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The 4" Expansion for the Critical Multiple Well Problem
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Abstract. We consider the critical multiple well problem

ΐ = l

where — A + V(x) has a zero energy resonance. We prove that all eigenvalues
and resonances of H tending to zero as 1/r2 are analytic in 1/r. We give an
explicit equation for the lowest nonvanishing coefficient in the 1/r expansion
for any of these eigenvalues or resonances and observe that H has infinitely
many resonances tending to zero. For n = 2 and n = 3, we compute the
coefficients explicitly and for n = 2, we also give the next coefficient in the 1/r
expansion.

1. Introduction

In this paper, we study the critical multiple well problem, i.e. the asymptotic
behavior of the eigenfunctions and resonances of

Hr=-Δ+ t V(x-rXί) (1.1)

in L2(R3) as r-»oo, where Fis a potential of compact support such that —Δ + V
has a zero energy resonance. We find that there are infinitely many resonances and
finitely many eigenvalues, which tend to zero as r-»oo. For these resonances and
eigenvalues we prove that they are analytic in 1/r and we give the corresponding
1/r expansion. The eigenvalue tending to zero for n = 2 was studied by Klaus
and Simon in [1] where they proved that this eigenvalue behaved like E0(r)
= — σ\r~2 + O(r~ 3\ where σ0 is the unique real solution of σ = e~σ. We extend
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their result by showing that the eigenvalue or resonance tending to zero as fast as
r~2 are all analytic in l/r, and they are given by

£ n W = - σ π

2 r - 2 + fe-σπ

3(l-σBΓ1r-3 + O(r- 4 ), (1.2)

where σn are all the complex solutions of σ=±e~σ and b is a constant that
depends on the potential V. One of the interesting features of this expansion is that
the coefficients to the lowest order are universal and do not depend on the
potential at all. To the next order the coefficient does depend on the potential but
only through a constant that is the same for all the resonances and is given by

where ψ0 is the zero energy resonance function, i.e. ( — A-\-V)ψo = 0. We obtain
similar results for all n. The noncritical double well was studied by Klaus in [2].

Our results in this note are a direct consequence of the short range expansion
in [3]. The Hamiltonian in the short range expansion is given by

( (1.4)

in L2(IR3), where V is a potential of compact support. In [3] it is proved that the
eigenvalues and resonances of H(ε) that remains bounded as ε->0 are all analytic
in ε and their expansion is given. Let now Ur be the unitary scaling in L 2(R 3) given
by (Urψ)(x) = r3/2ψ(rx). Then

UMrU ^r-2

ι = l

i.e.

(I

V(r(x-Xi)) (1.5)

H\-\=UγHrU;\ (1.6)

Hence all the technical results needed are contained in [3].

2. Resonances and Eigenvalues

Let us consider the Schrodinger operator

H=-A + V, (2.1)

where A is the Laplacian in L2(IR3) and Fis a bounded measurable function on IR3

with compact support. With u = \V\112 and v = (signV)u, we easily see that the
resolvent kernel of H satisfies the following equation for Im/c>0

Γ1uGk](x,y), (2.2)

where Gk = (~A-k2)~\ so that

1 i k \ \ . (2.3)
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Hence

(uGkv) (x, 3;) = u(x)Gk(x - y)υ(y) (2.4)

is a Hubert-Schmidt kernel for all complex k and thus fc-Kl+wG^)"1 is a
meromorphic Hilbert-Schmidt valued function in the whole complex plane with
poles at the points where — 1 is an eigenvalue of the compact operator uGkv with
kernel defined by (2.4). Thus for xή=y the resolvent kernel (2.2) is a meromorphic
function of k in the whole complex plane with poles independent of x and y, which
are those values of k for which

φ + uGkvφ = 0 (2.5)

has a nontrivial solution, i.e. where — 1 is an eigenvalue of the compact operator
uGvv.

The poles in the upper half-plane Im/c>0, the so-called physical half-plane,
correspond of course to the eigenvalues of H with values E = /CQ, where k0 is the
position of the pole, since for Imfc>0, (2.2) is the resolvent kernel.

The poles in the lower half-plane Im/c<0, the so-called unphysical half-plane
are called resonances and do not correspond to eigenvalues for H.

