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Abstract. We address the problem of whether there exists an external potential
corresponding to a given equilibrium single particle density of a classical
system. Results are established for both the canonical and grand canonical
distributions. It is shown that for essentially all systems without hard core
interactions, there is a unique external potential which produces any given
density. The external potential is shown to be a continuous function of the
density and, in certain cases, it is shown to be differentiable. As a consequence
of the differentiability of the inverse map (which is established without
reference to the hard core structure in the grand canonical ensemble), we prove
the existence of the Ornstein-Zernike direct correlation function. A set of
necessary, but not sufficient conditions for the solution of the inverse problem
in systems with hard core interactions is derived.

1. Introduction

The inverse problem in classical statistical mechanics concerns the relationship
between classical systems and their equilibrium single particle densities. Consider
a finite temperature classical system of N particles characterized by an interaction
W(x,,...,xy), where x; denotes all the coordinates (e.g. space, spin, etc.) of the i
particle. W is henceforth regarded as a fixed, given function. It need not be
symmetric. If an external potential, U(x), is applied to the system, the density of the
i™ particle in the canonical distribution is

N
olUsx) =2y " fexp| = Wix,....xy)— Y Ulx) dx,...dx,...dxy, (1.1)

i=1

where dx; indicates that there is no integration over x;, and
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N
Zy=fexp|—Wix,,....xy)— Y Ulx)|dx, ...dxy (1.2)
i=1

is the canonical partition function for the external potential U. For convenience,
we have taken inverse temperature = 1. The equilibrium single particle density of
the system is then simply

N
oUsx)= ), 0(U;x). (13)
i=1

Here we address the inverse problem: Given a function ¢(x)=0 with
fo(x)dx=N, does there exist a single particle external potential, U(x), such that
o(x) is the equilibrium density of the system with potential U(x) as given by
(L.1)—(1.3)?

One of us [1] (E.H.L.) has studied an analogous quantum mechanical problem
in which g¢(x) is the one particle reduction of a pure ground state Y(x,, ..., Xy).
There it was shown that there exist densities ¢(x) which do not correspond to the
pure ground state of a system with potential W+ XU for any choice of U. Levy [2]
reached the same conclusion. Englisch and Englisch [3] proved that even if mixed
ground states are allowed, one can construct a ¢ which does not come from any U.
A similar problem for quantum lattice systems has recently been investigated by
Hugenholtz [4]. However, rigorous results on the inverse conjecture for classical
statistical mechanics have been limited. Nevertheless, the classical conjecture is
implicit in many theories of non-uniform fluids; in particular, certain models of
the liquid-vapor interface depend crucially on the validity of the conjecture for
specific systems (see Evans [5] and references therein). In this context, several
authors have derived formal expressions for the potential for the case of hard core
interactions in one dimension [6—8].

In this paper, we provide a proof of the inverse conjecture for a large class of
systems in both the canonical and the grand canonical distributions. For a single
species of particles in the canonical distribution, we prove that if

N
Wy, ..ooxp) [ elxpd¥x< 0, (1.4)
i=1
and
N
fexp[—Wix,,...,xy)] [] olx) d¥x < 0, (1.5)

i=1

then there exists a unique potential U(x) corresponding to the density o(x). In
expression (1.4), W, denotes the positive part of the interaction potential W,
namely W, (x,,...,xy)=max{W(x,, ..., xy),0}.

It is worth pointing out that condition (1.4) is by no means superfluous. Indeed,
there are numerous examples of systems that violate (1.4) in which the inverse
conjecture fails. For instance, if W is a sum of two-body hard core potentials of
radius R, and g(x) is an integrable function supported entirely within a region of
radius R, then clearly there does not exist any well defined physical potential U(x)
such that g(x) =¢(U ; x). Condition (1.4) excludes systems of this sort, but it allows
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W to have integrable singularities. Condition (1.5) essentially excludes systems that
would have infinite free energy if the single particle density were g(x). The physical
reasoning underlying this condition is explained in more detail in Sect. 2.

We shall always assume that the coordinates, x,, of the i'" particle lie in some
o-finite measure space {A,dx). The assumption of o-finiteness is technically
necessary to guarantee that the product space (A", d"x) is well defined and obeys
the standard product space theorems (e.g, Fubini’s theorem). All spaces of
physical interest are g-finite. We emphasize that we place no other restrictions on
the measure space {A,dx). The generality of the measure space {A,dx) is not
simply a mathematical nicety, for it allows our results to be applied to a very large
class of physical systems. In particular, {A,dx) may represent a single particle
space for a system in any dimension. The space {A, dx) need not be IR"; it may, for
example, be the surface of a sphere or a torus, or even a classical lattice. Moreover,
A need not correspond exclusively to spatial variables — the results apply equally
well to momentum space, phase space or any space of internal variables (e.g.,
intrinsic spin).

Among the continuous systems to which our results apply, one of notable
physical interest is the Coulomb gas in two dimensions (at temperatures for which
the system exists). Regarding {(A,dx) as a space of spin variables, one may of
course apply these results to Ising or Heisenberg type magnets. Finally, we remark
that if one wishes to consider densities defined on some subset of the natural space
of a system, it is possible to simply integrate out the “unnecessary” degrees of
freedom and take <{A,dx) to be the subspace on which the densities are defined.

We also stress that no specific assumptions have been made on the form of the
interaction W(x,, ..., xy). In general, W will be a sum of one-body through N-body
interactions, none of which are endowed with any special symmetry.

Existence and uniqueness of the potential U corresponding to a density ¢ are
proved in Sect. 2. Next we examine some properties of the inverse map U(g). In
Sect. 3, it is shown that the inverse map is continuous in a sense which is natural
for the system. Differentiability of the inverse map is discussed in Sect. 4. There we
prove that if W is a bounded interaction, then the inverse map possesses a Fréchet
derivative and we show that this derivative provides some local information on the
structure of U.

Natural generalizations of the inverse problem are discussed in Sects. 5 and 6.
The inverse problem for systems with several species of particles is investigated in
Sect. 5, in which it is shown that there exist unique families of potentials that
produce a given family of densities of various particle species. In Sect. 6, we study
systems with massive or charged coupling. For these systems, we prove that there
exists a unique gravitational or electric potential corresponding to a given mass or
charge density.

The inverse problem may also be formulated within the context of the grand
canonical ensemble. This is done in Sect. 8. The system is characterized by an
infinite family, (W), N=1,2,..., of interaction potentials. Suppose that we are
given a density function o(x) 20 with | g(x)dx =n, where n is the expected particle
number of the system. We assume that a stability condition analogous to Eq. (1.5)
is satisfied and that a few of the W, satisfy (1.4). Under these assumptions, it is
shown (Subsect. 8ii) that there exists a unique external potential U(x) such that
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o(x) is the single particle density of a system with total potentials (WN(xl, s Xy)

N
+ > U(xl.)). It is worth noting that only one interaction, Wy for N > n, is required
i=1

to obey condition (1.4). Hence, these results are applicable to systems in which the
grand canonical partition function has been truncated by taking Wy, = co for all N
greater than some fixed N'=N.

In Subsects. 8(iii) and 8(iv), we prove continuity and differentiability of the
inverse map U(g) for the grand canonical ensemble. The methods of Subsect. 8(iv)
also provide us with a local existence result for hard core interactions. The inverse
problem for several species in the grand canonical ensemble is discussed in
Subsect. 8(v). In 8(vi), systems with massive or charged coupling are investigated.
Within the context of the grand canonical ensemble, there are various forms of the
inverse problem for these systems. If one may only adjust the overall chemical
potential, it is shown that there exists an electric potential which produces a given
charge density and total particle number. However, the ability to adjust the
chemical potentials of particles of different charge independently implies that we
can also find an electric potential and a set of fugacities corresponding to a given
charge density with a preprescribed set of expected particle numbers.

We have already remarked that the inverse conjecture fails for some systems
with hard core potentials. A more detailed discussion of restrictions in the hard
core case appears in Sect. 9.

Some technical theorems on the convergence of product functions, used in
proving many of the aforementioned results, have been relegated to an appendix.

2. Existence and Uniqueness

Let {A,dx) be a measure space and let {A",d"x)> denote the N-fold cartesian
product measure space. Let X =(x,, ..., xy) denote an element of AN, Given the
function

0:4-R,0(x)20, [ o(x)dx=N, (2.1)
4
it is convenient to introduce the normalized measure
1
du= NQ(X) dx (2.2)

on A and the corresponding product measure

d"n= ﬁ Lo(x)/N]d"x 2.3)

on AN,

Notation. A function f: M—IR defined on a measure space (M, dm) is said to be

in L2(dm) if [[]f(m)|P dm]'/P = IS 1 pam 18 finite. || f], =ess sup] f(m)].
Let W(X), the interaction, be a given function which satisfies

W AR, W, e LY(d ), e Ve LY(d ). (2.4)
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Then we can introduce yet another finite measure
di=e Wdu (2.5)

on A", The condition e~ "e L!(d" ) insures that d/ is absolutely continuous® with
respect to d™u, while W, € L'(d"u) implies that 4"y is absolutely continuous with
respect to dA. Thus d¥u and dA are equivalent! measures on A",

We should like to determine whether there exists a function U : 4—IR such that
0=0(U) ae. [dx], where o(U) is given by Eq.(1.3). Actually, we note U only
appears in the definition of o(U) in the form e~ Y. Since it may be the case that
e~ Y=0 (which would correspond to U= 0) on sets of nonzero measure, let us
instead determine whether there exists a function eV : A—R™" such that ¢ =g(U)
a.e. [dx].

Alternatively, let us consider the canonical density of a system at external
potential

U= —log(g/N)+V, (2.6)

where ¢ is the given function in Eq. (2.1). In terms of the function V, the canonical
density of the i® particle is

QV,i(xi) =[Z(V)]~ ! jexp

—Wixy, ..., xy)— i Vi(x;)

N
- 11 Lol )/N1dx, ... d%; .. dxy, 2.7)
=1
where
N
Z(V)= [exp| — W(xy,....xy)— Y. V(x)|d"n. (2.8)
i=1
Then the single particle density as a function of V is
N
or(x)= 3 oy (x). (2.9)
i=1

The inverse problem in terms of the potential U is clearly equivalent to the
problem of finding a function V: A—>R, or e™" : A—>R*, such that g=gp, a.e. [dx].

Note. We emphasize that U is the physical external potential. V' is a useful
mathematical construct which we shall call a potential in the hope that such
terminology will not be confusing to the reader.

Remark. The decomposition in Eq. (2.6) is useful in the sense that it divides out the
ideal gas (W=0) behavior. Whenever W=0, the inverse problem is trivial; the
solution is simply V' =0. Moreover, in the general case, ¢ need not have support on
all of A. Hence the external potential, U, may be required to provide “walls” which
cut-off the density in part of the system. The piece of the potential which
accomplishes this is —log(g/N), whereas V only alters the density on the support
of .

1 Refer to the appendix for definitions of absolute continuity and equivalence of measures
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The existence of a V such that ¢ =g, is established by means of a variational
technique. For fixed W and g, consider the functional

F)=[Z(V)] ‘exp[-N[Vadu]. (2.10)

To insure that the numerator and denominator of § are separately well defined, we
restrict attention to the set of functions ¥~ defined by

¥ ={V: A->R|Ve L'dw), Z(V)<w}. 2.11)

Remark. (i) The set ¥" is not empty. In particular 0Oe ¥~ since Oe L'(du), and
e el (d™w) = Z(0)< .
(ii) The condition e~ "e L*(d"u) can be replaced by the condition ¥ #0, since
N

if there exists 7", then by taking W= W+ Y f/(xi), we have an equivalent
=1
problem for the system characterized by interaction W.
(iii) We observe that Z(V)>0 for all V in ¥~ since, by Jensen’s inequality,

Z(V)zexp[— | W, | vy — N[V dul>0. (2.12)
Formally, the variational derivative of log& is given by
dlog®
= — . 2.13
S70 == ew 2.13)

Thus the problem of finding a potential corresponding to ¢ may be reduced to that
of showing the existence of an extremum (in ¥”) of &.
From (2.10) and (2.12), we have:

Proposition 2.1. Suppose W, e L*(d"p) and e Ve LY(d ). Then:
(@) & is (uniformly) bounded above in v .

V) SexpLIWo | {@wpls (2.14)
(b) For all CER and Ve, FV+ C)=F V).
Let us define

R=supFV)< 0. (2.15)

Vey

Theorem 2.2. Under the assumptions of Proposition 2.1, there exists Ve which
maximizes §.

Proof. Let (V) be a maximizing sequence in ¥~ for §, ie. lim FV,)=R. By

Proposition 2.1(b), without loss of generality we may add a constant to each V, so
that Z(V,)=1.
With this normalization, the sequence (F,) of functions defined by

F,= []exp[—V,(x)/2] (2.16)

satisfies F, e L*(dA) with || F,| 5., = 1. Thus, by the Banach-Alaoglu theorem, there
is a subsequence [also denoted by (F,)] which converges weakly in L*(d2), ie.
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F,— F in L*(d}). Since d/ is equivalent to the product measure d"p on AV, it
follows from Theorem A.3 that F is a product of identical, [du] measurable
functions. Hence there exists V' : 4A—IR such that

N

l—[ exp[ — V(x,)/2]. (2.17)

We shall show that Ve 7" and that V maximizes &.
First we consider the denominator of §. Since the denominator is weakly lower
semicontinuous in F,,

1= lim Z(V,)= lim [dAF} 2 [dAF? =Z(V). (2.18)

Thus Z(V) is finite. In order to establish that Ve?”, it suffices to show that
Ve LY (dp).

We first show that V_e L'(du), where V_ denotes the negative part of the
function V=V,—-V_. Let T={xeA|V_(x)>0}. If w(T)=0, then clearly
V_eL'(dw). Suppose u(T)>0. Then [since | e"dm<oo = h,_eL'(dm)], the finite-
ness of Z(V) implies that (— W— ) V), e L*(d"n). But

(—W=2V,2(=2V).-W,, (2.19)
and W, e LY(d"u). Hence (— Y V), e L'(d" ). Moreover
+

N
-3 V(x)
i=1 +
where y, is the characteristic function of the set T. Then, since |y dp=p(T)>0, it

is clear that V_e L(du).
In order to show that V, e L!(dp), let us define the truncated functions

N N
2 [ arx) X Vox), (2.20)
i=1 i

o [WX) WEX)Sm
W)= {m W)= 2.21)
and
Vix) Vix)<k
V"(x)={k(x) VE;‘;; N (2.22)

where m and k are positive integers. V_eL'(du) = V*e LY(du). By Jensen’s
inequality

exp

- %f(Vn— Vi dp— §(W— W’")dNu]

< [fl exp(—V,/2)exp(+ V"/2)] exp(W™)da. (2.23)

We note that exp(W™eL®(d2) and [Jexp(V*/2)eL®(dA), and that
L*(dA)C L*(dA), since the measure d/ is finite. However, by the convergence of

1 1
(F,), and the fact |V, du— ]—V—logE, we have, for all m and k,
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lim exp| — gj"(Vn* V¥dp— f(W— W’”)dNu}
N
< ([ Texpl— (v — V92l expl— W - Wildust. (24

The second inequality follows from the fact that V¥<V and W"<W. By
dominated convergence, we may remove the truncation on W, i.c.

lim [ (W—W")du=0. (2.25)

m—co

Then, recalling that V_e L(du), we obtain from (2.24)

lim exp(— N [V, dp) Sexp[N([ V_ du— [ Vidu)], (2.26)
where
Voix) Vox)=k
Fx)y=4{ * - . 2.27
Vi) {k V. (x)>k @27)
By monotone convergence of V¥,
lim exp(—N |V, dw) Sexp[N([ V_ du— [V, dw)]. (2.28)

Recall that for all n, Z(V,)=1 and hence F(V,)=exp(—N [V, du). Then by
Eq. (2.28)

exp[N( V_du— [V, dw)] 2 lim F(V,)=R>0. (2.29)

Evidently V, € L*(du), and hence Ve 7 .
Finally, to see that V maximizes &, recall that by Eq.(2.18) Z(V)=1.
Combining this with Eq. (2.29), we find

S(V)=R. (2.30)

Noting that R= sup(s) and Ve, we obtain the desired result. [
set’

Corollary. If (V,e?") is a maximizing sequence for & normalized so that Z(V,)=1,
then some subsequence of the sequence (F,), defined by Eq. (2.16), converges strongly
in L*(dA).

Proof. We recall that if Z(V,)=1, then some subsequence of (F,) converges weakly
in L*(dA). Thus, in order to establish strong convergence, it suffices to show that
the norms converge, ie. Z(V,)—>Z(V). By Eq.(2.18), lim Z(V,)2Z(V). Suppose
,}ir?o Z(V,)> Z(V). Then it follows from Eq. (2.28) that noo

) =[2V]" exp[ =NV dp]> lim §(V,) =R, 231

a contradiction. Thus F,—F strongly in L*(dA). O

Remark. 1t should be pointed out that the convergence of (F,) to a product
function could have been established by relying on specific properties of the
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maximizing sequence (cf. proof of Theorem 6.2), rather than by invoking
Theorem A.3. However, for the proof of Theorem 2.2, these methods would have
been unnecessarily cumbersome.

Remark. Had the maximizing V satisfied e~" e L*(du), the proof of Theorem 2.2
could have been simplified. One could have taken a maximizing sequence which
converged in a single particle space and considerations about the convergence of
product functions would have been unnecessary. Theorem 2.2 demonstrates that
the maximizing V is in ¥, and hence it is natural to ask whether it is also in the
space

¥ ={V:A-R|Ve LY (dp), e~ e L' (dp)} . (2.32)

As the following example demonstrates, generically V¢%". Evidently, it is the
fully interacting measure, dA, and not the single particle space measure, du, which
is of physical relevance.

Example. Consider a two particle system in one dimension on the unit interval,
A=(0, 1), with interaction potential W(x, y)=(xy)~ /2. A single particle density of
the form

o) =21 [exp[—1/)/E] Lde (2.33)
X0 4
with
Z= jeXp[—1/1/5];1y-dxdy, (2.34)

may be produced by applying an external potential U(x)=logx. It is easy to verify
that ge L(dx), W, € L(d*u), and e~ " e LY(d*p). Thus g is an admissible density for
this system. Hence by Theorem 2.2 there exists a Ve~ which maximizes .
Indeed, V is given by V=log(xg/2).

1
Clearly Z(V)=Z<oo. Moreover, we easily verify that [|V]odx<oo. Thus

0 ~
Ve L'(dp), so that Vey". However, e~ V¢ L(du), and hence V¢~ since
1 1 1
feVdu=[—dx=00. (2.35)
0 oX

Theorem 2.3. Under the assumptions of Proposition 2.1, there exists V€ ¥ such that
o(x)=g,(x) for all xe A.

