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The %Expansion for the Critical Multiple Well Problem
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Abstract. We consider the critical multiple well problem

H=—A4+ ) V(x—rx),
i=1

where — A+ V(x) has a zero energy resonance. We prove that all eigenvalues
and resonances of H tending to zero as 1/r? are analytic in 1/r. We give an
explicit equation for the lowest nonvanishing coefficient in the 1/r expansion
for any of these eigenvalues or resonances and observe that H has infinitely
many resonances tending to zero. For n=2 and n=3, we compute the
coefficients explicitly and for n=2, we also give the next coefficient in the 1/r
expansion.

1. Introduction

In this paper, we study the critical multiple well problem, ie. the asymptotic
behavior of the eigenfunctions and resonances of

H,=—4+ ) V(x—rx) 1.1
i=1

in L,(R?) as r— oo, where V is a potential of compact support such that —4+V
has a zero energy resonance. We find that there are infinitely many resonances and
finitely many eigenvalues, which tend to zero as r— 0. For these resonances and
eigenvalues we prove that they are analytic in 1/r and we give the corresponding
1/r expansion. The eigenvalue tending to zero for n=2 was studied by Klaus
and Simon in [1] where they proved that this eigenvalue behaved like E(r)
= —02r 2+ 0(r™ ), where g, is the unique real solution of 6=e~°. We extend
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their result by showing that the eigenvalue or resonance tending to zero as fast as
r~2 are all analytic in 1/r, and they are given by

E(r)=—0cX"?+b-c(1—0,) 'r 3+0(r™ %), (1.2)

where ¢, are all the complex solutions of 6=+e 7 and b is a constant that
depends on the potential V. One of the interesting features of this expansion is that
the coefficients to the lowest order are universal and do not depend on the
potential at all. To the next order the coefficient does depend on the potential but
only through a constant that is the same for all the resonances and is given by

b=(V, wO)_Z(VJo’ VwO)’ (1.3)

where 1, is the zero energy resonance function, ie. (—4+ V)y,=0. We obtain
similar results for all n. The noncritical double well was studied by Klaus in [2].

Our results in this note are a direct consequence of the short range expansion
in [3]. The Hamiltonian in the short range expansion is given by

12 1
; V(E (x—xi)) (1.4)

&
in L,(IR®), where V is a potential of compact support. In [3] it is proved that the
eigenvalues and resonances of H(e) that remains bounded as ¢—0 are all analytic
in ¢ and their expansion is given. Let now U, be the unitary scaling in L,(IR?) given
by (U,y) (x)=r3?p(rx). Then

He)=—A4+

U,H,U,"1=r'2[—4|+r2 Y V(r(x—xy)|, (1.5)
i=1
ie.
1 -1
H = UHU, " . (1.6)
Hence all the technical results needed are contained in [3].
2. Resonances and Eigenvalues
Let us consider the Schrodinger operator
H=—-4+7V, (2.1)

where A is the Laplacian in L,(IR®) and V is a bounded measurable function on R?
with compact support. With u=|V|*? and v=(signV)u, we easily see that the
resolvent kernel of H satisfies the following equation for Imk>0

(H—k*)"(x,3) =G (x~y) = [Go(l +uGw)” 'uG,](x,y), (2.2)
where G, =(—4—k?*)~1, so that
Gulx—y)=(4n|x— y|)~ teti* 1. (2.3)
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Hence
(uG,v) (x, ) =u(x)G,(x — y)u(y) (2.4)

is a Hilbert-Schmidt kernel for all complex k and thus k—(1+uGw)™! is a
meromorphic Hilbert-Schmidt valued function in the whole complex plane with
poles at the points where —1 is an eigenvalue of the compact operator uG,v with
kernel defined by (2.4). Thus for x# y the resolvent kernel (2.2) is a meromorphic
function of k in the whole complex plane with poles independent of x and y, which
are those values of k for which

®+uGwe=0 (2.5)

has a nontrivial solution, i.e. where — 1 is an eigenvalue of the compact operator
uG,v.

The poles in the upper half-plane Imk >0, the so-called physical half-plane,
correspond of course to the eigenvalues of H with values E=kj, where k,, is the
position of the pole, since for Imk >0, (2.2) is the resolvent kernel.

The poles in the lower half-plane Imk <0, the so-called unphysical half-plane
are called resonances and do not correspond to eigenvalues for H.

Let k, be a pole of (2.2) so that (2.5) has a nontrivial solution ¢, for k=k,.
Multiplying (2.5) by v we get

@+ VG vp,=0, (2.6)
and with p, =G, vp, we have
(—4+V—kdw,=0. 2.7
Hence in the physical half-plane Imk>0 we have that y,=G, vp, is the
corresponding eigenfunction. In the unphysical half-plane, if k, is a resonance we
call y, =G, v, the resonance function. It solves the eigenvalue equation (2.7), but
is not square integrable.

On the real axis we have that a pole k, corresponds to an eigenvalue if and only

ify, =G, v9, is square integrable. If y, is not square integrable, we say that k, is a

resonance.
We say that H= — 4+ V has a zero energy resonance if

[lx=y2V(x)V(yldxdy<oo and ¢@,+uGye,=0

has a nontrivial solution ¢, so that G v, is not square integrable.