Let k0 be a pole of (2.2) so that (2.5) has a nontrivial solution φ0 for k = k0.
Multiplying (2.5) by v we get

0, (2.6)

and with ψ0 = Gkovφo we have

Hence in the physical half-plane Im/c>0 we have that Ψ0 = Gkovφ0 is the
corresponding eigenfunction. In the unphysical half-plane, if k0 is a resonance we
call ψ0 = GkQvφ0 the resonance function. It solves the eigenvalue equation (2.7), but
is not square integrable.

On the real axis we have that a pole k0 corresponds to an eigenvalue if and only
if ψ0 = GkςvφQ is square integrable. If ψ0 is not square integrable, we say that k0 is a
resonance.

We say that H = — A + V has a zero energy resonance if

ί \x-y\~2\V{x)V(y)\dx dy< oo and φ0 + uGovφo = 0

has a nontrivial solution φ0 so that Govφo is not square integrable.

3. The Multiple Well Problem

The Schrodinger operator for the multiple well problem is

1

ί = l

where — A is the Laplacian in L2(IR3) and V is a bounded measurable function of
compact support. As in the previous section let u = \V\1/2 and υ = usignV, so that

V=uv. Let ui(x) = uIx xA and vi(x) = υlx xX For Re/c large negative we
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have from (2.2)

(Hε -k2)~1 = Gk(x -y)~Σ Gkvi^iGk + Σ Gkviufikvjuj
i U

- Σ Σ GkviuiGkυnuifikvJuJGk + • >
ij h (3 2)

{H2-k2)-' = Gk- ΣGkΦij-UiGkVj+ ΣutGM&υj.JujGt,
ij I h \

which gives us

lί+ufi^^UjG^ (3.3)

where ufi^Vj is to be considered as an operator on L2(R3)(x)(C" which maps

into

(3.4)
j

2 ) ~ 1Hence the poles of the resolvent kernel (Hε — k2)~1 are the poles of the meromor-
phic function k-+[l + uiGkvj'][jί with values in Hilbert-Schmidt operators on
L2(IR3)(x)C". The poles of this function are of course the points /ceC so that

jfj=O (3-5)
j

has a nontrivial solution f=(fvf2 •••/„) i n L2(ΊR3)(g)<£n. Set now

<Pi(x)=fi[x+-Xi

Then (3.5) takes the form

/ i
φ.(x) + u(x) Σί Gfc x — y + -(x f — x.) I u(j>)φj(y)dj; = 0, (3.6)

where we have used that /.(x) = φ. I x xf I and M.(X) = M X x. L
\ ε / \ ε /

t;ί(x) = ί;ίx x j . Taking the diagonal term in (3.6) outside the sum we may write
\ ε /

c ί 1 \
φhc) + uGkvφ. + V u(x) \Gk\x — y+-(xi — x1)\v(y)φiy)dy = 0. (3.7)

jΦi \ ε I

Hence we have the following result, using that Gk -x) =εGfc/ε(x).

Theorem 3.1. T/ze eigenvalues and the resonances for the multiple well problem

H=-A+V
ί = l

square of the complex numbers k for which the equation
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k/ε

((x-y) + xi-yj)υ(y)φj(y)dy = O

has a nontrivial solution in L2(IR3)(x)(C". The corresponding eigenfunction or
resonance function is given by

n

4. The Critical Multiple Well Problem

By the critical multiple well problem we understand the study of the eigenvalues
and resonances of the multiple well Hamiltonian

H2=-A+ Σ v(x--x], (4.1)

where x1, ...,xn are n distinct points in R 3 . By Theorem 3.1 the eigenvalues and
resonances are the squares of the complex numbers k for which the equation

n

φt + uGkvφi + ε £ u(x)JGkjε(ε{x-y) + x{-xs)v{y)φfy)dy (4.2)

has a nontrivial solution (φv ...,φn) in L2(IR//)®C". The corresponding eigenfun-
ction or resonant function is given by:

d - y - - χ)ί v(y)Ψi(y)dy. (4.3)
i = l \ ε /

Let now k(ε)2 be an eigenvalue or a resonance of the multiple well problem (5.1)
such that |fe(ε)|^cε, and write

k!(ε)=-k(ε). (4.4)
ε

Then (4.2) takes the form

n

φt + uGεk,υφi + ε £ M(X)jGk.(ε(x-y) + xt-x)υ{y)φfy)dy = 0. (4.5)