Remark. Below we shall prove that there exists a Ve ¥ such that g =g, a.e. [dx]
on A. However, by the definition of ¢, [Eq. (2.7)-(2.9)], it is clear that if we find a
Ve such that ¢ =g, a.e. [dx], then we can modify V on a set of zero measure to
obtain a Ve ¥ such that g(x)=gy(x) for every xe A.

Proof. By Theorem 2.2, there exists a Ve  such that §(V)=R. For this V,
calculate g, according to Egs. (2.7)-(2.9) and define

()= {+ I op(x)=o(x)

-1 gx)<eolx) (2.36)
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Note that ye L™, and hence for every ¢ >0, (V+en)e ¥ = FV)=F(V +¢en). Also

FV+en)=FV)[1—¢f(o—oy)ndx]+O0(?). (2.37)
Thus

0= lime™ IE) =&V +en]=F(V) [ le—ey)ndx=—F(V)[lo—eyldx.(2.38)

Evidently =9, ae. [dx]. O

Theorem 2.4. Under the assumptions of Proposition 2.1, if there exists a measurable
Sunction V: A—>1R such that 9=yg, a.e. [dx], then

(a) Vev.

(b) Up to a constant, V is unique a.e. [du].

Proof. (a) If 9=y, a.e. [dx], then by definition 0 < Z(V)< c0. Hence it suffices to
show that Ve L}(du). By a proof identical to that in Theorem 2.2 [cf. Egs. (2.19)
and (2.20)], Z(V)< oo = V_eL(du).

Next we show that V, € L!(du). Since Z(V)>0,

00> Z(0)/Z(V)=[Z(V)] ' [ ¥ ﬁe_Ve+V Au=[exp(Y. V)do,, (239)

where
do,=[Z(V)] 1 [e"wﬁe*VdN,uJ (2.40)
is a unit measure. Thus (). V), € L'(do,). But
XN zXV=YV.- 2V (241)
Moreover, since V_e L*(du) and g, =0,
0> [V_gdx=[V_g,dx= [ V_do, (2.42)
= Y V_eL%doy,). Thus YV, € L*(do,). Then
0> YV, do,=[V,0,dx= [V, odx. (2.43)

(b) Suppose there exist V; and V, such that ¢, =9,,=0¢. By part (a), V}, V,€7".
Then by Jensen’s inequality

ZW)/ZVy) zexp[— [ .V, = Vy)doy I=exp[ =N [ (V= V))dul. (244)
while
Z(V,)/Z(V,)Zzexp[— | Y. (V,—V))do, 1=exp[— N [(V,— V)dul. (2.45)
Therefore
Z(V)/Z(V,)=exp[— N [ (V, = V,)du]. (2.46)
Evidently, Jensen’s inequality is saturated, implying that the integrand %(V1 -V,)

is a constant, ¢, a.e. [do,,]. But, since V,€ 7", doy,, is equivalent to d4, which is in
turn equivalent to d¥u. Hence the measures doy,, and d™y are equivalent. (This is a
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crucial point. Equivalence of the measures fails for the hard core case!) Thus

N
Y(Vi=V,)=cae [d"u] = (V,—V,)=c¢/N ae. [du]. O
Corollary. If (V) is a maximizing sequence for &, normalized so that Z(V,)=1, then

N N
[Texp[—V,(x)/21= [[exp[— V(x,)/2] (2.47)
strongly in L*(d2).

Proof. This follows immediately from the corollary to Theorem 2.2 and unique-
nessof V. [

Summary. Thus far, the following has been proved. Under the assumption that W,

N
and e " are in LY(du)=L" (H [o(x,)/N] de), (thereby excluding the hard core
case):
(i) There is precisely one V= U +log(¢/N) such that g =g,.
(i) This V is also the unique V that maximizes F(V).
In the next section, we turn to a discussion of some properties of the map g— U.
In Sects. 5 and 6, we shall return to generalizations of the results of this section.

3. Continuity of the Inverse Map

Consider an N particle system with fixed interaction W and a sequence of densities
(0,), each of which is admissible in the sense of Eq. (2.4), ie.

W,eLYd"y,) and e "elL'(d“w), (3.1)
where
dp,=(0,/N)dx. (3.2)

Then by the results of Sect. 2, there exists a sequence of potentials (U,) such that
0,=0(U,). If the sequence of densities converges, in some sense, to an admissible
density g, then we shall show that the potentials converge to a potential U such
that ¢ =¢(U), and hence that the inverse map U(g) is (sequentially) continuous.

First we define the topology in which the densities are taken to converge. For
fixed W, the set of admissible densities is given by

N
9= {Q 1 A-R¥ Joe LY(dx)(llell 4y =N) [Toe L' (e™" d"x),

ﬁ@eLl(W+ d”x)}- (3.3)

Since the conditions imposed on admissible densities involve product functions on
AN, it is natural to define our topology on the product space

@Nz{ﬁQ:AN—HRJrlQe@}. (3.4)

N N
We shall say that a sequence (H 0,€ @N) converges to [ [oe 2V if
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N N
[Te.~[le stronglyin L'(e™"d"x), (3.5)
and
N N
[Te,—~1le weaklyin L'(d%x), (3.6)
and
N N
W [Te,d"x— W, [Ted"x. (3.7)

This type of convergence shall be denoted by g,—¢ in 2". Note that 9,—¢ in 2V
implies that g is admissible. Observe also that condition (3.6) is clearly equivalent

to
0,—~¢ weaklyin L'(dx). (3.6a)

Next we specify an appropriate topology for convergence of the external
potentials. Recall that the maximizing potential V for some ¢e% satisfies
N

Z(V)< oo, and hence the function e”V=(g/N)e " satisfies [[e Ve L'(e™" d"x).
Thus we define the space of potentials

N
Y= {e‘”:/l—»lR+ ﬂe‘UeLl(e_Wde)}, (3.8)
with the usual L*(e”" d"x) norm on #~.
The principal result of this section is that the inverse map is continuous with
respect to the topologies defined above; namely, if g,—¢ in 2V, then

[Texp(—U,)— [ exp(—U) in %™
Remark. The measure,
do=e " d"x, (3.9)

which appears in the definitions of the spaces 2 and % is not, in general,
equivalent to d”x on A". However, if (g,) is any sequence of densities in &, then do

and d"x are clearly equivalent on A¥C A" where 4= [ Jsupp(g,) (see definition

below). It is only subsets of A" of this form which are relevant for convergence of
sequences in 2" and #".

Definition. If ¢ is a nonnegative function on a set A, the support of g, denoted by
supp(p), is the set {xe A]o(x)>0}.

Notation. Let (g,) be a sequence of densities in Z. Then we may construct
corresponding sequences of partition functions (Z,) and functionals (&,) defined
on sets of potentials (¥}), where Z, &,, and 7/, are given by Egs. (2.8), (2.10), and
(2.11) with ¢ replaced by ¢,. If 9,—¢ in 2", then we construct the analogous
quantities Z, &, and ¥~ for the limit function o.

We may also define the quantities R, = sup &,(S), as in Eq. (2.15), and the

Se?t
analogous quantity R for the limit function .

V =V(p) will refer to the maximizing potential for the limit functional § and
U=U(g)= —log(g/N)+ V(o) will refer to the corresponding external potential.
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The following lemma demonstrates that R(¢), which is finite by
Proposition 2.1(a), is sequentially lower semicontinuous in g.

Lemma 3.1. Suppose ¢,—¢ in Z". Then
liminfR, ZR. (3.10)

n— oo

Proof. Let (S,,) be a maximizing sequence for § in ¥". It is clear that without loss of
generality we may take S, € L®. Then, for all m and n, S,,€ 7. Hence

R,= sup &,(5)2 (S, (3.11)
Set,
By hypothesis, Eqgs. (3.5) and (3.6a) are satisfied. Thus &,(S,,)— &(S,,)- Hence
liminfR, = lim &,(S,,) =&(S,). (3.12)

Equation (3.10) follows by taking the limit m—oo. []

Given a 9"V convergent sequence of densities (¢,), Theorem 2.2 insures that
there exist corresponding maximizing potentials (V,€7) from which we may
construct the sequence ((¢,/N)e~ "€ ). The next proposition establishes that the
latter sequence does indeed converge and that the limit function defines a potential
V. Theorem 3.3 shows that the ¥ so defined maximizes &, and hence that the
inverse map is continuous.

Proposition 3.2. Suppose (g,) converges to ¢ in Z~. Let (V,€7,) be the correspond-
ing sequence of maximizing potentials, normalized so that Z(V,)=1. Let
= —10g(Q,,/N)+ "> and construct the sequence (F,) of  functions

F, = Hexp( U,/2). Then, for some subsequence,
F,—~F weaklyin L*do). (3.13)

Moreover, there exists a function U: A-R such that

F= ﬁ exp(—U/2). (3.14)

Proof. F, is norm bounded in L*(do) [since Z (V,)=1], and hence a convergent
subsequence exists by the Banach-Alaoglu theorem. Using Theorem A.3, the form
of the weak limit follows from an earlier remark on the equivalence of the measure
do to the underlying product measure d"x. []

Remark. We may define the potential I/ by setting
e‘0=(Q/N)e_‘7 whenever o(x)>0. (3.19)

When o(x)=0, the definition of V(x) is arbitrary; we set V(x)=0 when o(x)=0.
Then

e U=(g/N)e 7 ae. [d¥x]. (3.16)

N N
Corollary. []o,exp(—V,/2) = [[eexp(—V/2) weakly in L'(do). (3.17)
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Proof. By hypothesis, [ [¢,— [ ] ¢ strongly in L'(do), and thus [[o}?— []e"?
strongly in L*(do) (because |a—b|*<|a®>—b?| for a,b=0). By the proposition,

— [T exp(— U/2) weakly in L*(do). It is easy to verify that the product of an L?
strongly convergent sequence and an L? weakly convergent sequence is an L!
weakly convergent sequence, and that the limit is the product of the limits
of the two factor sequences. Thus []o,exp(—V,/2)—=]](eN)'* exp[ — U/2]
=[Jeexp[— /2] weakly in L'(do). The last equality follows from the previous
remark. [

Remark. Note that although V,e¥, it is not necessarily the case that Ve,
Hence (V) is not in general a max1mlzmg sequence for §. Also, it is not yet clear
that Ve¥". In Theorem 3.3, we shall prove that in fact V=V, the maximizing
potential for §.

Theorem 3.3. Under the assumptions of Proposition 3.2, the function 1% defined by
Eq. (3.15) maximizes §. Furthermore

N
]_[QUZ exp(—V,/2)> [[o'/?exp(—V/2) stronglyin L*do).  (3.18)
Proof. Since Z,(V,)=1 and Z is weakly lower semicontinuous in F,

1= nango Z,(V,)= }LI?O ”H(Qn/N)l/z exp(— V,./2)|lz(da>

> | TTexp(= U/2)ll 00y 2 ITT(@/N)2 exp(— V/2) |l a = 2(7).  (3.19)

The second inequality in (3.19) follows from the (pointwise) inequality in Eq. (3.16).
We claim that Ve?". According to Eq. (3.19), Z(V) is finite. Thus it suffices to
show that VeLl(du) As in the proof of Theorem 2.2, we decompose ¥ into
positive and negative pieces, ¥/, and V_, with V=V, —V_. By reasoning anal-
ogous to the proof of Theorem 2. 2 [cf. Egs. (2.19) and (2.20)], Z(V)
<oo=V_eL\(dp).
To establish that f/+ € LY(dp), we shall now show that

exp(— [Vodx)= lirnr1_>sq1)1p exp(— [ V,0,dx). (3.20)

Define the truncated functions

7 (x)= {Z+ (x) [/+ (Xfi (3.21)
and '
. V.(x) V.(x)=m
V2= {m V_(x)>m’ (3.22)
and
o JWX) WX)=p
Wr(X)= { W) > p’ (3.23)

where k, m, and p are positive integers. Then by Jensen’s inequality
eXp[~ I, = (V= du,— [ (W~ W")d”,un]

<11 e

0,exp(—V,/2)exp(+ V¥ /2) exp(— 173‘/2)} exp(WP)do. (3.24)
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Noting that [ [ [exp(+ f/ﬁ /2)exp(— V] exp(WP)e L*(do) and using the corol-
lary to Proposition 3.2, we have that as n— oo, the right-hand side of Eq. (3.24)
becomes

“_[ Qexp( V/2)exp(+ VE/2)exp(— V"/2)|exp(WP)do . (3.25)

Let us consider the limiting form of the terms on the left-hand side of Eq. (3.24).
First, since V¥, V™e L®(dx) and g, — ¢ weakly in L'(dx),

}Ln;) f(Vi‘ — Vj”)g,, dx= f(Vf — V") odx. (3.26)
By the definition of W7, for all n,

fw—=wn[le,d"x= (W, —-Ww>)]]e,d"x, (3.27)

where W, and W? are the positive parts of W and W?. Since W?¥e L*(d"x) and
[Teo,— [leo weakly in L*(d"x),

lim fwrT]e,d"x=[Wi[]ed"x. (3.28)
Thus in the limit as n—co, Eq. (3.24) becomes

exp

. N N . - - '
llIr}lSOklp exp(— ?f V.o, dx) + jf(Vi — V™Mo dx|exp[— [(W—W?)d"u]

=< [ [Tlexp(—V/2)exp(+ V¥ /2) exp(— V™/2)] exp(W?)d1, (3.29)

N
where di= [[(¢/N)e™" d"x is the finite measure introduced in Eq. (2.5).
Note that for all k and p

[1lexp(—V/2)exp(+ V¥ /2) exp(— V™/2)] exp(W?)
< [1Lexp(— V/2)exp(+ VE/2)Texp(W?)
< [Texp(+ V*/2)[ ., llexp(W?)I[ . [Texp(— V/2). (3.30)

Since Z(V) < oo, the function on the right-hand side of (3.31) is in L*(dA), and hence
(since dA is a finite measure) in Ll(dl) Thus we may use dominated convergence to
remove the truncation on exp(— V'”/2) on the right-hand side of (3.29). Since P is
an increasing sequence, we use monotone convergence of V™ to V_ on the left-
hand side of (3.29). Then, in the limit m— oo,

N N, -~ A
[Iirrisup exp(— ?f V.0, dx)} exp[+ 7§(Vf —V_)odx

N
exp[— [ (W= Wnad"u] < [ [expL(Vs — V,)/2T) exp[ — (W= WP]d*u<1.
(3.31)
The second inequality follows from the observation that, for all k and p, V, > V'

and Wz W?”. Finally, by dominated convergence of (W—W?) and monotone
convergence of V¥, in the limit as p— oo and k— o, Eq. (3.31) becomes

limsup exp(— [ V,0,dx) < exp(— | V, 0dx)exp(+ [ V_ odx). (3.32)
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Recall that, for all n, Z,(V,)=1, and hence §,(V,)=exp(— | V.9, dx). Then by
(3.32) and Lemma 3.1

exp(— [ V,odx)exp(+ [ V_gdx)= lil;,ILSollp &)
> lim inf (V)= liminfR, = R >0. (3.33)

Since V_ e L(dp), this implies that f/+ e L'(dy). Hence Ve 7.
Finally, we show that 7 maximizes §. Rewrite (3.32) in the form

exp(— [ Vodx)= lim sup exp(— [ V.0,dx). (3.39)

and recall from Eq. (3.19) that
Z(V)< lim Z,(V,). (3.35)

Then, by (3.34), (3.35), and (3.33)
F(V)z limsup§,(V,) = R. (3.36)

Since Ve 7, evidently the inequality saturates; i.e. V maximizes §.

The saturation of Eq.(3.36) implies that (3.35) must also be saturated.
However, recalling the derivation of (3.35) [cf. Eq. (3.19)], this in turn implies that
two other inequalities must be saturated. The first yields the equality

'}Lnolo Hl—[ (Qn/N)I/Z eXp(— V;,/z)” 2(do) — ”H eXp( - 0/2)“ 2(da) * (337)

Combining the above norm convergence with the weak convergence in Eq. (3.13),
we conclude that the subsequence converges strongly in L*(do),

[T(e/N)"? exp(—V,/2)~ [[exp(— U/2). (3.38)
Saturation of the second inequality in Eq. (3.19) implies that
”l—_[ exp(_ 0/2)“ 2do) — H H (Q/N)UZ eXp(" f//z)H 2(do) (339)

Then, by the pointwise inequality in Eq. (3.16) and the equivalence of the measures
do and d"x, this implies

[Texp(= U/2)=[](e/N)"?> exp(—V/2) a.e. [da]. (3.40)
Hence for the subsequence under consideration
[Tol?exp(—V,/2)- [Jo"?exp(—V/2) strongly in L*(ds).  (3.41)

Since V maximizes §, by Theorem 2.3, V satisfies 0=gy and hence, by
Theorem 2.4, V is unique up to a constant a.c. [du]. Here this constant is fixed by
the saturation of Eq.(3.19) which yields Z(V)=1. By uniqueness, the entire
sequence converges in the sense of Eq. (3.41), which is the desired result. [

Corollary. The inverse map is sequentially continuous in the sense that if ¢,—¢ in
N, and if (U,) is the corresponding sequence of external potentials defined by
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0,=0(U,), then

N N
[Texp(=U,)— [Texp(=U) strongly in L*(do), (3.42)

where U is the potential such that ¢ =o(U).
Moreover, there is a subsequence such that

U, (x)—=U(x) ae. [dx]. (3.43)
Proof. (3.42) follows immediately from the theorem. Then by strong convergence,

N N

there is a subsequence such that ) U,(x,)— Y, U(x;) ae. [do]. Thus, (3.43)
i=1 i=1

follows from equivalence of the measures do and dx. O

Remark. Equation (3.42) gives us convergence of exp(— Y U,x)) to
exp(— Y, U(x,)) in a strong sense; however, it is convergence on the product space
(A", do). Although (3.42) implies (3.43), it does not give us convergence of the
entire sequence on the single particle space {4, dx». The reason for this difficulty is
that typically V¢ 7" and thus, although V maximizes &, (V,) is not a maximizing
sequence for §. If We L*, 2 may be replaced by L!(dx) (cf. Proposition 4.1) and it
is easy to show that (V) is a maximizing sequence. The proof of continuity then
follows from the corollary to Theorem 2.4 and we find that exp[ —U(g)] is a
continuous map from L(dx) to L'(dx).

The special features of the case We L™ will be discussed in some detail in the
next section on differentiability.

4. Differentiability of the Inverse Map for Bounded W

In this section we prove the existence of a Fréchet derivative of the inverse map for
WeL”. In the general case, W, e L(d" ), there are intrinsic difficulties with the
question of differentiability which we shall not pursue here. We emphasize that
although we take We L*, we only require that ge L'(dx). This of course allows the
density to be quite singular.

When We L, it will be shown below that all positive L' functions of norm N
are admissible densities and the maximizing potentials, V, are always in L®. These
properties enable us to make use of the Banach space implicit function theorem to
show the existence of a Fréchet derivative.

