 4(w))], -0 = N(E, — APy < const |A| the right-hand side of (C.1) is
bounded by

Clf1 kA% (C.2)
On the other hand:
P(dist(o(H ((w)), E) k) S {N(E +k, H () ) £ {N(E + &, H () )
< 4] sup

Acr?
Acube

|A[<N(E+k H (@), (C.3)

where 4 = A is the smallest cube containing A. Here we have used the monotonicity
of the eigenvalues A,(H ,(w)) with respect to A (see [7]). Observing that from the
results of [7] we have that

sup

AcR3
Acube

where N(E) is the integrated density of states of the system, we conclude the proof
by taking the geometric mean of the two estimates.

|AI<N(E+k H ,(®))> = N(E +k), (C4)
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