This equation has been extensively studied in [3], where it was proved in Section
[3] that (5.5) has solutions which are bounded as ε-»0 only if

φo + uGovφo = 0 (4.6)

has a nontrivial solution in L2(R3). According to Sect. 2 this is equivalent to
— A + V having a zero energy resonance or eigenvalue. In [3] it is proved that

ψo(x) = Govφo (4.7)

is in L2(1R3) if and only if (v, φ0) = 0.
Let us now assume that — A + V has a simple zero energy resonance. This

assumption is made in order not to complicate the analysis too much. It is also
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possible to carry out the analysis without this assumption [3] but the formulas
obtained will be somewhat more complicated. With this assumption it follows
from [3] that fc'(ε) is analytic in ε in a complex disc centered at zero with a possible
branching point of finite order at ε = 0, under the assumption that V(x) is bounded
with compact support. It is furthermore proved in [3] that α = /c'(0) for some
resonance or eigenvalue of the form εfc'(ε) if and only if α is such that the following
equation has a nontrivial solution

Σ
7 = 1

(4.8)

That is — is the eigenvalue of the matrix (1 — δij)Ga{xi — Xj) or α solves the equation
4π

Det
4π

= 0. (4.9)

Moreover we have that if α is a simple solution of (5.9) then k(ε) is analytic for
small ε, and if α is a multiple solution, then fe(ε) may have a branching point at ε = 0
of order at most the multiplicity of α, and fc(ε) is a multiple valued analytic function
in a complex neighborhood of ε = 0. Hence we have the following

Theorem 4.1. Let E(ε) = k(ε)2 be an eigenvalue or resonance of the multiple well
n I 1 \

problem —A+ Σ v\x xX where — A + V(x) has a zero energy resonance, and
ί = l \ ε /

let us assume that |fc(ε)| ^cε. Then fc(ε) is analytic in a complex neighborhood ofε = 0
with the only possible singularity a branching point of finite order at ε = 0. Moreover
the derivative ot = k'(0) at zero exists and is a solution of the equation

Det
4π

= 0,

where Gα(x) = (4π|x|) V α ' x l // α is a simple solution, then k(ε) is analytic near ε = 0,
and if oc has multiplicity tf, then k(ε) has almost a branching point of order £ at zero.
Conversely if ot is a solution of the equation above, then there is a resonance or
eigenvalue E(ε) = k(ε)2, which is analytic for ε in a complex neighborhood of ε = 0
such that fc(0) = 0 and k'(O) = oc; E(ε) is a resonance if ImαrgO and eigenvalue if
Imα>0.

It is also proven in [3] that the solutions φfax) of (4.5) are analytic in ε if α is a
simple solution of (5.9) and that φj(ε,x) = cjφo(x) + εχj(ε,x), where Xj(ε,x) is
analytic. Here ε and Cj are the eigenvectors in (5.8). Since the corresponding eigen-
or resonance function is given by

v.W = Σ ί Gm (χ-y-- x) ΦW«. y)dy • (4.10)
ί = l \ S /

Using now that χ.{ε,x) is uniformly bounded in L2-norm and that v{y) has compact
support, we get using φ. = Cjφ°-\-εχj and (5.7) that if k(ε)2 is an eigenvalue then
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Ψe(
χ)= Σ Cjψo[x--xi) + εχε, (4.11)

£ = 1 \ ε /

where \χε(x)\ S c independent of ε and x. Hence we get

Theorem 4.2. Let E(ε) = k2(ε) be an eigenvalue of the multiple well problem
m I 1 \

— A+ Σ Vix xX where — A + V(x) has a zero energy resonance, and let us
\ ε

assume that |fc(ε)|^cε. Moreover let us assume that α = /c'(0) is a simple solution of

Det
4π

// ψε(x) is the eigenfunction corresponding to E(ε), then

= 0.