. oV
Definition. To say that V(g) has a Fréchet derivative at ¢ with kernel (T(Q 31X, Y)
means that if ge I'(dx) and dpe L*(dx), then ¢

0
V(e +dg;x)=Vig;x)+ f—(% (@:x,y)da(y)dy +0(d¢) (x), (4.1)

where o(dp) is a function with the property that 0(00)ly 4/ 100l 1 4y =0 as
60l 4—0. More precisely, this latter condition means that there exists a
function ¢(1), >0 such that ¢(1)/t—0 as t—0 and [|0(3)|l; 4 = d([02] 1 (4)-

Remark. Without loss of generality, e " may always be replaced by ("), the

sym>

symmetric part of e, since the definition of Z(V) in Eq. (2.8) remains unchanged
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and the variational derivative of § in Eq. (2.13) is unaffected. This amounts to
replacing W by —log[(e™"),m]. The new W is clearly still in LZ*. Henceforth we
shall drop the subscript sym and assume that e”" has been symmetrized. The
definition of g, Egs. (2.7)~(2.9), becomes

QV=N[Z(V)]_1fe_wlﬁ[(Q/N)e’VdN‘lx- (4.2)
Proposition 4.1. If We L*(d"x), then [see (3.3)]:
(a) P ={0: A—>R" [ge L'(dx), [0ll ;40 =N} (4.3)

(b) For every ge 2, V(g)e L™(du).

Proof. (a) By definition, if pe & as given by (3.3), then g€ Z as given by (4.3).
If We L®(dVx) and ge & as given by (4.3), then

N
fe " TTed"x<NYexp(|W].,), (4.4)

and

N
(W [Ted"x=N"|W. |, 4.5)

which implies that pe 2 as given by (3.3).
(b) Since g€ 2, by Theorems 2.2-2.4, there exists a unique Ve?¥~ defined a.e.
[du] satisfying:

(@) Z(V)=1, (4.6)
and .
(i1) eI ={e" W IT (¢/N)e™ " d" " 'x. 4.7

Condition (i) fixes the normalization of V, while condition (ii) implies that ¢ =g,
Now by (i)

Lexp(— [W_I[)1'"N < fe ™V duslexp(+ W, [ )1V, (4.8)
while by (ii)
exp(— [ Wol.,) (e du ' <e™" P <exp(+ | W_[,) (e "dw" . (49)
Equations (4.8) and (4.9) provide a pointwise bound on V(x). [
Remark. When g(x)>0, the equation satisfied by V(x) is

N—-1

e W= (e ] (¢/N)e™ " d" 'x. (4.10)

This equation uniquely extends to the subset of A on which o(x)=0. Since
We L*(d"x), the V defined by this extension is in L®(dx). Therefore, we shall
regard (4.10) as defining V(x) for all x, not just {x|o(x)>0}.

Lemma 4.2. Suppose We L®(d"x). Let Q : L*(dx) x L*(dx)— L*(dx) be defined by

N—-1

0, V)=e"[e ™" ] (o/N)e "V d¥ 'x. (4.11)
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Then:
(@) If 0,€ %, then there exists a unique Vye L*(dx) such that Q(g,, Vo) =1.
(b) Q(o,V) is (norm) continuous in ¢ and V.

1
© 52

o
@ 3%

exists and is (norm) continuous in ¢ and V.
oV

exists and is (norm) continuous in ¢ and V.

o,V
~1

(e) E%] exists.

2o, Vo
Proof. (a) This is an immediate consequence of Proposition 4.1 and the remark
following it.
(b), (c), (d) These are straightforward computations. For example,

N-1
(h;y)=h(y)exp(—=V(y) fd" " 'xe™" 1:—[1 (o(x;)/N)exp(—V(x,))

oV,
+(N—1)exp(— V() | dx h(x) (e(x)/N) exp(— V(x)) fd¥ " *xe™ ¥
H o(x;)/N)exp(—V(x)), (4.12)

which is jointly L* norm continuous in ¢ and L* norm continuous in V.
(e) Evaluating (4.12) at (g, V,), we obtain

Y

7 (h; y)=h(y)+(N—1) [ K(x, y) h(x) dp(x), (4.13)

20, Vo
where

K(x,y)=exp(= Vo(x)) exp(— Vo(y)) fd¥ " 2xe™" Ij (Qo(x)/N)exp(—Vy(x)), (4.14)

and
dp(x)=[0o(x)/N]dx. (4.15)
Note that K(x, y)e L*(dx dy).
We claim that the map
1)
T=— %0 : L®(dx)— L™(dx) (4.16)
oV 2o, Vo

has a bounded inverse. However, in order to employ the standard theorems on
invertibility of linear operators, it is convenient to view T as an operator on an
appropriately chosen Hilbert space. Hence let he L%(du). Then

ITh(y)=h(WI =(N =D 1Kl 1Al 54 - (4.17)

Since du is a finite measure, Eq. (4.17) implies that The L?(du). Thus T is a linear
operator on the Hilbert space # = L*(A, du).

We show that T:L*du)—L*du) is invertible. Since du is finite,
L2(dp(x)du(y)) C LA(du(x)d(y)) = K(x,y)e LA(du(x)du(y)). It follows that the
operator 4 defined by

(Ah) ()= — (N = 1) [ K(x, y) h(x) dp(x) (4.18)
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is Hilbert-Schmidt and hence compact on # = L*(A,du). Thus in order to prove
that T=1— A is invertible, by the Fredholm alternative, it suffices to show that the
equation Ah=h possesses only the trivial solution h=0. Assume Ah=h for some
he L*(dp), i.e.

0=h(y)+(N—1) [ K(x, y) h(x) du(x). (4.19)
Multiplying by [h(y)du(y) and recalling (4.11), (4.14), and Q(¢,, V,)=1, a little
algebra yields
0= [ h*(y) du(y) +(N = 1) | K(x, y) h(x) h(y) dp(x) dp(y)

1 N N 2
- Nje_wne"/"[_z h(x)| du. (4.20)

N
By the equivalence of the measures e " [Je™"°d"u and d"pu, Eq. (4.20) implies
N

that ) h(x;)=0 a.e. [@"u] and hence h(x)=0 a.e. [du]. Thus T : L*(du)—L*(dy) is
invertible.

It follows that if He L*(du), then there exists a unique he L*(du) satisfying
Th=H, i.e. on the set I'=supp(o,),

h(y)=H(y)— (N — 1) [ K(x, y) h(x) du(x). 421)

Now let He L®(dx)CL*(dp). By (4.17), it is clear that the unique he L*(du)
satisfying (4.21) is in L*(dx) on I'. Moreover, we claim that (4.21) defines a unique
he L*(dx) on all of I'. To see this, write h in the form h(x)=hp(x) + h.(x), where h
is supported on I' and hy. is supported on I'“=/A\I". By the above reasoning
hre L*(dx) is unique. The function hy.e L®(dx) is uniquely determined by the
equation

hre() =2 LHY) = (N = 1) [ K(x, p) hp(x) dp(x)]. (4.22)

Evidently, He L*(dx) implies that there exists he L®(dx) such that Th=H, ie.
T : L®(dx)— L*(dx) has a bounded inverse. []

Corollary. If We L*(d"x), then the inverse map V(0) possesses a Fréchet derivative.

Proof. Conditions (a)-(e) of Lemma 4.2 are sufficient, by the implicit function
theorem for Banach spaces, to insure that V(¢) has a Fréchet derivative. In
particular, if 9 € &, the Fréchet derivative of V(g) at g, is given by

0% 50 }* ' [5Q
20, V(eo) 5Q

o) oV
Remarks. (i) According to standard theory, the right side of Eq. (4.23) may be
constructed in terms of eigenfunctions of the operator 4 in Eq. (4.18). Clearly, A4 is
self-adjoint as a map from L*(du) to L*(dw). In applying the results of Fredholm
theory, it is important to restrict the kernel K to the set I' x I, where I =supp(g,),
as in the proof of Lemma 4.2e. Thus only the function A, should be expanded in
eigenfunctions of A. The function h;. is then uniquely determined by Eq. (4.22).

}. O (4.23)

2o, V(o) 20, V(o)
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ov . . D .
(if) The kernel 5—(@3 ; x, y) is of independent physical significance. As shown in
Q

[5], this kernel is precisely the Ornstein-Zernike direct correlation function. Thus
Lemma 4.2 constitutes a proof of the existence of the direct correlation function of
a non-uniform fluid.

5. The Inverse Problem for Several Species

In this section, we generalize the original inverse problem to include the case of
several species of particles. As before, we do nor assume that the interaction W has
any particular symmetry. Hence the distinction between different species is on the
basis of their response to the external field(s).

There are two distinct problems which may be regarded as the inverse problem
for several species of particles. The distinction between these two cases is perhaps
best understood in terms of an example.

Examples. Consider a system consisting of two nucleons. The single particle space
is taken to be the cartesian product A=X X {p,n} where X CR? and {p, n} is the
nucleon (iso-spin) state space. Then the external potential and the density are
functions of the variable x=(x,I)e4, ie. U I)=(U,x),U,x)) and o(x,I)
=(g,(x), 0,(x)). Hence one applies two different potentials and obtains two distinct
densities.

The results of Sect. 2 provide conditions under which the application of a given
pair of potentials (U, U,) produces preprescribed densities (¢,,0,). Notice, how-
ever, that as a consequence of condition (1.4), the individual densities include
contributions from several terms. For example, ¢,(x) is an average of the proton
densities in three states: the two proton state, the proton-neutron state and the
neutron-proton state.

On the other hand, suppose we know that there is exactly one nucleon of each
type in the system. Physically, this is not the same as the situation above, because
here the proton and neutron are regarded as different species. We may again ask
whether it is possible to apply potentials U (x) and U (x) to obtain a given pair of
densities. However, in this case, the densities g,(x) and ¢,(x) will only receive a
contribution from a state in which one nucleon of each type is always present.

The solution to the inverse problem for the first example is provided by Sect. 2.
The new problem, which we shall now investigate, is the inverse problem for the
case of several species, in the sense of the second example above. Specifically,
assume that we have a system of N particles interacting via a potential W. Suppose
that we are able to apply 4 <N distinct external potentials, U, ..., U, such that
each particle couples linearly to one and only one of the A potentials. This

effectively partitions the system into A distinct sectors, each consisting of an
A

integral number n, <N of particles (with Y na=N), characterized by the
a=1

property that the n, particles in the a™ sector are acted upon by the potential U,

and are unaffected by U, for b=a. In light of the obvious physical interpretation,

we shall refer to particles in the same sector as members of the same species. We

note, however, that this division specifically pertains to the action of the particles

in response to an external potential and need not reflect any additional symmetry
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in the system. In particular, W need not have any symmetry, so that particles of the
“same species” may be distinguishable.

IfU=(U,:4-R]a=1,..., A) is a collection of external potentials of the form
described above, the partition function of the system is

—w- 3 ¥ U

a=1 ag;=1

Zy=fexp d¥x. (5.1)

Provided that 0 <Z; < o0, we may construct individual particle densities

[ Na

A
0, Usx,)=Zg1 j"exp[—W— > Y Ulx,)

a=1a;=1

dx,...d%, ...dxy, (52

so that the density of the a'® species is

2 (Usx)= ) ¢, (U;x). (5.3)
a;=1
Alternatively, assume that we are given a family of functions
(0,: A=»R"|a=1,..., A) such that g, L(dx) with [g,ll, =n, The natural exten-
sion of the inverse problem is to determine whether there exists a family U=(U,)
such that g (U)=g, for every a.

Obviously, this form of the inverse conjecture may be applied to systems of
particles which are subject to physically distinct forces (e.g., strong and weak).
However, as the following example demonstrates, this form is also useful for
systems which are not normally regarded as consisting of several species.

Example. Consider a magnet of N <oo Ising spins interacting via a potential
W(s,,...,ay), s;€ A={—1,1}. In accord with conditions (1.4) and (1.5), we assume
[W(a,,...,ay)| <00 for all g,,...,ay.

Let us first describe how the results of Sect. 2 apply to this system. The density
0(9), s==1, is simply the average number of spins in the plus or minus state.
Expressed in terms of the magnetization M,

o(0)=(1/2) [(M/g)s+ N1, (5.4)

where g is the gyromagnetic ratio of the spins. Theorems 2.2-2.4 indicate that it is
possible to find a uniform external magnetic field # which produces any given
magnetization satisfying |M/g| < N.

Now suppose that the system is partitioned into A < N distinct regions, with n,
spins in the a™ region. We may regard each region as a separate species. The
density of each species is ¢ (s) =(1/2) [(M /g,) s +n,], where g, is the gyromagnetic
ratio, assumed to be constant throughout the region. The results of this section, as
applied to Ising systems, show that one may obtain any given value |M /g, | <n, of
the magnetization in each region by proper choice of the magnetic field for that
region. In particular, by applying a magnetic field which differs from spin to spin, it
is possible to produce any preprescribed set of single site magnetizations satisfying
IM/g;| = 1.

The scheme of the proof is analogous to the single species case. First construct
the finite induced measures

du,(x)="[e,(x)/n,]dx, (5.5)
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and

A ng
du= 11 11 du(x,)- (5.6)
a=1a,=1
Again, it is convenient to divide out the ideal gas behavior by considering a family
of potentials V=(V,: A—»R|a=1, ..., A) defined by e~ V«=(g,/n)e” " By analogy
to Egs. (2.7)(2.9), we express the densities, gy ,(x), and the partition function,
Z(V), as functions of V. The relevant functional for the multispecies case is

F.V)=[Z(V)] texp|— Z S vodu,|, (5.7)
which is defined on the set of families
={V=(V,Ja=1,...,A)VaV,e L (dp,), Z(V)<w0}. (5.8)

Our assumptions are analogs of those for the single species case; in particular,
we take W, e L*(d"u) and assume 77, +0. As remarked previously, the condition
¥, %0 may be replaced by e~ "'e L*(d" ). We also note that the assumptions imply
that the measure di=e~" d"p is equivalent to d¥u and that Ve, = Z(V)>0.

Theorem 5.1 is the multispecies version of the results of Sect. 2. We shall omit
those details of the proof which strictly parallel the single species case.

Theorem 5.1. Suppose W, € L(d" ) and ¥, + 0. Then there exists V=(V,)e ¥, such
that gy (x)=0,(x) for each a=1, ..., A. Moreover, each V, is unique up to a constant
a.e. [du,].

Proof. By Jensen’s inequality, §, is bounded in ¥", [cf. Proposition 2.1(a)], and
hence we may construct a maximizing sequence (V,€¥ ), where V, denotes the
family of 4 potentials (V¥|a=1, ..., A). Exploiting the translation invariance of &,
[cf. Proposition 2.1(b)], we take Z(V,)=1 for all k. This insures that we may
extract a weak limit in L?*(d2) from the sequence (F,) defined by

A Nq
Fo=[1 II exp[—V/(x,)/2]. (5.9)
a=1a;=1
By Theorem A.3 and obvious symmetry considerations, the weak limit is seen to
be of the form

= U I] Vi(x,)/2]. (5.10)

We now show that V=(V,Ja=1,...,N)e?,. Clearly Z(V)<1, and hence it
suffices to establish that each V,e L'(dy,). We first prove that [V,]_e L*(dy,) for all
a, where [V, ]_ denotes the negative part of V. Consider the case Z(V)=0. Since
Z(V)=|Fll3z> we must have F=0 a.e. [dA]. However, if F=0 we may without
loss of generality take [V,], = o0 and [V,]_ =0 a.e. [du,] for all q, so that clearly
[V,]_eL'dp,). Now assume Z(V)>0. Then F#0 a.c. [dA]. Hence, for each q,
there exists a set S, C A with u(S,)>0 and a constant C, < co such that [V,], <C,

ae. [dn] on S, Now let V,=V.,—C,, and let T,={xeA|[V,]_(x)>0}. Then
A
p(T)=Zu(S,)>0. Note that Z(V)=1 = Z(V)< exp[ Y Ca} <oo, where

a=1
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V =(I~/a]a= 1,..., A). Following the derivation of Eq. (2.20), we find
A
BN )} e LN,
a=1a=1

and

(ﬂ ﬁxra<xa,>)(z "Zamuxai)), (5.11)

a=1a,=1 a=1a,=1

[ Z "iV(xa,)

a=1 a;=1

where y, is the characteristic function of the set T,. Then, since j Xr, i,
=u,(T, )>0 it is clear that [V] eL'du,) = [V]_eL’ (d,ua) for all a.

Truncating the functions V, and proceeding in a manner entirely analogous to
the proof of inequality (2.28), we obtain

A A
lim exp(— Y nafVa"d,ua> §exp(— Y najVad,ua). (5.12)
k— o a=1 a=1

This inequality simultaneously completes the proof that, for all aq,
Ve L'du,) = Ve, and establishes that V indeed maximizes & ,.

A standard variational argument along the lines of Theorem 2.3 demonstrates
that gy ,=g, for all a. Finally, a simple application of Jensen’s inequality (cf.
Theorem 2.4), shows that each V, is unique up to a constant a.e. [du,]. []

Remark. 1t is obvious that natural extensions of Sects. 3 and 4 hold for this case;
the inverse map is sequentially continuous in the sense of Sect. 3 and, if WeL®,

there exist (

9

6. Systems with Massive or Charged Coupling

The systems that we have already considered are those in which either all particles
couple to the external field in exactly the same manner (Sects. 2-4) or those in
which distinct particles couple independently to different external fields (Sect. 5).
In problems of physical interest, it is often the case that different particles couple to
the same external field in fashions characteristic of the particular particles. A
prototype of this behavior is a system of charged particles in an electric field.
Alternatively, consider (different) massive particles under the influence of a
gravitational field. Specifically, we shall examine an N particle system with
interaction W(x,,...,xy) such that the potential energy of the particles in the
presence of an external potential, U(x), is of the form

N
WX, ..o xy)+ Y. qUx,) (6.1)
i=1
with ¢,€RR, the “charges” (or “masses” if ¢,=m,>0 for all i).
For this system, the partition function Z(U) and the individual particle
densities ¢,(U;x) are given by the analogs of Egs. (1.2) and (1.1) with the total
potential W+ ) U replaced by the potential (6.1).
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As in previous sections, we may construct the particle density o(U;x)
N

= Y 0{U;x). However, for systems with charged coupling, the particle density
i=1

may not be the natural function to consider, in the sense that it does not uniquely

characterize the system. For example, consider a charge symmetric Hamiltonian

describing a neutral system under the influence of an electric potential U(x). It is

clear that the particle density remains unchanged if we replace U(x) by — U(x).
Alternatively, let us examine the “charge” density

N
Cylx)= :ZI q:0/(U 3 x). (6.2)

[For the above example, we see that Cy(x) changes sign under U— —U.] The
principal result of this section is that, under suitable hypotheses, a given function
C(x) : A—1R satisfying

N
fCydx= 3 g;. (6.3)
A i=1

is the charge density of the system at some external potential U. In other words, for
a large class of L!(dx) functions, C(x), there exists a unique external potential U(x)
such that C(x)=Cp(x).