V>e(x)= Σ ciψ0[x--xi) +εχε(x),

where \χε(x)\Sc independent of ε and x and ψQ — Govφo is the zero energy resonance
function of —Δ + V and c{ satisfy

5. The Critical Double Well

In this section we consider the Hamiltonian Hz = — A + V(x) + V(x — z\ where
— A + V has a zero energy resonance and V is again bounded with compact
support. From the previous section we then have that H has a sequence of
resonances fc*(z)2 which tend to zero as z->oo, such that

j j 2 ) , (5.1)

where y^ are the complex solutions of

iγ+eiv = Om (5.2)

It is easy to see that (5.2) has exactly one solution in the upper half plane. This
solution is y0 = iσ0, where σ0 is the unique real solution of

σo = e~σ\ (5.3)

Hence Hz has only one eigenvalue tending to zero as z—xx) and

E°{z)=~w+0(|z|~3) (5 4)

This eigenvalue E0(z) was found by Klaus and Simon in [1]. However in addition
to the unique solution in the upper half-plane (5.2) has infinitely many solutions in
the lower or unphysical half-plane. To see this we write y = x + iy, and then (5.2)
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takes the form

or

Hence

or simply

— y -!- ix = ± e ^(cosx + isinx),

— y e y = ± c o s x and x= ±e~ ) 7sinx.

(5.5)

(5.6)

ey =
sinx

and +
_ sinx

x
log sinx = + COSX,

sinx log sinx
= —cosx. (5.7)

Now is zero at nπ, so that the left hand side of (5.7) is zero at nπ, while the
x

right hand side is zero at (n + ̂ )π. It is easy to see that (5.7) has exactly one solution
in each interval (nπ, (n + ̂ )π). Hence we have the following theorem.

Theorem 5.1. Let Hz = — A + V(x) + V(x — z), where — A + V has a zero energy
resonance and V(x) is bounded with compact support. Then Hz has exactly one

eigenvalue E0(z) which tends to zero as z—•GO. E0(Z) is analytic in — and

where σ0 is the unique real solution of σ — e~σ. However Hz has an infinite sequence
of resonances En(z), n=l,2,..., tending to zero as z-»oo, such that

where yn = xn + iyn, yn<®, where xn are the real solutions of

sinx log sinx
/

= — cosx

and }̂  = l sinx I. There is exactly one solution in each interval (nπ,(n

Moreover for large n we have

see Table 1. Table 2 gives the corresponding asymptotic resonances for three equal
distant centers.

By utilizing the methods in [4] it is possible to prove that

ESz) = γ2Jz\-2 + (ψ0,V)-2(ψ0,Vψ0)-^^\z\-

where ψ0 is the zero energy resonance function.
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Table 1. The asymptotic re-
sonances for Hz= —Δ + V(x)
+ V(x-z) as |z|—•oo are Em(z)
= σl\z\~2 + O{\z\~\ where σn

= π'Xn + ίyn and the first few
xn and yn are

Table 2. The asymptotic re-
3

sonances for Hε = — Δ + Σ
ι = l

•V\x χ.\ as ε-*0, where
\ ε /

\χί ~ x z\ = \χ2 ~xs\= \χi - xi\=

1

are En{ε) = σ2ε2 + 0(ε2), where
0.425655
1.392665
2.415536
3.430203
4.440171
5.447408

6.452924
7.457284

8.460827
9.463770
10.466259
11.468394
12.470248
13.471876
14.473317
15.474603
16.475759

17.476803
18.477753
19.478621
20.479416

-0.318132
-1.533913
-2.062278
-2.401585
-2.653192
-2.853582
- 3.020240
-3.162953

-3.287769
-3.398692
-3.498515
-3.589263
-3.672450
- 3.749243
-3.820554
-3.887116
-3.949523

-4.008262
-4.063742
-4.116305
-4.166242

x
n
 and y

n
 are

x
n

0.425655
1.442028
2.415536
3.450418
4.440171
5.460185
6.452924
7.466639
8.460827
9.471153
10.466259

11.474492
12.470248
13.477071
14.473317
15.479128
16.475759
17.480812
18.477753
19.482218
20.479416

and the first few

y
n

-0.318132
-0.834310
-2.062278
-1.702259
-2.653192
-2.156909
-3.020240
-2.467530
- 3.287769
-2.703946
-3.498515
-2.894923
-3.672450
-3.055169
- 3.820554
-3.193227
3.949523

-3.314505
-4.063742
- 3.422646
-4.166242
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