It is an open problem — which we have not solved with our methods — whether a
given particle density o(x) can be produced by some U(x) with the charge coupling
(6.1). It is not even clear under which conditions this U, if it exists, is unique (the

previous example of a neutral system shows that uniqueness does not always
hold).

Remark. It is important to distinguish the problems posed in this section and in
the previous one. In Sect. 5, the particles couple to different potentials, while here
the particles all couple to the same external potential. It is only the coefficients of
the coupling (which are given a-priori), that differ from one particle to the next. In
Sect. 5, the ability to adjust the different potentials was used to obtain distinct
particle densities. Here, we may only adjust a single field in an attempt to
reproduce the overall charge density.

Remark. In the previous sections, the ideal gas (/W =0) behavior was isolated by
considering a variational problem for the potential ¥ defined by e Y= (g/N)e".
Unfortunately, systems with massive or charged coupling are not tractable in
terms of a substitution of the form e~ Y=|C|e”", and hence we attempt to find a
maximizing U directly. The difference between the variational problems for U and
V manifests itself in two ways. First, we find that we must require slightly stronger
integrability conditions for the given density. The second point concerns specifi-
cation of the support of the given density, which is treated separately for the
massive and charged cases. These two points are discussed below.

(i) For the variational problem in terms of V, it was found (cf. Theorem 2.2)
that the maximizing V always satisfies Ve L*(¢ dx). Thus for those cases in which
the corresponding U= —log(g/N)+V also happens to satisfy UeL'(¢dx), it
follows that [ g|logo| < co. Since, in systems with massive or charged coupling, we
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shall attempt to find a maximizing U directly, we shall impose analogs of the
condition | glloge| < 0.

(i) In addition to dividing out the ideal gas behavior, the decomposition
e~ U=pe ™" served to introduce “walls” into the system which cut off the density if
the given ¢ was not supported on all of A. For massive particles (ie., g;=m; >0 for
all i), the given density C(x) may still be cut off by setting e U=y e~ Y, where y . is
the characteristic function of the set A'={xe A|C(x)>0}. We may then do a
variational problem in terms of the potential U on the space {A',dx> with the
constraint that C>0. Once we have found the maximizing potential U : A'—R, the
solution to the original problem is given by

Ulx) xed

o0 xeA\A"” 6.4)

Ux)= {

For the general case of a charged plasma, there is no simple analog of the above
decomposition. In particular, the presence of negative charges would make a
substitution of the form (6.4) meaningless.

It is important to note that charge densities may vanish for either of two
reasons. It may be the case that no particles are physically present in a given
region, or it may be that particles are present, but the region is (pointwise) charge
neutral. Thus our inability to cut off the density via a decomposition of the form
described above is not a serious difficulty for the solution of the inverse problem,
since Cy(x) may be made to vanish by arranging charge cancellation. However, if
one wishes to produce a charge density in which particles are physically confined to
some region of space A'C A [= C(x)=0 on A\A'], then one must have e~ " =0 on
AM AN, This reflects the fact that, while massive particles may be confined to any
region of space by the action of a pure gravitational field, no pure electric field can
confine a plasma.

In subsequent analysis, we shall restrict attention to A'CA and impose
conditions which insure that e™” >0 a.e. on AN, Then, if the given charge density
C(x) vanishes on some subset of A’, we shall produce a U such that Cy(x) is the
canonical density of a system with charge cancellation in that region.

Within this framework, the relevant functional for both the massive and
charged cases is

N
F(U)=exp(— [ C(x) Ux)dx)/[exp| =W — 3 q;U(x;)|d"x. (6.5)
i=1
Here the integrals in both the numerator and the denominator are over A'.
Since A’ is the relevant space for the proof of all theorems in this section, we
shall take the underlying single particle space to be {A’,dx) (thus in the massive
case C>0 a.e.). For notational convenience, we henceforth omit the prime.
Let g,,...,qy be the charges of the system. Without loss of generality, we may
assume that all charges are nonzero (i.e., integrate out all charge neutral
coordinates and redefine W accordingly). Let ‘

A={ilg;>0}, B={ilq,<0} (6.6)

be the indices of the positive and negative charges, respectively. Define
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Q.=)¢>0 and Q_=-}) ¢,20. 6.7)
acA beB
By convention, we take Q, =Q_. Let C,(x) and C_(x) denote the positive and
negative parts of C(x), respectively, e.g. C, (x) =max(C(x),0). We shall assume that
the given charge density satisfies

Q_>{C_dx unless Q_=0. (6.8)

Clearly, this implies that Q, = | C, dx with equality only in the massive case. The
physical reason for such an assumption is obvious; no electric field can cause
(particle) densities of positive and negative charges to have disjoint supports. Thus
condition (6.8) is necessary.

Due to charge cancellation, the positive and negative pieces of C(x) do not
represent the charge densities of particles of a particular sign; C_ (x) and C_(x) are
simply excess charge densities. Thus, it is useful to construct functions which
simulate the actual densities of positively and negatively charged particles. Such a
decomposition is given below.

Definition. Let Q, and Q_ denote the total positive and negative charges of the
system. Suppose C: A—R is an L'(dx) function satisfying [ Cdx=0, —Q_. Let
y:4—R be a strictly positive L'(dx) function with |y] 1an=1 and 4eR a
nonnegative constant. Then the functions o, f: 4A—=IR defined by

o(x)=C (x)+4y(x), (6.9a)
B(x)=C_(x)+4y(x), (6.9b)

with A chosen such that
foadx/Q,=[Bdx/Q_=2, (6.10)

are called the y-decomposition of the density C.

Remark. (i) We note that o and § mimic the properties of actual particle densities.
In particular, since Ce L!(dx), o, fe L(dx), and C(x)=a(x)— B(x). If 4>0, then «
and B have support a.e. on A. Moreover, the ratio of [« to | § is precisely the ratio
one expects for physical densities.

(i) For the massive case, this formalism is unnecessary. We simply take 4 =0
so that a(x)=C(x)>0 and B(x)=0. The ratio | #dx/Q _ =0/0 should be interpreted
as 1.

If we consider a charged system (and by this we mean Q,> [C, and
Q_> [ C_), we must have 4>0. It is easy to verify that if 0, >Q_, then the only
consistent choice is

Q,—fC,=0_~[C_=4, (6.11)

which implies that A=1. When Q, =Q_, 4 is not unique and we may take any
A>0. This flexibility will be crucial for the proof of the charge neutral case.

The conditions that we impose on the system are as follows. We assume that
there exists a y-decomposition of the density Ce L'(dx) such that

alogae LYdx), PlogPel(dx), (6.12)
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and

W, eL (ﬂ ax,) [] ,B(xb)de). (6.13)

acA beB

We also suppose that the corresponding set of potentials
U,={U: A->R|Ue L' (adx)nL*(B dx), Z(U)< o0} (6.14)
is nonvoid. As before, this last assumption may be replaced by

e Well (ﬂ alx,) [] ﬂ(xb)de). (6.15)
beB

acd
We also note that for every Ue#,, Z(U)>0 by Jensen’s inequality.

Remark. (1) For massive systems, it was mentioned that the only possible
y-decomposition is the trivial one: a(x)=C(x)>0 and f(x)=0. In this case, the
presence of b, B, and f in all subsequent expressions is superfluous; they should be
replaced by @, 0 or 1 as circumstances dictate. In particular, the requirements on
the massive system reduce to Ce L'(dx),

N
ClogCe L(dx), W+eL‘(]_[ C(x,.)de) and %.={U:A-R|UeL*Cdx),

i=1

Z(U)< o0} +0.
(i) For the charged case, if CeLldx), |C|log|CleL(dx) and
N

W, el ( 11 IC(x,.)Ide> < o0 a.e., then there always exists a y-decomposition of C
i=1
which satisfies (6.12)-(6.14). Hence the above are sufficient, but nor necessary,
conditions.

For Ue%,, the numerator of the functional F(U) in Eq. (6.5) may be written as
exp[ — | [o(x) = f(x)]U(x)dx].

It is convenient to define the unit measures

du,(x)=a(x)dx/2Q ., (6.16a)
duy(x)=B(x)dx/2Q _ (6.16Db)
and
dN,u}, = 1dux) 1] duy(x,). (6.17)
acA beB

Remark. 1t will become clear that the above measures perform some of the roles
played by du and d™u in previous sections. Except in the massive case, the system is
not equipped with a natural positive measure. Furthermore, with our methods, it
is not useful to employ Cdx as a signed measure. Instead, the (non-unique)
y-decomposition of C enables us to regard the indefinite sign of C as a
manifestation of the nature of the coupling. For example, the integral appearing in
the numerator of §.(U) may be rewritten as

JCx)Ux)dx =20, [ U(x)du,(x)—AQ_ [ U(x)du,(x)
=23 g J UX)du,x)+2 Y ;] Ux)dug(x)

icA ieB

N
=1 Y ¢, UG)dn,. (6.18)
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Remark. By construction, the measures du,(x) and du,(x) are equivalent to dx on .
Thus the conditions W, e L'(d",) and %, 0 imply that 0<e™ " <o a.e.on A",
and hence the measure

do=e "d"x (6.19)

is equivalent to dx on AN,
The scheme of the existence proof is similar to that of Sects. 2 and 5. We first
establish the boundedness of F,.

Proposition 6.1. If there exists a y-decomposition of CeL'(dx) such that
alogae L'(dx), plogfe L (dx), W, e L'(d ) and U,+0, and if either Q_ =0 or
Q_> jC,dx, then §(+) is (uniformly) bounded above in %,

Proof. If Ue %, then the numerator of §(U) may be expressed as in Eq. (6.18). We
may also express Z(U) in terms of the measure d” JT

N
Z(U)=2¥Q Q" fexp| = W= 3 qU(x)|d"w,, (6.20)
i=1
where
WXy, -0 X)) = Wiy, o xy)+ Y loga(x,)+ Y logf(x,), (6.21)
acA beB

and n, and n_ denote the total number of positive and negative charges,
respectively. It follows from the hypotheses that We LY(d¥ 1)
By Jensen’s inequality

Fo(U) <[exp(i | W )N Q" Q-1 [2(U)) (6.22)

IfQ,>Q_, then A=1If Q. =Q_, we may take A=1 (for the purposes of this
proof). In both cases, we see that the above bound is independent of U. [

Remark. As in previous sections, we shall find the maximizing potential via the
limit of sequences of functions of the form F,= H exp[—q;U,(x;)/2]. Even if we

could show that these converged weakly, and hence by Theorem A.3 that the weak
limit is a product function, there would be no reason to assume that this limit is a
product of the same factors raised to various powers. Indeed, it is easy to construct
counterexamples to such a conjecture in general. However, Theorem A.4 provides
conditions under which the limit function is of the desired form. In the next
theorem, we exploit specific properties of our maximizing sequence to demonstrate
that there is a subsequence satisfying the conditions of Theorem A.4.

Theorem 6.2. Under the assumptions of Proposition 6.1, there exists a maximizing
sequence (U,€%,) such that the sequence of functions (F,) defined by

N
= [ exp[—q,U,(x)/2] (6.23)
i=1
has a subsequence which converges strongly in L*(do)

F,—F. (6.24)
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Furthermore, the limit function is of the form

N
F= []exp[—qU(x,;)/2]. (6.25)
i=1
Proof. By Proposition 6.1, §(-) is bounded above in %, and thus there exists a
maximizing sequence (U,e%,) so that

R=lim §(U,)= sup F(U)< 0. (6.26)
n—oo Ueu.,

Since %,+0, R>0 and without loss of generality, we may take
AU,)>R/2 (6.27)

for all n. If 0, >Q_, then by adding constants, the U, may be chosen so that
Z(U,)=1. This obviously cannot be accomplished in the charge neutral case since
here Z(U) is invariant if U is shifted a constant. However, by Eq. (6.22), we see that
for all 2>0 and all Ue%,

FU)=ADZUT T, (6.28)

where /(4) is independent of U. Thus, by Eq. (6.27), all U, in the maximizing
sequence satisfy

R2</(A)[Z(U)) . (6.29)

Then by choosing A>1 and A< 1 (as we may doif Q. =Q_), it is seen that Z(U,) is
uniformly bounded away from zero and infinity. Let us extract a subsequence of
(U,) [also denoted by (U,)] such that Z(U,) converges and define

Z,= lim Z(U,). (6.30)

In the nonneutral case Z,=1; however, in general, 0<Z, < 0.
Consider the sequence (F,) defined by

N
F,= [T exp[-q.Ux)/2]. (6.31)

Since Z(U,)=|F,||3 o the F, are norm bounded in L*(do), and hence we may
extract a further subsequence of (U,) [again denoted by (U,)] such that the
corresponding F, converge weakly in L*(do)

F,—F. (6.32)

By weak convergence, we have
Zo= 1im IF, 130 2 1 Fll3un - (633)
We now show that the F, actually converge strongly to F. Since weak

convergence has already been established, it suffices to show norm convergence,
i.e. that Zy=F|3,,. Let e>0. For n, sufficiently large,

n>n, = §U,)>R(1—¢), (6.34)



Inverse Problem in Classical Statistical Mechanics 87

and
Z(U)>Zy,1-¢). (6.35)
Clearly, the subsequence (F,|n>n,) converges weakly to F. Thus by Mazur’s

theorem [9], there exist coefficiently ¢ =20, with ¢’ =0 for k>n and Z =1,
k>no
such that the sequence (G,|n>n,) of convex combinations, defined by

n

G,= Z ¢"F,, (6.36)
k>ng
converges strongly in L*(do)
G,—F. 6.37)

Hence lim G, |3, = F(34,. Combining this with Eq. (6.33), we obtain
Zy= hm 1F 03002 NFHW,,)— 11m 1Gl13 e - (6.38)
Note that |G, |13, is given by

1Gl1300 = Z e [ FiFdo. (6.39)
J,k>ngo
Let n>n,. For this n, choose j, and k, such that (i) ¢|” +0 and ¢{” +0, and (ii) for all
m and / with ¢™ 40 and ¢ %0,

(F,Fdo=(F,F,do. (6.40)

Hence j, and k, are chosen to correspond to the minimum integral (with nonzero
coefficient) in the sum on the right-hand side of (6.39). Now let us define the
function Y, : AN>R by

=F;Fy, (6.41)
and the function y, : A—IR by
va=2U;,+U,). (6.42)
By construction
1G5 0 Z 1 Yl 300y = Z(,)- (6.43)

Clearly Z(y,)<c. Moreover, U, U, eL'(du)NL'(duy), and hence

J

yneLl(d,ua)ﬂLl(duﬁ). Therefore y,e%,; in particular, Z(y,)>0 by the remark
following (6.15). We have

R= sup F(U)ZF,)
=exp[— %f C(an + Uk")dx]/Z(y,,)

=(FAU;,)Z(U; ) (F U, ) Z(U NP Z(y,)
>RZ(1—¢)*/Z(y,). (6.44)
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The final inequality follows from the bounds in Egs. (6.34) and (6.35). Combining
(6.43) and (6.44), we obtain, for n>n,,

IG,I g(da) ZZ(y,)>Zy(1-¢)*. (6.45)
Taking the limit as n—co and comparing this with Eq. (6.38), we see that
Zo = ”F“ 2(da) > Zo(1 - 8)2 (646)

for all ¢>0. This establishes strong convergence of the sequence (F,).

Next we shall show that the limit function F is of the desired form. Since the
subsequence (F,) converges strongly, there is a further subsequence which
converges pointwise a.e. on A". Then, by Theorem A.4, it suffices to show that
there is some set TC A of positive measure such that F>0 a.e. on T". In fact, we
shall show that F>0 a.e. on the full space A".

Suppose F=0 on some set SCA with ¢(S)>0. By equivalence of the measures
d"u, and do, it follows that . (S)>0. Let §°=A\S.

Let us write the numerator of F-(U) in the form

N
exp[ Ay g § U (x)d w,
=1 §e

I(U)=exp /LZqJU du,

(6.47)
=I4(U) I(U).
Since F,—0 strongly in L*(do) on S and since w,(8)>0, it is clear that
I4(U,)—0. (6.48)
By Eq. (6.27), for all n
0<R/2<I(U,)/Z(U,). (6.49)

Since Z(U,) is uniformly bounded above, it follows that [(U,) is uniformly
bounded below. Hence it must be the case that

I4(U,)— 0. (6.50)
But, by Jensen’s inequality

[Ls(U SN < ELZ(U )T, (6.51)

where £< oo is independent of U,, and where Z(U,) has been obtained by
integrating over the larger set SUS“= A", This implies Z(U,)— o0, a contradiction.
Hence F>0 a.e. on 4. [

Remark. 1t should be pointed out that the equivalence of the measures d" , and
d¥x is only necessary to show that F>0 a.e. on A". In fact, if we relax the
condition that the function y be supported on all of A, and merely require that
>0 on some set I'CA of positive [dx] measure, then we find that d”,uy is
supported on I'™. This guarantees that F >0 a.e. on I'V, which is all that is needed
to apply Theorem A.4 and hence prove Theorem 6.2. Thus, one may obtain
slightly more flexibility in the choice of the y-decomposition of C. However, this
does not provide any real generalization of the result.

Theorem 6.3. Under the hypotheses of Proposition 6.1, there exists U which
maximizes () in U,
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Proof. Let U : A—1IR be the function defined by the strong limit in Eq. (6.25). We
shall show that Ue%, and that §F(U)= sup &(Y). This follows from reasoning

which is almost identical to that used in the proofs of Theorems 2.2 and 5.1.

First, we use that fact that 0<Z(U)<oo to show that U_eL'(du,) and
U +eLl(d,uﬂ). This is established by a derivation along the lines of Eq. (5.11), in
which one again may have to use regulating constants to guarantee that the
relevant sets are of nonzero measure. 5

Next, we truncate from above each of the functions ¢;U and the function W,
defined in Eq. (6.21). Following the derivation of Eq. (2.28), we obtain a numerator
inequality of the form

N
RZy=limexp|— | 3. qU,(x)d"w,| Sexp
n— o0 i=1

N
- f; q;U(x)d"w,|.  (6.52)
Since RZ,>0, and since U_eL(du,) and U +eLl(al,u[,), the above inequality
establishes that Ue L'(du,)NL'(du,). Thus UeZ,.

Moreover, since lim Z(U)=Z,, Eq. (6.52) implies that

n— 00

BelU)= lim Fe(U,)= sup (V). (6.53

and hence that U maximizes §(-) in %, [
Remark. Let % be a set of potentials defined by
={U:A-R|Ue L' (|Cldx), Z(U)< o0} . (6.54)

Since a(x) = C . (x) and f(x)= C_(x), it is clear that for every y-decomposition of C,
U,CUc, and hence sup FA(U)= sup F(U). In fact, this inequality is saturated for
Ue, Uel c

any y-decomposition. This is seen to follow, for example, from the fact that a
maximizing sequence for () in either class may be taken in L*. In particular,
this shows that Theorem 6.3 established the existence of a maximum of F(-) in
Uy

Next we demonstrate uniqueness of the potential. In contrast to Sect. 2, we
shall use the Schwarz, rather than the Jensen inequality.

Proposition 6.4. If there exists Ue %, which maximizes (), then up to a constant

U is unique a.e. [dx].

Proof. Suppose there exists U, U,e%, such that F(U,)=F(U,)= sup F(U).
Uelc

Then (1/2)(U,+U,)e., since clearly (1/2)(U,+U,)eL'(Cldx), and

ZI(1/2(U,+U)1= )/ Z(U,) |/ Z(U,) by Schwarz’s inequality. Then

sup SU)2F[(1/2) (U +U,)]
=exp(— 3| CU dx)exp(— 3| CU,dx)/Z[(1/2) (U, + U,)]
2 [exp(— | CU,dx)/Z(U )] [exp(— [ CU,dx)/Z(U ,)]'"?
= sup F(U). (6.55)

Uel c
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Evidently Schwarz’s inequality is saturated. Thus

N

N
]_[ exp[ —q,U,(x;)]=(const) H exp[—q;U,(x)]a.e.[do]. (6.56)

i=1
By the equivalence of the measures do and dVx,
U,(x)=U,(x)+const a.e. [dx]. [ (6.57)

Theorem 6.5. Under the hypotheses of Proposition 6.1, up to a constant there is a
unique U such that C,=C.

Proof. By the standard variational arguments (cf. Theorem 2.3), any Ue %, which
maximizes & satisfies C;=C a.e. By Theorem 6.3 and the subsequent remark,
such a U exists and, by Proposition 6.4, it is unique up to a constant. This
demonstrates that () has a unique global maximum.

In order to show that &.(-) has no other extrema, and hence that there are no
other Ue %, satisfying C,;=C, it suffices to demonstrate that §.(-) is strictly log
concave. We first observe that the numerator, exp(— [ CUdx), is log linear. Next
let U,, U,e%. and Ae(0,1). Then by Holder’s inequality

log Z[AU, +(1— ) U,]1 £ 21og Z(U ) +(1 — 2) log Z(U ). (6.58)

The inequality is strict unless U, = U, 4 const, demonstrating that Z is strictly log
convex and thus that §(-) is strictly log concave. []

Remark. An exact analog of Theorem 2.4a applies here, so that no measurable
function U in the complement of %, satisfies C; =C.

7. Summary of Results for the Canonical Ensemble

In Sects. 2 through 6, we have treated various aspects of the inverse problem for
the canonical ensemble. In Sect. 8, we shall examine the analogous problems for
the grand canonical ensemble. Here we provide a summary of the results of Sects. 2
through 6, so that the corresponding theorems for the two ensembles may be easily
contrasted.

All results quoted in this section refer to systems of N < oo classical particles,
with coordinates in some (o-finite) measure space {A,dx), which interact via a

potential W(x,, ..., xy).
N

In Sect. 2, it was shown that if W, and e”" arein L! [ 11 Q(xi)dxi], then, up to a
i=1

constant, there is precisely one V:A—R in the class of all [gdx]-measurable
functions such that g(x)=g,(x) (Theorems 2.3 and 2.4). This V satisfies Ve L*(gdx)
and, up to a constant, is the unique V which maximizes the functional
F(V)=exp(— [Vodx)/Z(V) (Theorem 2.2). The function U= —log(¢/N)+ V is the
external potential which produces the density g, i.e. o(x)=0(U; x).

The continuity of the inverse map U(g) was investigated in Sect. 3. There it was

shown (corollary to Theorem 3.3) that the inverse map is sequentially continuous,
N N

in the sense that if (g,) is a sequence of densities satisfying [ ¢,— | [ ¢ strongly in
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N N
LYe "d"x) and weakly in L!(d"x), and [W, []o,d"x—[W, []ed"x, then the
correspondmg sequence (U,) of external potentials, defined by g,=0(U,), satisfies

l_[exp( U, Hexp( U) strongly L'(e”"d"x), where U is the potential such
that o= Q(U).

In Sect. 4, it was shown (corollary to Lemma 4.2) that for a bounded
interaction, We L®(d"x), the inverse map V(g) possesses a Fréchet derivative, This
derivative, at the density g, is given by

M o_pe [ ”
0240, v(00) LW@O.V(Q(» 00 g0, vien (-1
where
N—-1
Q. V)=e"V[(e™")ym [1 (e/N)e™"d"'x. (72)

The inverse problem for several species of particles was treated in Sect. 5.
A

Given AN particle species with n, particles of each type ( Yon -——N), and an

a=1
Ha

H [T eux,)dx,

a=1a,=1

(Theorem 5.1) that, up to constants, there exists a unique family of functions
V=(V;: A>R|a=1,..., A) such that, for every a, ¢ ,(x)=0gy ,(x). Moreover, each
satisfies V,€ L'(g,dx) and modulo constants, V=(V,) is the unique family Wthh

maximizes the functional &,(V)= exp( Y jVQadx) / Z(V). The external potentials

interaction W such that W, and e~ " are in L*

, it was shown

=(U,) such that g (x) =gy ,(x) are given by U, = —log(e,/n,)+V,.

The inverse problem for charge densities in systems with charged coupling was
investigated in Sect. 6. These systems are characterized by an interaction
Wi(x,,...,xy) and a fixed set of charges q,,...,qy. A necessary condition for the
solution of the inverse problem in the systems under consideration is the absence
of total charge separation. Hence we require Q _ > [C_(x)dx unless Q _ =0, where
Q_ is the magnitude of the sum of the negative charges and C_(x) is the negative
part of the given charge density C(x).

N

Given a Ce L*(dx) with [ C(x)dx=)_ g, which satisfies the above condition, it is
shown that, under two additional (rather technical) assumptions, the inverse
problem possesses a unique solution. Here, for simplicity, we state conditions that
are somewhat stronger than those required in Sect. 6. For example, if

N
J1C(x)l10g|C(x)|dx < oo and W, e L! ( [T1CG) dxi) then, up to a constant, there is
i=1

a unique U in the class of all [dx]-measurable functions such that C(x)=Cy(x)
(Theorem 6.5). Furthermore, this U satisfies Ue L'(|C|dx) and is, modulo a
constant, the wunique U which maximizes the functional §F(U)
=exp(— [ Codx)/Z(U) (Theorems 6.3 and 6.4).
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8. The Inverse Problem for the Grand Canonical Ensemble

(i) Statement of the Problem. For a given system, it is often the case that states
with different numbers (and types) of particles are physically accessible. Such
systems are described within the framework of the grand canonical distribution.
Here we formulate the inverse problem for these systems.

The coordinates of a single particle again are taken to lie in some (o-finite)
measure space {A,dx). For each particle number, N=1,2,..., an interaction
Wy : AN >R is specified. The generalization to several particle species is straight-
forward and is postponed until a later subsection.

We make no specific assumptions about the symmetry of the W,. Moreover,
for N'# N, Wy and W, need not be related in any way ; each W may be specified

independently. (In particular, we do not assume, as is often done, that the

interactions are exclusively two-body, for which it 1is required that
N

Wy = Z W, (x;, xj)'>
i<j

If an external potential U:A—R is applied to the system, the N-particle
(canonical) partition functions Z , are given by Eq. (1.2) with W replaced by W,
The grand canonical partition function of the system is

SR zZ 8.1)

SUT L NN :
Remarks. (1) The coefficient of Zy, ,, often includes a factor of e"*, where u is the
chemical potential. For notational convenience, we absorb this factor into the
definition of W,

(2) The first term in the series, Z, ,=Z,, is the zero-particle partition
function, which is of course a constant. Here we shall assume that our systems
admit the zero-particle state (= Z,>0), in which case it is traditional to take
Z,=1. We make this assumption for clarity of exposition in our subsequent
proofs. However, if one wishes to consider systems which do not admit the zero-
particle state, this assumption may easily be relaxed provided that the desired
expected particle number is strictly greater than one and that for some N >n, W,
satisfies condition (1.4).

The (canonical) density for the N-particle state is g(U;Xx) Z oy, {U;x),

where gy (U;x) is given by Egs. (1.1) and (1.2), with W replaced by Wy. The
particle density in the grand canonical ensemble is defined by

oU;x)= ) &y uenU;x), (8.2)
N=1
where
éN,U:EEI(ZN,U/N ) (8.3)

is the probability of the N-particle state. The expected number of particles in the
system is

fo(U;x)dx= i EvuN=n. (8.4)
N=1

In (8.1)~(8.4), we have tacitly assumed that all expressions are well defined.
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Given an L! function g(x), the inverse problem for the grand canonical
ensemble is to determine whether there exists a unique external potential, U(x),
such that o(x)=0(U;x) with o(U;x) given by (8.3). This problem is treated in
subsection (ii). In later subsections, we examine the grand canonical analogs of the
problems treated in Sects. 3-6.

The conditions under which the inverse problem for the canonical ensemble
possesses a solution are summarized in Sect. 7. For the single species case, the
stability condition which we imposed was finiteness of the partition function at

N
V=0, ie. Z0)=fe " ][[o<oo.

We encounter a new feature in the grand canonical ensemble. In general, an
infinite number of terms contribute to the partition function Z,. Thus, merely
requiring that each N-particle state exists does not guarantee overall stability of
the system. Indeed, as illustrated by the following example, there are sequences of
perfectly well-behaved potentials W, which characterize catastrophically unstable
systems in the grand canonical distribution.

Example. Suppose exp(— Wy)=N !/N>. (Note that W, is constant and hence such
a problem is trivial in the context of the canonical ensemble!) It is easy to see that
any admissible potential U(x) satisfies e~ Ve L'(dx). However, note that if
fle™ Yl y@aw > 1, then the expected number of particles is infinite, while if
le”Yllju=1, the ecxpected number of particles is bounded by
Max = C(2)/[1 +{(3)]~0.747. Here { is the Riemann zeta function. Thus, under the
action of any external potential, it is impossible to have an average of as much as a
single particle in this system.

In order to exclude the type of pathology illustrated above, it is clear that we
must impose some condition which guarantees that our system is stable at
expected particle number n. This condition is most easily formulated in terms of
the “potential” V, defined by

U= —loglo/n)+7V, (8.5)

where U is the true external potential. Let us denote by Z,(V), Z(V), and ¢,(x) the
N-particle canonical partition function, grand canonical partition function and
grand canonical density for the external potential (8.5).

The stability condition which we shall impose is

Z(c)< oo forevery celR. (8.6)

Here, Z(c) is shorthand notation for Z(V) with ¥V =const=c.

Condition (8.6) is in some sense the analog of stability condition (1.5) for the
canonical ensemble, since the latter is equivalent to Z(c) < oo for every ceIR. Here,
of course, Z(0)< oo is a much weaker condition than (8.6) and admits counterex-
amples of the type given above.

It is worth noting that condition (8.6) is directly implied by the statement that
Zy(0) <M for some constant FelR. The latter (and stronger) condition is of course
satisfied by any system which has a thermodynamic limit.

The second condition which we impose to prove existence of the inverse map is
in fact significantly weaker than the analogous condition for the canonical
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ensemble. We assume that there exists a single N>n such that Wy satisfies
condition (1.4). We emphasize that this condition does not exclude systems for
which, if N>N, (i) Wy =0 on sets of positive measure (hard core stability), or
(i) Wy=0 (truncatlon of the partition function Z). We note, however, that
sufficient conditions for the true hard core case (i.e., when Wy, is hard core for every
N =2) remains an open question.

(ii) Existence and Uniqueness. In this subsection, we establish that the (single
species) inverse problem possesses a unique solution.

Given a non-negative function ¢ : 41 —IR with f o(x)dx=n< o0, we introduce
the unit measure

dp=T[e(x)/n]dx 8.7)

on A, and, for each N, the product measure d"u on A
We again use a variational technique. The relevant functional for the grand
canonical ensemble is

G(V)=[E(V)] ' exp(—n[Vdu). (8.8)

Formally, at least, it is easy to see that the variational derivative 0®/6V vanishes if
there is a V such that o(x) =g,(x).
We shall consider the class of functions 77 defined by

Vy={V: A-R|VeL'{dy), E(V)<w}. (8.9)

This is precisely the class of functions for which ® is well-defined.

We shall show that ® possesses a unique maximum under the following two
conditions:

(a) V+0. X

(b) There exists an N >n such that (W), e L'(d ).

Remarks. (1) As mentioned previously, we are using the convention Z,=1. If one
wishes to extend the definition of the grand canonical distribution to systems
which do not admit the zero particle state, the results of this section are correct
provided that n>1 and that the system satisfies the additional condition:

(c) There exists an N’ <n such that (W), € L'(d" p).

(2) Although we shall show that (a) and (b) insure that ® possesses a unique
maximum, the example of the previous subsection indicates that these conditions
are not sufficient to prove the existence of an inverse map V{(g), ie., if ® has a
maximum in 77, it is not necessarily true that g,, =¢. However, if condition (a) is
replaced by the stronger condition:

(A) For every ceR, ce 77,
then it will be shown that an inverse map does indeed exist. Condition (A) is
of course equivalent to (8.6).

(3) For future reference, we note that (b) implies that, for every Ve77,
EV)y>Z,=1.

(4) As before, we shall find that the interacting measures

diy=e"""d"p (8.10)
play a central role.
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We note that condition (b) guarantees that at least one of the measures diy is
equivalent to the underlying product measure d" .

We also observe that condition (a) implies that, for all N, dA, is absolutely
continuous with respect to the corresponding product measure d"u. Were this not
the case, then for some N, we would have exp(— W)=o0o0 on a set of nonzero
[a¥u] measure. However, this would mean that for every Ve L(du), we would
have Z,(V)=o0; hence ¥ =0.

The natural measure space to consider for the grand canonical ensemble is the

direct sum @ AN, duy/N 1>. The relevant space of functions is then the genera-
N=0
lized Fock space
L2(dA)=/7| €D LA(AN, diy/N )|, (8.11)
N=0

where L7(A° d,)=R. We note that this differs from the usual notion of a Fock
space (even for p=2) in that the measures d4, are not cartesian products of dA,.
The only case in which IL?(d2) coincides with the standard Fock space is the ideal
gas.

A function f in ILPdl) is a sequence of functions
f=(fye L (AY,dAy)IN=0,1,2,...) such that

w (1/p)
M M pany = [Ifol" + % lIlelﬁ(,uN)} <. (8.12)
N=1 4V

Of particular interest for the inverse problem is the product sector of ILP(d4), i.e.
functions f such that, for all N, f, is a product function. In this subsection, we are
especially concerned with products in which all factors are identical. For such
functions, we introduce the notation

n(g)= (1,g(x), s lz_[ g(x,), ) (8.13)

Then, the IL'(d4) norm of the function n(e” ") is simply Z(V).
We begin the proof of existence by showing that ® is bounded in 775,

Proposition 8.1. Under conditions (a) and (b), ® is (uniformly) bounded above in
Vs
Proof. Let Ve Then
G(V) Sexp(—nf Vdu)/[L+Zy(V)/(N ]
<max {1,(N D) exp [(Ws) [l 4w} (8.14)
by Jensen’s inequality. [

Remark. Recall that the functional § for the canonical ensemble satisfied
F(V+c)=FV) for any constant ceR. The functional & does not have this
property, which is of course a reflection of the fact that the zero of the potential is
of physical significance in the grand canonical ensemble.

For Ve 7, so that in particular Ve L'(dpu), let us express V in the form

V(x)=H(x)—logy, (8.15)
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with [Hdp=0. This decomposition, ™" =ye ™, may be regarded as a division of

the function e~” into a potential term, e” ¥, and an applied fugacity, y, which
controls the particle number.

In this framework, condition (A) is equivalent to the statement that at H =0 the
system is stable for all applied fugacities.

Proposition 8.2. Suppose conditions (a) and (b) are satisfied. Then any maximizing
sequence, (V,€7%), for & has the property that the corresponding fugacities, (y,)
defined by (8.15), are uniformly bounded away from zero and infinity.

Proof. Let R denote
R= sup 6(V)>0, (8.16)

Vel
and let (V) be a maximizing sequence for ® in 77, Since V,e L'(du), we have
0<y,=exp(—[V;du)< oo for every k. To show that the bound is uniform, we note
that eventually ®(V,) = R/2, so that the corresponding y, satisfy

R2S GV Sy 1 +)7 Z5(H)/(N )]
<min{y}, yi NN Dexp | (W), |y @v} (8.17)

by Jensen’s inequality. Since N>n>0, it is clear that the inequality in (8.17) is
violated if the y, get too large or too small. [

Proposition 8.3. Suppose conditions (a) and (b) are satisfied. Then, for each
maximizing sequence (V€ V) for ®, there is a subsequence, again denoted by (V}),
such that lim 5(V,)=&, with 0<Z, < c0.

k= w

Moreover, there is a measurable function V: A—IR such that
n(e” "2 = n(eV'?) weakly in LA(d2). (8.18)

Proof. Let (V;) be a maximizing sequence in ¥ for ®. By Proposition 8.2, the
corresponding fugacities (y,) are uniformly bounded away from zero and infinity.
Since B(V,)=y/E(V,) SR, it follows immediately that Z(}}) is uniformly bounded
above and below. Hence there is a subsequence, which we shall again denote by
(V). such that 5(¥,) converges to a finite nonzero constant, =,

Next, consider the sequence of functions m(e™"*'?). Since [ll(e ™" 2)|I34;, = Z(V,)
the sequence is norm-bounded and thus, by the Banach-Alaoglu theorem, it has a
weak limit in IL2(d4). It is, in fact, nontrivial to establish that the weak limit is a
product function. However, as proved in Theorem A.6, it is sufficient that one of
the measures, here dig, be equivalent to the underlying product measure d™u, and
that all the other measures be absolutely continuous with respect to their
corresponding product measures. As remarked earlier, these conditions are
satisfied and thus the weak limit is of the asserted form. [

Theorem 8.4. Under conditions (a) and (b), there exists a Ve ¥, which maximizes ®.

Proof. Let (V,) be a maximizing sequence for ® with an associated weak limit, V] as
given by Eq. (8.18).
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Let us verify that Ve . By the weak IL*(d1) convergence of n(e™ V*/2), we have
Zo= lim Z(%)= lim line™" )3,
_ . (8.19)
2|r(e V/2)”|§(M) =E(V).

Thus Z(V)< co.

The remainder of this proof is essentially the same as the corresponding
arguments for the canonical ensemble (cf. Theorem 2.2).

Since Zgz(V)< oo and (W), € L'(d"p), reasoning along the lines of Egs. (2.19)
and (2.20) establishes that V_e L(du).

Next, a derivation identical to that of Egs. (2.21)~(2.28) with W replaced by W
proves that

RE,= ;}Ln; exp(—n | Vidu) Sexp(—n[ Vdu). (8.20)

This inequality shows that V, € L'(du) and hence Ve 7,
Moreover, combining (8.19) and (8.20), we have

GV = lem &(V)= sup G(V). O (8.21)

Vet

Corollary. If (V,.€ V) is any maximizing sequence for ®, then there is a subsequence
such that the functions (e~ "*?) converge strongly in IL*(dA).

Proof. Weak convergence of a subsequence was established in Proposition 8.3.
Thus it suffices to prove convergence of the norm, i.e. lim E(V,)=Z(V). If this
k=
convergence failed, we should have lim Z(V,)> Z(V), which implies that R < &(V),
k— o
a contradiction. []

Theorem 8.5. Under conditions (a) and (b), the V which maximizes ® is unique a.e.
[du] in V.

Proof. Suppose there exists V;, V,€ 77 such that ®(V,)=6(V,)= sup G(V). Then,

Vets
using Cauchy-Schwarz in a manner entirely analogous to the proof of Proposition

6.4, we conclude that the inequality

S/ (V, + V1< VEV,) VEWD,) (8.22)
must be saturated. This implies that
n(e”VY2)=(const) (e "¥?)a.e.[d1]. (8.23)

However, for products of identical factors, the only consistent choice for the scale
factor is 1. Thus (8.23), and equivalence of diy and d"p, imply that V,(x)=V,(x)
a.e. [du]. O

Corollary. If (V,) is any maximizing sequence for & in ¥, then
n(e” V%) > n(e”"1?) strongly in IL3(d}), (8.24)

where V is the maximizing potential.
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Proof. This follows immediately from the strong convergence of any subsequence
and uniqueness. []

Remark. We have seen that conditions (a) and (b) are sufficient to prove the
existence of a unique maximizer for the functional ®. However, these conditions
alone are not enough to prove that ® has a functional derivative in 77, and hence
that the maximizing V satisfies 9 =g,

In fact, without any additional assumptions, we can show that ® has a “one-
sided” functional derivative in ¥, which directly implies the variational inequality
0y =<0. Thus if (N, = [g,(x)dx is the expected number of particles in the state
with external potential U= —log(e/n)+ V, conditions (a) and (b) only imply that
(N>, =n. This is precisely the difficulty encountered in the example in subsection
(i), for which the system (at any external potential) could not support n>0.747
particles.

In the following lemma and proposition, it is shown that, at the maximizing
potential, systems which satisfy condition (A) always have the correct number of
particles.

Lemma 8.6. Suppose condition (A) is satisfied. Let VeV and ¢>0, and define
V,=V+e*V_, (8.25)

where V_ is the negative part of V. Then

(1) For every oeR, (V,+oe)e V.

2) 6(V)z6((V)[1+0(?)].

(3) e[XNDy = <NDy, I=0(e).
Proof. (1) First we note that if V,(x) = V,(x), then Z(V,) < Z(V,). Also observe that,
by Holder’s inequality, Z(V) is log convex, i.e.

BV, +(1 =)V SE(V,V E(V) (8.26)

for any V|, V,, and A€[0,1].

Let Ve¥, >0, and oeR. Define V, as in (8.25). Clearly (V, + oe)e L'(dy), and
hence it suffices to show that Z(V, +g¢) < co. Noting that V, (1 —&?) ¥, and using
log convexity, we have

E(V,+0e) SE(1—e)V +0e) SE(V)! “5(%) , (8.27)

which is finite by condition (A).
(2) Let us express V, in the form V,=(1—¢*)V +¢&*V,, where V, is the positive
part of V. Then, using the log convexity of Z, we have

G(V)zexp[— [oV—e*[ oV J/EV) " E(V,)" =6(V)[1+0(*)]. (8.28)
(3) For any V, {(N), may be written in the form

/ LZ‘;O Zy(V)/N x} . (8.29)

By monotone convergence, the numerator and denominator of (N, (separately)
converge to the numerator and denominator of (N, as &—0. Thus

3[<N>V - <N>V5] =o(e). O

<N>V=

i NZ(V)/N!
N=1
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Proposition 8.7. Suppose condition (A) is satisfied. Then for every VeV, either
(1) <Ny =n, or_ _
(2) there exists Ve v such that ®(V)>G(V).

Proof. Let Ve ¥ If {N), #+n, define

1L if (NYy>n
%‘{4 it (N, <n (8.30)
Then by part (1) of Lemma 8.6, (V,+o,¢8)e ¥ We have
G, +0,8)=6(V)[1+0,6(NY, —n)]+0(E?)
(8.31)

= GV)[1L+e[<NDy —nl]+ole),

where the second step follows from parts (2) and (3) of Lemma 8.6. However, (8.31)
implies that if (N), #n, then for ¢ sufficiently small, &(V, +o,¢)>6(V). O

Theorem 8.8. Suppose conditions (A) and (b) are satisfied. Then there exists a Ve ¥
such that o(x)=g,(x).

Proof. First recall (cf. remark following Theorem 2.3) that it is sufficient to
demonstrate the existence of a Ve such that g(x)=g,(x) a.e. [dx].

Now by Theorem 8.4, there exists a Ve ¥ which maximizes V. For this V,
calculate g, and define T'={xeA|g,(x)>¢(x)}. Since y;, the characteristic func-
tion of the set T, is a nonnegative L® function, it is clear that (V +e¢y,)e ¥ for all
£=0. Thus

0= limsupe™ '[G(V +ex)— O(V)]=6) [ lo, — ol dx, (8.32)
>0 T
which implies that ¢,(x) =< o(x) a.e. [dx].
However, since V is the maximizing potential, Proposition 8.7 implies that
[oy(x)dx=n= [ o(x)dx. Thus g,(x)=0(x) ac. [dx]. [

Theorem 8.9. Under conditions (A) and (b), there exists a unique V: A—IR in the
class of all [dul-measurable functions such that o(x)=g,(x).

Proof. First, we show that there is a unique Ve 7 such that o(x)=g,(x). By
Theorem 8.8, the V' which maximizes ® satisfies ¢ =g,,, and, by Theorem 8.5, the
maximizing V is unique a.e. [du]. In order to prove that there are no other Ve 7
such that g=p,, we must show that ® has no other extrema. This follows
immediately from the fact that ® is strictly log concave in V.

Next, we prove that any measurable function ¥ which satisfies ¢ =g, must be
in ¥ If 9=9,, then evidently

Z,<E(V)<ow. (8.33)

The upper bound immediately implies that Zg(V)<oo. We claim that the lower
bound implies that Z(¥)>0. In fact, suppose Zy(V)=0. Then, since di; and d"u
N

are equivalent, it follows that Z V(x;)=co ae. [dﬁu]. However, this implies
i=1

V(x)= o0 a.e. [du], from which w;: conclude that Z,(V)=0 for every N>0. Thus
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E(V)=Z,, a contradiction. Hence we have
0<Zz(V)<oo. (8.34)

Using an argument along the lines of the proof of Theorem 2.4(a), Zz(V)<
implies V_e L*(du). Similarly, noting that the hypothesis ¥4+ @ means that there
exists a V; with Ve L'(du) and Z4(V,)>0, the lower bound Z;(V)>0 implies that
V, e L' (du).

Thus Ve7y as asserted. [

(iii) Continuity of the Inverse Map. In Sect. 3, we proved that the inverse map for
the canonical ensemble is sequentially continuous. Here we prove an analogous
result for the grand canonical ensemble.

Given a system characterized by some family of interactions W :AV—IR,
N=1,2,..., we shall say that a nonnegative function g€ L!(dx) is an admissible
density if conditions (A) and (b) of subsection (ii) are satisfied.

By condition (A), if ¢ is admissible then n[(g/n)e” “]elL}(do) for every ceR,
where the generalized Fock space IL!(do) is defined as in Eq.(8.11) with the
measures d4, replaced by the measures

doy=e""~d%x. (8.35)

Condition (b) says that there must exist some N>n such that

W), ﬁ (Q/n)dlQ x < oo. Let us consider the space of all admissible densities which
satisfy (b) for a fixed (common) value N:

9 ={0:A->R"|ge L(dx), VceR =[(o/n)e” JeLi(do),
[IUZN ﬁ(@/n)dﬁx< 0, N> [odx=n}. (8.36)

Reference to N will be suppressed in our notation.
Our definition of convergence in & is analogous to that of Sect. 3. In particular,
we say that a sequence (g, € &) converges to g€ Z if

n(/n,) — n(o/n) weakly in IL'(do) (8.37)

and
INI(Q,{/nk)H INI(Q/n) strongly in L'(doy), (8.38)

and
0, —~¢ weaklyin L'(dx) (8.39)

and
{07 TT@yn)d™x— [ (W), [ (e/n)d x (8.40)

and, for every ceR,

1irkn suplnl(ey/m)e” Mo < o0 (8.41)
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We shall denote this type of convergence by ¢, —¢ in 2. We note that g, —~¢ in
2 implies that g is admissible.

Remarks. (1) The above convergence is in fact weaker than the naive generaliza-
tion of the convergence required for the canonical ensemble. In this case, the space
IL'(do) replaces L'(do), and hence the generalization of the convergence in (3.5)
would be that n(g,/n,)—n(e/n) strongly in IL'(do). Here, however, we only require
weak convergence in IL'(do), provided that the N term in =n(g,/n,) converges
strongly in L'(da ). Likewise, we only require [Eq. (8.40)] that the N' term satisfy
the analog of condition (3.7).

Thus the grand canonical inverse function is stabilized by the properties of a
single potential, Wj.

(2) As discussed previously, the condition F(c) < oo for all ce R guarantees that
the system, at potential V=0, is stable for all applied fugacities. Equation (8.41)
simply requires uniformity in this condition. The analog of (8.41) is trivially
satisfied for the canonical ensemble.

N

We note that if there exists a Be R such that | [ [ (¢,/n,)doy < e®" for all k, then
condition (8.41) is satisfied.

By the results of subsection (ii), for any g€ 2, there exists a unique inverse
function U= —log(g/n) + V satisfying n(e” Y)eIL*(do). Let us consider this space of
potentials with the strong IL'(do) topology.

It will be shown that the inverse map is sequentially continuous in the sense
that if ¢, —0 in 2, then n[exp(— U,)]—>n[exp(— U)] strongly in LL'(do).

Notation. For a convergent sequence of densities ¢,—¢ in &, we shall denote by n,
Zy, 5, ®, and 7 the quantities defined in subsections (i) and (ii) for the limit
function ¢. The maximizing potential and corresponding external potential for g
will be denoted by V and U.
The analogous quantities for each term in the sequence shall be indexed by k.
We will also use the notation

R = sup 6(S), (8.42)

Sets
and denote by R, =R(g,) the corresponding quantity for g,.

Remark. Proposition 8.1 implies that R(g) is finite for every ge 2.

As in Sect. 3, the first step in the proof of continuity is to show that R(g) is
sequentially lower semicontinuous. This is established in the following two
lemmas.

Lemma 8.10. Suppose 9,—¢ in &. Then for every function S with S_e L*(du), and
S(x)=0 whenever o(x)=0,
F.(5)—E(S). (8.43)
Remark. Functions SeL*(dy) with S(x)=0 whenever ¢(x)=0 also satisfy
Se L*(dw,) for every k, with (S| ;a0 =181 g = 1181l oo gy
All statements in the following proof will refer to the subset, K, of A, which is
the union of the supports of all densities in the sequence. Then, since for every N
N

and k the measure ]—[(Qk/nk)da,v is absolutely continuous with respect to
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N
[T(ey/n)d"x [see remark in subsection (ii)], it follows that doy is absolutely

continuous with respect to d¥x on K"
N

Thus, for the functions S under consideration, [ [e™%e L*(day) on K.
Note that functions of the form m(e~5) are typically not in IL"(do) despite the
N

fact that, for each N, [[e™ %€ L*(doy). Thus this lemma does not follow directly
from the assumption 7(g,/n,) — n(¢/n) in IL'(do).

Proof. First observe that n(o,/n,) — n(o/n) weakly in IL'(do) implies that, for each
N,

ﬁ (0u/m) — ﬂ(g/n weakly in  L'(doy). (8.44)

N
Then, since any § satisfying the hypotheses also satisfies [ [e %€ L*(doy) on K",
we have

zZN($)—ZN(S) (8.45)
for every N.
Let c=|S_| . By (8.41)
21\1” eNeZN0)=A< 0. (8.46)
It follows immediately that, for every N,
1 N, eNC N, —Nc
ﬁZ 9= mZk 0)ysAe™ M. (8.47)

Thus by dominated /' convergence,

Z% AN Z% ZNS). O (8.48)

Lemma 8.11. Suppose ¢,—9 in &. Then
liminfR, ZR. (8.49)

k—
Proof. It is clear that a maximizing sequence for ® may be taken among functions
Se L*(du) with S(x)=0 whenever ¢(x)=0. Then, using the results of Lemma 8.10
and Eq. (8.39), the proof of this lemma is identical to that of Lemma 3.1. [

Proposition 8.12. Suppose 9,—¢ in D. Then if (V,) is the corresponding sequence of
maximizing potentials, Z,(V;) is (uniformly) bounded above.

Proof. The proof of this proposition is similar to that of Propositions 8.2 and 8.3.
Lemma 8.11 shows that, eventually, ®,(V;)= 3 ®(V)>0. By reasoning anal-
ogous to the proof of Proposition 8.2, we have

0<1G(V)=min {yp, yi (N exp(— | (Wz)s d'i)}, (8.50)
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where y, =exp( de,uk)< co. Conditions (8.39) and (8.40) imply that n,—n and
§ (W), d¥u,—~ [ (W), d¥u. Thus it follows from (8.50) that the y, are uniformly
bounded above. Thls of course implies a uniform upper bound on E,(V})
=3 /OdV. O

Theorem 8.13. The inverse map is sequentially continuous in the sense that if ¢,—¢
in 2, and if (U,) is the corresponding sequence of external potentials defined by
0, =0(U,), then

nlexp(—U)]—=nlexp(—U)] stronglyin IL'(do), (8.51)
where U is the potential such that ¢ =g(U).

Proof. The proof of this statement parallels the proofs of Proposition 3.2 and
Theorem 3.3.

Let (V,) be the sequence of maximizing potentials for the densities (g,). Since
5E(V) is uniformly bounded, a subsequence of the functions
nl(ey/m)"* exp(—V;/2)] converges weakly in IL*(do). Theorem A.6 shows that the
weak limit is of the form z[exp(— U/2)]. A ) i

As in Eq. (3.15), we define the function V: A—R by e"Y=(g/n)e” " whenever
0>0, and V=0 when 9=0.

Clearly n[(g,/n)"* exp(— V,/2) = nlexp(— U/2)] weakly in IL*(do) implies that
N

[1(e/n)"? exp(— V,/2)—~ Hexp( U/2) weakly in L*dog). Using this and
condition (8 38), we easily derive the analog of the corollary to Proposition 3.2:

]_[(Qk/nk exp(—V/2) — H(Q/n exp(—V/2) weaklyin L'(dog). (8.52)

Next, the fact that 5,(1}) is uniformly bounded implies the analog of Eq. (3.19):

0>8,= lim 5 V)ZE(1), (8.53)

which shows that V_e LY(du).
Finally, repeating the analysis of Eqgs. (3.20)—(3.34) with W replaced by W
yields the inequality

exp(— [ Vodx)= lir;lsgp exp(— [ Vg, dx), (8.54)

which shows that Ve 7, & and that G(V)= lirkn sup®, (V). Then, by Lemma 8.11, v

maximizes ®.

An argument along the lines of Eqgs. (3.37)-(3.41) establishes convergence of the
original sequence 7[(g,/n)"* exp(—V,/2)]—nl(e/n)'"* exp(— V/2)] strongly in
IL*(do). Thus we have V=V and

nl(oy/m)exp(—V)1-nlle/mexp(— V)] stronglyin IL'(do). [ (8.55)

(iv) Differentiability of the Inverse Map. In this subsection, we establish con-
ditions under which the grand canonical inverse map possesses a Fréchet
derivative. Recall that in order to prove the analogous result for the canonical
ensemble, we required that W be bounded above and below (i.e., We L®). Here we
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impose much weaker conditions on the family of interactions (W,). In particular,
we require that each W, be bounded below according to

Wy(x,, ., xy) 2 — BN, (8.56)

but we only require that a single Wy, N >0, be bounded above.

Equation (8.56) is essentially a strong version of condition (A). It is, in fact, the
stability condition that is often imposed to exclude systems with catastrophic
behavior (see, for example, Ruelle [10]).

The second condition is satisfied by most physical systems, because one
typically has W, =0. For convenience in the subsequent proofs we shall take
W, =0, but we emphasize that this is easily replaced by the condition
(Wy), € L*(d"x) for some N>0.

It is also assumed, without future reference, that there is some N =1 such that
e~ "~ £0. Otherwise, the problem is trivial.

It is worth pointing out that there are systems which satisfy all the above
conditions, which do not satisfy condition (b) of subsection (ii) (and therefore to
which our previously established results may not be applied). Notable among such
systems are those with hard core interactions. Our proof of differentiability will, in
fact, also establish local existence of an inverse map for any system with W, =0 and
Wy = —BN.

Remark. As in Sect. 4, we find it convenient to replace each e~ "~ by (e~ "¥), . the
symmetric part of e~ ", This can of course be done without loss of generality since
e”"~ is summed over permutations in all relevant expressions, and since
Wy= —BN implies that —log(e™""),,,, = —BN. Henceforth, the subscript sym
will be suppressed.

We shall also use the convention U= —logg+V, rather than
U= —log(o/n)+V, to simplify our notation. Then the measure which appears in

the partition function is

which, although no longer a probability measure, is still finite.
With these conventions, the definition of g, is

) N N
op=[EN]" ) ﬁye‘WNng‘VdN‘lx. (8.58)
N=11V:

Our method of proof is very similar to that used in Sect. 4.
We first show that the inverse image, should it exist, is in L*(du).

Proposition 8.14. Suppose W, =0 and Wy = —BN for each N. Then, if V satisfies
0=0y. Ve L™(dp).
Proof. If V satisfies 9 =g, then on {x|o(x)>0}
© N N—-1
eTI=[ZM7 Y 1
2N
Z[EWM] 1, (8.59)
since W, =0. This implies that V(x) is bounded below and, in particular, that
e Ve L®(dy).
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Then, since W, = — BN,
& N
TV <R -1

so that V(x) is also bounded above on {x|o(x)>0}. [

1€ le ™ (8.60)

Remark. Since the value of V is undetermined whenever ¢ =0, we again define V so
that
* N

eTI=[2] ! Y

th W 1_[ o™V dN " x (8.61)
N=1

is satisfied pointwise on A. Note that the V so defined is in L*(dx).
Lemma 8.15. Suppose W, =0 and W,z —BN for each N. Then the map
P: LY(dx) x L*(dx)— L*(dx), defined by

Plo.V)=e =M Y N

ile™ n eV dV " x (8.62)
N=1

satisfies :
(a) (Q, V) is (norm) continuous in ¢ and V.

(b)

5V exists and is (norm) continuous in ¢ and V.

5P
(c) E exists and is (norm) continuous in ¢ and V.
o,V

5P| !
ol

exists for any pair (04, Vy) satisfying 0, =0y,
20, Vo

Proof. This proof parallels that of Lemma 4.2. Again, it is straightforward to verify

o
(a)—(c). In order to prove (d), we evaluate op at (g,, Vp):

oV

0
- %; (h; y)=h(y)— [ h(x) du(x) + | C(x, y) h(x) du(x). (8.63)
20, Vo

In (8.63), du(x)=g(x)dx and

Clx, y)=exp(—Vy(x)) exp(— V() [EN] ™!

. Z N(%Qj e v [_1 Qo(xi) exp(— Vo(xi))dN_zx' (8.64)

The assumption W, = — BN implies C(x, y)e L*(dx dy).
By reasoning entirely analogous to the proof of Lemma 4.2, it suffices to show

oP
that the equation — W (h;y)=0, for he L*(du), possesses only the trivial
0, Vo
solution. To this end, suppose that the above equation is satisfied for some
he L*(du). Then

0= [ h2(y) dp(y) =[] h(y) du(y)]? + [ Clx, ) h(x) h(y) dp(x) dp(y),  (8.65)
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which may be rewritten in the form

0=C201 " 3 [ Te " I eobvpexpl— Vit

N=1 N'
N 1 2
(Z h(xj)——jhd,u) aVx. (8.66)
=1 N
Recalling that W, =0, (8.66) implies
fdxo,(x)exp(—Vy(x)) [h(x)— [ hdu]*=0, (8.67)
and thus / is a constant. However, for a constant h, Eq. (8.65) becomes
h*((N?)—{N>§)=0, (8.68)

where { >, denotes the expectation value in the state with external potential
U,= —logg,+V,. Hence h=0.
The remainder of the proof is identical to that of Lemma 4.2. []

Corollary. Suppose W, =0 and W, = —BN for each N. Then if there exists a V,
satisfying 0o =0y, :
(1) The inverse map V(o) exists and is continuous in some neighborhood of .
(2) The inverse map V(o) possesses a Fréchet derivative at g,

Proof. This follows immediately from (a)~(d) and the implicit function
theorem. [J

Remarks. (1) If the W, satisfy the above conditions, and if, in addition, condition
(b) of subsection (ii) is satisfied (i.e., if there is some N>n such that

N ~
(Willed x< oo), then we already know by the results of subsections (ii) and (iii)
that the inverse map exists and is continuous. In this case, the content of the
corollary is that the map possesses a Fréchet derivative.

(2) As remarked previously, systems with hard core interactions fail to satisfy
condition (b), but do satisfy the above conditions. In this case, the lemma amounts
to a proof of local existence of an inverse map (and, moreover, to a proof that it is
continuous and differentiable). This means that if we can find a pair (g, V)
satisfying 9, =gy, then the inverse map exists for densities sufficiently close to g,.
Of course, it is always easy to find such pairs (g,, V;), since one can simply compute

the density o(U ; x) for some external potential U, and then define ¥V by e V=ge~".

(v) The Inverse Problem for Several Species. In this subsection, we will extend the
results of 8(ii)-8(iv) to systems with several species of particles. It will be shown
that, within the formalism of the grand canonical ensemble, the multispecies
inverse problem is in fact equivalent to that for a single species.

Let wus first define the problem for K species. We denote by
Ay, dx ), ..., {Ag, dx;) the single particle measure spaces of the K individual
species. For the purposes of this section, we shall regard the K measure spaces as
distinct (i.e., disjoint) even if they are identifiable as the same space.

Let N be a sequence of K nonnegative integers, N=(N, ..., N). Consider the
measure space <AV d%x», where AN denotes the cartesian product,
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Ny Nk
= X 4;-.. X1 Agand dNx=d"x, ...d"*x, is the associated product measure.
A £

A system of K species is specified by a sequence of measurable functions
(Wy : AN>R), one for each N=(N,, ..., Ny).

As in Sect. 5, an external potential is really a collection of K external potentials,
U=(U;:4;,—»R|I=1,...,,K). The grand canonical partition function in the pres-
ence of the external potential U is given by

c oy L
Ey= %(N)! Z\(U), (8.69)
where
K N1
ZNU)= jN exp(— W) U H exp(—U,(x; )d"x, (8.70)

and (N)! =N, .. N,

The densities ¢ (U;x) for the K particle species are given by the usual
expressions.

In this context, the inverse problem is the following. Given a family of K
nonnegative L' functions (¢,:A4,»R"|I=1,...,K), does there exist a family of
external potentials U such that ¢, =¢,(U) a.e. [dx,] for every I?

We shall show that the above problem is indeed equivalent to a single species
inverse problem. Let A denote the direct sum of the K single particle spaces:

K
A= D 4,. (8.71)
I=1

(We again emphasize the K spaces are to be regarded as distinct.) For xe A, we
may define the K projections

1 xed;
= 7
0x) {0 otherwise’ ®72)

K
so that ) d,(x)=1. Then {A,dx) with dx= ), ,(x)dx, is of the form of a single
I I=1
particle measure space.
The families of potentials and densities, (U,) and (¢,), may be identified with the
single particle quantities

= Y 8,0 Ulx), (8.73)
I=1

and

o(x)= Z 5,(x) o (x). (8.74)

Finally, consider all sequences N=(N,, ..., N) with [N|= Z N,;=N. We may

construct a single N-particle interaction W, from all N- partlcle interactions Wy
with [N} =N according to

WN(xl,...,xN)z' |Z CNBN(xl,...,xN)WN(xll,...,xlNl,...,xKl,...,xKNK), (8.75)
NI=N
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where the Cy are combinatoric factors and

K Ny
On(xyssxy)= 1] [ 0,(x;)+ permutations. (8.76)
I=11I,=1
In terms of the above quantities, the multispecies grand canonical partition
function may be written exactly as in Eq. (8.1). Thus this problem is equivalent to
the single species case, and all results of subsections 8(ii)-8(iv) are applicable.

Remarks. (1) The inverse problem for several species can also be solved by
generalizing the theorems of subsection (ii) (as was done in Sect. 5 for the canonical
ensemble). It is not difficult to show that such a generalization can be proved
under condition (A) of subsection (ii) and a set of integral conditions on some of
the interactions Wy. As an example, it suffices that for each I=1, ..., K, there is an

N,;>n=) [o,dx, such that
1

Nr
[ [T, dVix, <0 for N=(0,...,0,N,0,...,0).

The above method is in fact more general than the mapping described here.
For this mapping, condition (b) of subsection (ii) amounts to integral conditions

(N +K—-1

n
K-1

(2) The equivalence established here may also be applied in the reverse sense.
One can simply express the space A as a union of disjoint subsets, thereby mapping
a single species problem into an equivalent multispecies problem. This may in fact
be useful for the analysis of some systems for which the methods of subsection (ii)
are inapplicable.

) > K of the interactions Wy

(vi) Systems with Charged Coupling. In this subsection, we investigate the grand

canonical inverse problem for a system of charged particles; our main result is

Theorem 8.17. The system is characterized by K>1 distinct nonzero charges

gy, ---»q,)- If we regard particles of the same charge as members of a given species,

the problem is readily formulated in the notation of subsection (v). For a given set

of charges, the system is specified by a sequence of interactions (W : AN R),
K

where N=(N,,...,Ny), IN]= Y N,N) and N/(N)=0,1,... is the number of
I=1

particles of charge g, in the N-particle state. The W, need not have any symmetry
properties.

The grand canonical partition function at fugacity y in the presence of an
external potential U is given by

E(U;y)= Y yNZJ(U)MN)!, (8.77)
N
with
K Ni(N)
ZW(U)= fexp(= W) T [T exp(—q,Ulx; )d x. (8.78)
I=11,=1

As before, we use the convention Z,=1.
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The density of the I, particle in the state N, as well as the overall density
0/U,y)(x) of particles of charge ¢,, may be computed in accord with expressions
given in Sects. 6 and 8(ii).

We shall investigate the inverse problem for the charge density C= Zq,g,,
rather than for the particle density 9= ) g, (see discussion in Sect. 6). I

I

For a single particle species the fugacity, as introduced in Eq. (8.15), is merely a
bookkeeping device for setting the zero of the potential. For charged systems the
fugacity takes on independent significance (shifting the potential by a constant
does not amount to a change in the fugacity). In physical systems, it is associated
with the “ambient pressure in some external medium surrounding A.”

The ability to adjust this external pressure implies some additional control
over the system. In particular, it is expected that one can achieve a specified
average number of particles which occupy the system in addition to producing a
given charge density.

Indeed, one can further generalize the above problem. Suppose it is possible to
adjust, independently, the different fugacities of the different charged species. (This
amounts to control over the various partial pressures at infinity.) Then, in
principle, it should be possible to specify the expected particle numbers of the
individual constituents which together produce a given charge density. This new
problem and its variants will be considered briefly at the end of the section.

The relevant functional for the former version of the inverse problem is

G, (U;y)=y"exp(— [ CU)/E(U;y), (8.79)

where n< o is the desired particle number and Ce L(dx), the charge density.

The assumptions under which we prove the existence of an inverse map are the
natural extensions of the conditions imposed in Sects. 6 and 8(ii). In the canonical
ensemble, we introduced the notion of a y-decomposition which permitted us to
define meaningful (positive) measures d” u,. It was then required that the positive
part of the interaction be summable with respect to some measure of the above
type. A similar decomposition will be defined for the grand canonical ensemble.
Here, however, we will only require that a few of the (W), be summable with
respect to the appropriate measures, so that most of the Wy may be badly behaved
(e.g., hard core).

For the existence theorem of subsection §(ii), it was required that there exist
some admissible potential (which by shifting was taken to be zero) such that the
corresponding partition function is finite at finite fugacity. Similar considerations
dictate that we impose such a condition here.

Definition. Let CeL'(dx) and let n>0 be a finite number. Without loss of
generality, we assume [C, > [C_.
Let n,,...,n, be a set of nonnegative constants which satisfy Y n,=n, ) nyq;

I I
={C,and )Y nlq/= [C_ withequality iff g,>0 for every I. In the latter (i.c.,
I:qr <0
massive) case, it is required that at least two of the n, be nonzero. Let y(x)>0 be an

L! function of unit norm.
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The functions a(x)=C . (x)+ 4y(x) and f(x)=C_(x)+ 4y(x), with 4 >0 chosen

so that fa= ) nyq, (and hence [f= ) n,lq,l), are referred to as the
I:qr>0 I:gr <0
y-decomposition of the charge density C at particle number n.

Remark. For the grand canonical ensemble, it is seen that we decompose the
desired particle number as well as the given charge density. Note that the existence
of numbers n, satisfying the above criteria is not a priori guaranteed. In fact, it is
not difficult to show that this is a necessary condition.

For the massive case (q,>0 for every I), this requirement prevents total
domination by a single species. Densities of this form cannot be realized, except in
some limiting sense.

For the charged case, the conditions on the n, preclude total charge separation,
which is also only achievable in a limiting sense unless every Wy forces charge
polarization. This latter situation may be regarded as a peculiar and rather
unphysical case of hard core interactions. Systems similar to this are briefly
discussed in Sect. 9.

We consider pairs (U, y) in the set

U,={(U:A->R,yeR")|Ue L' (dp,)nL (du,), (U ; y) < o0} (8.80)

As before, du, =adx/f o and du,=p dx/f B. We shall often denote either du, or du,
simply by du,; the intended measure should be clear from the context. We shall
also use the notation d"u, in analogy with Eq. (6.17).

Proposition 8.15. Suppose there exists a y-decomposition of (C,n) satisfying
alogae Li(dx), Blogfe L' (dx) and such that for each I with n;>0 in the
y-decomposition, there is an N;>n so that for N=(0,..., N, ...,0), (W), eLl(dN,uy).
Then ® (U;y) is uniformly bounded above in %,.

Remark. It will become clear from the proof of this proposition and the
subsequent theorem that there are many other choices of N such that summability
of (Wy). with respect to some y-decomposition provides the necessary stability.
The above is only an example, perhaps the simplest, of many possible sufficient
conditions.

Proof. For Ue,, we use the identity
K
y'exp(— [ CU)= [] [yexp(—q, [ Udp)]". (8.81)
I=1

Then

G Uy l:[ [yexp(—gq,] Uduy)]”'/{l + 1;1 D,[yexp(—q,f Uduy)]ﬁ’},(8-82)

where the coefficients D, have been obtained by using Jensen’s inequality for the
Wy, as in Eq. (6.21). Thus

Oc,,(Usy)= max{L,1/D;}. O (8.83)

Theorem 8.16. Under the hypotheses of Proposition 8.15 and the additional assump-
tion that U, %, there is a unique (U, y)e %, which maximizes ® , in U,.
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Proof. Let (U,,y,) be a maximizing sequence for ®. , in %, By an argument
similar to that in Propositions 8.2 and 8.3, both the numerator and denominator of
G, are eventually bounded above and below. In fact a stronger statement can be
made. For every I, y,,exp(—q,| U mdpt,) is bounded away from zero and infinity.

The functions z[y}/* exp(— Q- U,,/2)] may be regarded as elements of the space
IL*(do), which is the direct sum of the spaces L*(day), doy=e~ "~ d"x, defined as in
Eq. (8.11). Since by the above argument ”(Um,ym)—llln[y”2 exp( 0-U,./25 0
is bounded, some subsequence converges weakly in IL*(da). It is not difficult to
extend the reasoning of Theorem 6.2 to show that this subsequence converges
strongly in IL%(do).

We claim that the strong limit is a pair (U, y)e %,. First, let us show that the
fugacities y,, are bounded away from zero and infinity. Observe that the
hypotheses imply there are at least two (single charge species) states, which we
shall call L and M, such that the measures doy, and doy are equivalent o the

underlying  product measures. Furthermore, the functions n yiz

-exp(—q,U,(x;)/2) and H Y2 exp(—qp U u(x,)/2) have strong, and hence pomt-
i=1
wise, limits with respect to the measures doy and doy, g, #q,,. Let us denote
these limits by Fy (X, ..., X), Fp(xy,...,Xy)<o0 ae., and let d"g, denote the
L
measure (X) doy, on A*Y, and similarly for ¢”o,. Using an argument along the
p=1
lines of Theorem 6.5 and the fact that each term in the numerator of &, , is individu-
ally bounded above and below, it can be shown that F; and F,, are nonzero a.e.
Now

p=1i=1

L
H n yiZ2exp(— gy U (x0)/2)= [ FaX5, .. x5)
p=1
pointwise a.e. However, this limit also equals

Tim [(y,//2) 907 1] H Fr(xf, s xp).

=1
Thus, at least for a further subsequence, the limit of the y,, exists and is not zero or
infinite. Then, it is not difficult to see that the U, (x) converge pointwise to some
function U such that E(U; y)< co.

The inequality lim y2exp(—{CU,)<)"exp(—[CU) is easily established

by methods wused previously. This implies (U,y)e#, and O (U;y)
= sup O (U;y). Uniqueness® is established using Cauchy-Schwarz as in

ProposMon 64. [

Theorem 8.17. Under the hypotheses of Theorem 8.16 and the additional assump-
tion that there is a U,€%, (which, by shifting, can be set to zero) such that
E(Ugy;y)<o0 for all finite y, Cy ,\(x)=C(x) a.e. and {ND @,y =n

2 There is one exception to the uniqueness, and that is when Wy = oo for all nonneutral states. In this
case, we have uniqueness up to a constant. (Although such a system violates the hypotheses of
Theorem 8.16, it is not difficult to provide similar conditions under which the theorem holds for this
case.) Such systems do in fact occur in the semiclassical approximation to certain nonabelian quantum
field theories
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Proof. First we establish that the expected particle number in the maximizing state
is finite (and thus that the charge density is well-defined). We note that this is
independent of the additional hypothesis. For any pair (U,y) such that
(U ;y)<oo, E(U;y')is analytic for all y’ <y. Thus by lowering the fugacities of a
maximizing sequence (U,, y,,) by an amount tending to zero, we may with no loss
of generality assume that, for each m, Z(U,,, y) is analytic provided that |y, — y| is
sufficiently small. Now if the partition function is analytic about some fugacity y,,,
the particle number surely exists. Suppose (N>,  ~>n. Since yd/dy[®G(U;y)]
=06(U;y) [n—<{N)y,, ], itis clear that by lowering the fugacity further, we obtain
an improved maximizing sequence which satisfies (N>, . <n. Recalling the
strong convergence, Z(U,,y,)—>Z(U;y), it is seen, by Fatou, that the above
inequality persists in the limit (ie., (N) ) Sn).

Thus the positive and negative particle densities, 0. (U,y)= Y. ¢,(U,y) and
I:q1>0
0_(U,y), are separately well-defined. (These are not, of course, the positive and
negative parts of Cyy ,).)
Next consider the pair ((1—¢)U, y) with ¢>0. It is clear that (1—¢)U, y)e%,
since

E(1—e)U;y)SEU:y)' *E20;y) (8.84)

by Holder’s inequality. In fact, (8.84) also establishes that llmu((l—s)U )
E(U; y) since, by Fatou, hmu((l—s)U VZEU;y).

By similar reasoning, we will show that ¢, ((1—¢)U,y) = ¢.(U,y) weakly in
L*dx). First observe that

E(U; ) 20 yr
E(1—-e)Usy)

Weak convergence is established by integrating (8.85) over any set of positive
measure and using the Holder inequality.
It is now straightforward to show that C, , =C a.e. and that (N) ,=n. Let

[+ C 02 C)
h(x)‘{—1 Cou ()< C(x)’

and consider the trial function T, =(1 —¢&*) U +¢h. As before, T e U, Now O&(T;y)
=6((1-e*)U;y)-[1+&[[Cyi -y, — CIh+0(E*)].  However G((1—¢&*)U;y)
=®(U;y)+ 0(e?), so that

&(T,;»)=6(U;y) [1+ [ICy., — ClT+0fe), (8.87)

by the weak L' convergence demonstrated above. Since (U, y) is the maximizer, the
integrand in (8.87) is zero a.e. [dx]. In analogous fashion, it is easily shown that
NDw,y=n 1

Remarks. 1) In certain systems one can control the partial pressures of the different
species and thus it should be possible to produce a specified charge density and a
set of expected particle numbers (C,n, ..., ng). It should be reasonably clear that
this problem is solvable by the method of this section, with only minor

0 (1=e)U,y)(x)=

0:(U,»)! 7(x)0:(0,y)"(x).  (8.85)

(8.86)
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modifications. The relevant functional is

K
Uy, )= [] yirexp(— [ CUVEWU :y,, ..., y5)s (8.88)
I=1
where
EU;yp, )= 2 [T ZU)/MN)!. (8.89)
N I

Of course, any intermediate case in which only certain fugacities are adjustable is
also solvable.

2) Finally, for any of the above problems, we claim that among all the
potentials and fugacities for which one can define a charge density, only one pair
(U, y) gives the correct charge density and particle number(s). To see this, first note
that a proof along the lines of previous uniqueness theorems shows that for a fixed
fugacity y, there is at most one potential which produces a given charge density.
However, if Cy, ,=Cu,.y,» it can be shown that, for every I, <Ny, 4,
>N D W,y = Yi(¥1)>yy,). This implies the asserted uniqueness.

9. Hard Core Interactions

In this section, we briefly discuss systems with hard core interactions and show
that these systems are capable of exhibiting counterexamples to the fundamental
existence and uniqueness theorems of Sects. 2 and 8.

A set of necessary conditions for existence of an inverse map will be derived in
the context of the canonical ensemble. (The generalization of these conditions to
the grand canonical ensemble is straightforward and, in practice, may be easier to
verify.) Finally, for the grand canonical ensemble, we shall discuss the implications
of our partial results [derived in Sect. 8(iv)] on the set of densities for which an
inverse map exists.

Definition. Let <{A,dx) be a o-finite measure space. A measurable function
Wy:AN>RU{oo} is said to be a hard core interaction if the set
Hy={XeA"|W(X)=co} has a positive [d"x] measure. A sequence of interaction
potentials (Wy|N=1,2,...) is said to be hard core if for every N =2, W, is hard
core.

Example. The best known example is the case of hard spheres for which A CR? and

0 ; if for some i#j,|x;,— x| <2a
WN(xl,...,xN)={ / =

9.1
Ty(xy, ..., xy); otherwise 6D

Here a is the so-called hard core radius, and Ty(x,,...,x,) is the “tail” which
satisfies — o0 < Ty < oo ae. [d"x].

Remarks. 1) For the grand canonical ensemble, it was demonstrated that if, for a
single N> fg, Wy is not hard core, then under quite general assumptions an
inverse map exists. However, it is usually the case that if a system has hard core
interactions for some N, then for all N> N the Wy are also hard core. Typically
N= 2; hence the restriction “W,, hard core for all N =2” in the previous definition.
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On the other hand, most systems of physical interest satisfy Z,=1 and
e "1=1. Under these circumstances, the results of Sect. 8(ii) guarantee that the
inverse map exists whenever | ¢ <1. This, however, is only a small deviation from
the uninteresting case of a single isolated particle and we do not consider it a
meaningful result on hard core systems.

2) We also do not consider interactions for which AN\H, is a rectangle (i.e., of
the form a; xa, x ... xay, a;CA) to be realistic hard core potentials. For the
canonical ensemble, this is simply a generalization of the problem treated in
Sect. 5, and can be handled by the methods of this paper, with the following result :

N

Provided that [ (T), [Jed¥x< oo and Z(0)< oo, the necessary and sufficient
condition for the existence of an inverse map is that there exist non-negative

functions #,, ..., My, [, dx=1, ;| 4, =0 with ) 1,(x)=o(x).

13
The hard core part of interactions of the above form is not an “interacting”
hard core; it is simply a restriction on the sets on which the various particles are
permitted to live. Henceforth, when we discuss hard core interactions, it is the
example of hard spheres that should be kept in mind.

Counterexamples. Most types of counterexamples can be found in the simplest
nontrivial hard core system: a one-dimensional gas of (no more than) two
particles.

Let W(x, y) be a potential of the form (9.1) on the region A?=(0,2a+ b)* with
b<a.

1) Non-Uniqueness (Canonical ensemble). Let U(x) be any potential and let
o(U; x) be the corresponding density. It is easily seen that a pointwise identical
density is produced if the applied potential is U(x)+ oo y +B¥(24, 24+5 fOT any
constants «, fe R. An entire family of potentials all produce the same density! This
is a consequence of a phenomenon which we call trapping.

2) Non-Existence (Canonical ensemble). Let U(x) be any measurable function
which satisfies 0 < Z(U) < co. (In other words, U must be a function from which

b
it is possible to compute a density.) It is easy to verify that |o(U;x)dx
2a+b 0

= | o(U;x)dx=1. Evidently any function ¢ which does not satisfy the above
2a
integral constraints cannot be interpreted as the equilibrium density of this system

under the action of any external potential.

3) Non-Existence (Grand canonical ensemble). Here we set Z, =1 and e "' =1.
2a

Then for any potential U(x) satisfying 0<Z(U)<oo, we have [ o(U;x)<l1.
b

Densities not satisfying this conditional restriction cannot be achieved.

This example and the previous one illustrate a phenomenon which we call
caging.

We now derive necessary conditions for existence (and uniqueness) of an
inverse map. We shall supplement all definitions with examples from the hard
sphere gas. For notational simplicity, assume that all interactions are symmetric.
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Definitions. 1) Let xe A. Let E(x) be the set {ye A|exp[ — W(x, y, X3, ..., xy)]1=0 for
all (x,...,xy)e AN "2}, We call E(x) the environment of x.

Example. For hard spheres E(x)2 B3, (x), where B4 (x) is the intersection of A with
a ball of radius 2a, centered at x. If the gas is sufficiently dilute, B} (x) = E(x), but
under extreme packing E(x) contains a great deal more of A.

2) Let CCA be a measurable set. C is said to be a cage if CC ﬂ E(x).

xeC
Simply stated, if a given particle occupies a cage, then with probability one, all
other particles are excluded.

Example. For hard spheres, B/(x) is a cage for every xe A.
3) Aset TCA is said to be a trap if
(i) T is a cage, and
(i) exp[— Wl(x,,...,xy)] =0 unless, for some i, x;€T.

Example. The sets (0,b) and (2a,2a+b) in the counterexample to uniqueness are
traps.

Theorem 9.1. Let W(x,, ..., xy) be a hard core potential and let U(x) be any external
potential such that 0 < Z(U) < co. Let (U ; x) be the canonical density of the system.
Then:

(a) For every cage ACA,

JeU;x)£1 9.2)

with equality iff A is a trap.
(b) For every trap ACA, the potential U, (x)=U(x)+oy,(x), aeR satisfies
o(U,;x)=0(U;x) pointwise.

Proof. These are straightforward computations. []

Corollary. For any nonnegative g€ LY(dx) and for every cage ACA, (9.2) is a
necessary condition for the inverse problem to possess a solution.

In particular, for a gas of N> 1 hard spheres, any density ¢ for which an inverse
map exists must satisfy
| o=t 9.3)
Bg(x)
for every x, with equality iff B%(x) contains a trap. This is also necessary in the case
of the grand canonical ensemble (see Remark 2 below).

Remarks. 1) There are higher order generalizations of all the above notions (e.g. 2-
environments, 2-cages, etc.). These are nontrivial if the hard core part of the
interaction does not obey two-body decomposition.

2) The extension of the above ideas to the grand canonical ensemble is
straightforward. Simply define the relevant set for each N and take their
-intersection. For example, the environment of a point x is given by E(x)

= () Ey(x). By convention, the set C, ={xeAle”"*>0} is an environment of
N=1

every point in the single particle state.
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Generically, there are no traps in grand canonical systems. In addition, there
are no constraints which require that any admissible density must vanish on
certain measurable sets. (Compare counterexamples 2 and 3.) For these reasons,
we believe that the analysis of hard core interactions should be easier in the
context of the grand canonical ensemble.

In particular, under some additional hypotheses, it was shown in Sect. 8(iv)
that if ¢ is any admissible density, then ¢’ is also admissible provided that
lo—@'ll j(ux) 1s sifficiently small. This implies that the set of admissible densities is
open. (It may also be possible to show that this set is convex.) We therefore expect
that in quite general circumstances, sufficient conditions are of the form | ¢<C,,

Aq
where C e IR and the A, are some collection of sets determined exclusively by the
hard core part of the interactions.

The necessary conditions given in the corollary to Theorem 9.1 are precisely of
the above form. In this context, it is instructive to examine the formal solutions by
Percus [6,7] and Robledo and Varea [8] of the one-dimensional two-body

problem. Their expressions for the inverse function are well-defined if and only if,
x+2a

for every x, j 0()dé < 1. The implication of these solutions is that (9.3) is also a

X
sufficient condition, at least in one dimension.

Appendix: Convergence of Product Functions

In this appendix we investigate convergence of product functions on a space with a
nonproduct measure. Our principal result (Theorem A.3) shows that if the given
measure is equivalent to a product measure, then the weak limit of a sequence of
product functions is a product function. Counterexamples are provided which
show that the hypothesis of equivalence is not superfluous. The method of proof
(due to M. Aizenman and E. Nelson) is to use duplication of variables. We treat
the case N =2; the generalization is obvious.

Additional results on convergence of product functions are found in later
theorems.

Definition. Let p and v be two measures on a space A. If u(S)=0 = v(S)=0 for
SCA, then v is said to be absolutely continuous with respect to u1, denoted by v< pu.
If vep and p<v, u and v are said to be equivalent, denoted by pu~v.

Let {A,,u.» and {4, u > be o-finite measure spaces, and let (A2, K, denote
their cartesian product. We shall denote by v, another measure on A? with
V., ~ Ml Finally, we denote by A* the direct product of two copies of A2

Definition. A p -measurable function F : A?— R is said to be a product function if
there exist u - and p -measurable functions, f:4,—R and g:4,—R, such that

F(x,y)=f(x)g(y) a.e. [u,,].

Proposition A.1. If H: A*>Risv -measurable, then H* : A*— R defined by

lelvxzyz
H*(x 1, p1, %5, y,) =H(X{, Y55 X5, V1) (A-1)

is also v, v, . -measurable.
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Proof. First, we claim

VoV~ v (A-2)

X1y1 X2y2 vxlyz x2y1°

Clearly v, , v, . ~u. po,and vy v ~u o ou .. Thus it sufficgs to glemon-
strate that u , u . ~p . op . Indeed, the latter two measures are identical. To
see this, let T, and T, denote the o-algebras of (A, u.> and {4, u >, respectively.
The (o-finite) product measure u,, is determined uniquely by the condition that
for any measurable rectangle, R, xR, with R €T and ReT, p (R, X R)
=u (R, u,(R,). Noting the analogous conditions which determine the product
measures i, f o and p ou it follows from uniqueness that the measures are
identical.

Next we note that if the set SCA* is v -measurable, then

X1y1 xzyz

S*:{(xl,yl,xz,yz)eA"'[(xl,yz, X5, ¥, )ES} s LA N -measurable and hence
by Eq. (A-2), S* is v, v,, ,-measurable. In fact, v, v (§%)=v Vi (S).

X1y1 XxX2y2

Let H: A*—>Rbe Ve Vaans -measurable. Then by the above reasoning, for every
a,beR, (H™ Ya,b))* is Y1y, Vay,"measurable. However, (H™ Ya, b))* =(H*)" Y(a,b),
and hence the latter set is also v, v, -measurable. []

Remark. The switching transformation employed in Proposition A.1 is only well-
defined if v, ~pu, .. In particular, if the measures are not equivalent, then the sets
S*, and hence the functions H*, are in general not measurable.

Proposition A.2. Let F:A*—>R, FeL"(v,,) with 1<p<co. Then F is a product
function iff the function H : A*— R defined by H(x,91,X5, Y,) =|F(x, y1) F(x,, y,)l
satisfies H=H* a.e.

Proof. Here we only consider the case Fe Ll(vxy) and F=0ace.;to prove the other
cases, simply replace F by |F|? where appropriate.

The condition is clearly necessary.

Suppose the condition is satisfied. Let g : 4, —> R be the u -measurable function
defined by g(y)= | F(x, y) v(x, y)du,, where v: A*>>R is the u, -measurable func-
tion satisfying 0<v(x,y)<oo ae. and v (") = [(-)v(x, y)d,uxy Clearly, the set
§S={yeA,|g(y)>0} is u-measurable.

If 4(S)=0, then F=0 is certainly a product function. Hence suppose p (S)>0.
Forae. y, €4,

9(v1) F(x5,9,) =F(x,, y,) | F(x . y,) v(x 1, x,)du, (A-3)

for ae. x,e4, and y,eA,. For fixed y, €S, Eq. (A-3) expresses F(x,,y,) as a
product function of the desired form. [J

Theorem A.3. Let (F,:A*—>R) be a sequence of product functions converging
weakly in L”(v,,), ISp<oo:

F,—F.

Then F is also a product function.
Proof. The sequence of functions (F,(x,, y,) F,(x,, y,) : A*>R) converges weakly

in LP(v,,, v,,,,) to F(x,y,) F(x,,y,). By Proposition A.2, it suffices to show that
the weak limit equals F(x,,y,) F(x,,y,) a.e.
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Let R(p) be the set of L? functions which are invariant under the switching
transformation [Eq. (A-2)]:

R(p)= {GeLp(vxm x2y2)| G*=Gae. [v (A-4)

X1y1 xzyz]}

The desired result is established by showing that R(p) is weakly closed. Since R(p)
is linear, and hence convex, this is of course equivalent to showing that R(p) is
strongly closed.

Suppose the sequence (G,e R(p)) converges L*(v, v, ) strongly to G. Then
there is a subsequence, which we shall also denote by (G,), which converges
pointwise. By making a change of variables, using the definition of R(p) and
applying Fatou’s lemma, we have

0= ,}l_,n;) ,[ 1G(X 15 Y15 X2 Y2) = G(x 15 Y15 X5, Y,)IP dvyy Dy,

g _“G(xp yl, X9, yz)ﬁ G(xp V2 X2, y1)|p dvx1y2 dvxzyx ‘ (A'S)

Since v evidently G=G* ae. [v, , v, 1. O

X1y2 xzyn Vx1y1 x2y2°

Remarks. 1) The general case (N =2) follows directly from Theorem A.3, either by
grouping coordinates or by induction.

2) If each function in the weakly convergent sequence is a product of identical
factors, this symmetry also holds for the weak limit.

3) The assumption v, ~pu,  in Theorem A.3 is required. In particular, as the
following two examples demonstrate, neither the condition u, ,<v , nor the
condition v, <pu, ., is sufficient. In fact, the second example shows that the
condition v, <u,, does not even guarantee that the product sector is strongly
closed.

Example 1 (M. Aizenman). Let I be the unit interval [0, 1] and let du,,=dxdy be
ordinary Lebesgue measure on I2, Let dv,, be Lebesgue measure on [ 2 plus a unit
measure concentrated on the diagonal (ie., dv, =[1+0d(x—y)]dxdy). Consider
the sequence of functions F (x, y)=e"*" . For every n, F, is a product function on
I?, and yet the weak Lz(dvxy) limit is

U x=y
10 otherwise,
which is manifestly not a product in the dv,, measure.
Example 2. Again, let du,,=dxdy be ordinary Lebesgue measure on the unit

square I2. Now choose ae(O 1) and let S=1%\[0,a]* Let dv,,=ygdxdy. The
sequence of functions F,(x, y)= f,(x) g, (y), with

1 x€[0,a)
Ju= {l/n xela, 1]

_{n ye[0,a)
"1 yela 1],
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converges uniformly on S to
1 x€[0,a) and ye[a,1]
F=41 xe€[a,1] and ye[0,a),
0 xe[a,1] and yela,1]

which cannot be expressed as a product.
Next, we establish a set of sufficient conditions for convergence of product
functions of the form F,= [ [f,(x,)]%

Theorem A.4. Let {A,du) be a o-finite measure space. Let (q,,...,q,) be a set of
distinct nonzero constants. Suppose (f, : A—1R) is a sequence of strictly positive
functions such that

N
[T Lf(x)1%—=F(x,,...,xy) <0 pointwise a.e. on A".
i=1

If there exists a set ACA with w(A)>0 such that F>0 a.e. on A, then there is a
N
measurable function f: A—R such that F= [] [f(x;)]% a.e. on A".

i=1
Proof. Without loss of generality, we may assume g, >0.
Choose X,,...,Xy€ 4, so that

N
LA l=—[2 LA = F(y, %5, .0, Xy) < 0 (A-6)

for a.e. yeA and F(y,X,,...,Xy)>0 for a.e. yeA. Since g, >0, we may define

F(y,%,, ..., Xy)=[g(y)]" for ae. yeA.
Let B={yeA|g(y)>0}DA. For ae. y,...,yyeB

C7 IT LA0a1~ TT Lol™, (A-7)

N N

where C,= [] [f,(X)]%/* and Q= ) g, Taking y,,...,yy€A, Eq. (A-7) implies
i=2 i=1

that lim C2 exists and is strictly positive.

If all the charges g are strictly positive, then (A-7) holds on A" and the proof is
complete. Otherwise, Eq. (A-7) just establishes the desired result on BY. However,
it is easily verified that if there is even a single ¢, <0, then w(A\B)=0. [

Remark. The assumption that there exist a diagonal set of positive measure on
which F>0 a.. is crucial for the above theorem; it is easy to construct
counterexamples if this hypothesis is violated.

Finally, we generalize Theorem A.3 to convergence of product functions on
direct sums of L? spaces. The desired result is a consequence of the following
obvious proposition.
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Proposition A.5. Let {A,uy and {A,v) be o-finite measure spaces with v<u. If (f,)
is a sequence of functions converging weakly in LP(du) and LP(dv):

fo—f weakly in LF(du)
fu—g weakly in LF(dv) ’
then =g a.e. [dv].

Proof. Let # be a (countable) partition of A into disjoint measurable sets with
v(B)=1 for every Be #. Let 4 be the set on which (say) f>g. If v(4) >0, there must
be a set Be 4 with v(BnA)>0. Since v < g, there is a nonnegative L!(du) function 4
with dv|;=Adp. Let By={xeB|A(x)SN}. For all 1=g=o0, iy, €Ldy) and
Xpy € LUdv). However, this clearly implies | (f—g)dv=0 = w(ANB,)=0.

AnBn
Letting N tend to infinity, we obtain the desired contradiction. []

Definition. Let {A,du) be a o-finite measure space and let A", d"u> denote its

N-fold cartesian product. For each N, let doy be another o-finite measure on A",

Denote by {A,dX) the direct sum (over N) of the measure spaces (A", doy>. The

generalized Fock space, ILP(dX), may be defined in the usual fashion [see

Eq. (8.11)]. As in Sect. 8, we say that a function FelL?(dX) is a product function if
N

F=(Fy) is a collection of functions of the form Fy= [] f(x,), with f: 4A—>R. We
will denote this function by =n(f). =1

Theorem A.6. Let (n(f,)) be a sequence of product functions converging weakly in
IL2(dX). If all of the measures doy satisfy doy <d™u and at least one of the measures
satisfies day~ d"p, then the weak 1P(dX) limit is of the form n(f).

Proof. Weak ILP(dX) convergence implies that each term converges weakly in
L*(day).
Let do,, be the measure satisfying do,, ~d" . Then by Theorem A.3, there is a
M M

measurable function f : A—Rsuch that ] f,(x;) — [T f(x) weakly in L*(do,). It
i=1 i=1

1

N N
suffices to show that for all N, [] f.(x,) = [] f(x;) weakly in L*(doy).
i=1

i i=1

N
Let F(x,,...,xy) denote the weak L”(dsy) limit of []f(x,). Then
NM M . ) M NM NM
IT fix)— ] F&, . xy) weakly in LP (]—[ dO'N), while [ £ix)— ] f(x)
i=1 i=1 i=1 i=1
N
weakly in L? (H do-M>. By Proposition A.5, the weak limits agree a.e. [doy]. [
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