3. The Multiple Well Problem
The Schrodinger operator for the multiple well problem is

HE:—A+i V(x—éxi), (3.1)

i=1

where — 4 is the Laplacian in L,(R?) and V is a bounded measurable function of
compact support. As in the previous section let u=|V|*? and v=usign¥, so that

1 1 .
V=uv. Let ui(x)zu(x— Ex') and vi(x)=v<x— gxi). For Rek large negative we



68 R. Heegh-Krohn and M. Mebkhout

have from (2.2)

(H,— k> ' =G (x—y)— Y. Guu,G, + ) Gou,Gou;

i ij
=2 2 GGy, Gou G+ ..
iy u
(3.2)
(H,—k*)™'=G,— Z G [51'1'_ u,G;+ Zuinuilevj | UGy,
ij i1

which gives us

(H,— k)" '=G,— Y Go[1+u,Gu]; ' u,G,, (3.3)
ij

where 4,G,v; is to be considered as an operator on L,(R*)®C" which maps

f:(fy - fIEL,(R)RC"
into
2. u(x) | Gl = y)o () fv)dy. (3.4)
J
Hence the poles of the resolvent kernel (H, —k?)™* are the poles of the meromor-

phic function k—[1+u,Gw,];;' with values in Hilbert-Schmidt operators on
L,(R*)®C". The poles of this function are of course the points ke C so that

fi+ui¥Gkvjfj=0 (3.5)
has a nontrivial solution f=(f,, f, ... f,) in L,(R*)®C". Set now

goi(x)=f,.<x+ %xi).
Then (3.5) takes the form

B0+ T Gy [x= 1+ L 5=%)) 0 o)y =0, 36

1 1
where we have wused that f(x)= (pi(x— Exi> and ui(x)=u(x— Exi)’
1 . . . . .
v(x)=v (x— Exi)' Taking the diagonal term in (3.6) outside the sum we may write

1
P x)+uGe,+ Y ux)| G, (x =yt bamx j)) v(y)e(y)dy=0. 3.7

JjFi
. . 1
Hence we have the following result, using that G, P =G, ,(x).

Theorem 3.1. The eigenvalues and the resonances for the multiple well problem

" 1
H=—4+ ) V(x—— gxi)

i=1

are the square of the complex numbers k for which the equation
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n

@+ “le)q)i +e ; u(x) _f Gk/s ((x—y)+ X;— yj)v(y)(pj(y)dy =0

has a nontrivial solution in L,(R)@C". The corresponding eigenfunction or
resonance function is given by

w(x)= =Z [G, (z —y- %x,) v(y)e )y

4. The Critical Multiple Well Problem

By the critical multiple well problem we understand the study of the eigenvalues
and resonances of the multiple well Hamiltonian

" 1
Hy=—4+ Y V(x—gxi>, 4.1)
i=1

where x,,...,x, are n distinct points in R®. By Theorem 3.1 the eigenvalues and
resonances are the squares of the complex numbers k for which the equation

n

@+ uGe,+e Y ux) [ Gy le(x— ) +x;,— x () (y)dy 4.2

J¥Fi
has a nontrivial solution (¢, ..., ¢,) in L,(R")®C". The corresponding eigenfun-
ction or resonant function is given by:

z 1
wix)= . Gy, (x -y xi) v(y)ey)dy . (4.3)

Let now k(e)? be an eigenvalue or a resonance of the multiple well problem (5.1)
such that |k(e)| = ce, and write

k() = %k(s) : (4.4)

Then (4.2) takes the form

n

@+ uGvp+e Y, ulx) | Gule(x—y) +x,— x J(y)e (y)dy=0. 4.5)

j*1
This equation has been extensively studied in [3], where it was proved in Section
[3] that (5.5) has solutions which are bounded as ¢—0 only if

Qo+ uG,vp,=0 (4.6)

has a nontrivial solution in L*(R3). According to Sect. 2 this is equivalent to
— A+ V having a zero energy resonance or eigenvalue. In [3] it is proved that

Yo(X)=Gove, 4.7)

is in L,(IR?) if and only if (v, p,)=0.
Let us now assume that — A4+ V has a simple zero energy resonance. This
assumption is made in order not to complicate the analysis too much. It is also
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possible to carry out the analysis without this assumption [3] but the formulas
obtained will be somewhat more complicated. With this assumption it follows
from [3] that k'(¢) is analytic in ¢ in a complex disc centered at zero with a possible
branching point of finite order at ¢ =0, under the assumption that V(x) is bounded
with compact support. It is furthermore proved in [3] that a=k'(0) for some
resonance or eigenvalue of the form &k'(e) if and only if « is such that the following
equation has a nontrivial solution

n
)
j=1

V-1«
0+ (1=0,)G,(x;—x;)

i ¢,=0. (4.8)

J

i

That
hat is yp

is the eigenvalue of the matrix (1 —J;,)G,(x;—x,) or a solves the equation

Det =0. 4.9)

[/ —1a
) 0;;+(1=0,)G,(x;—x)

T

Moreover we have that if  is a simple solution of (5.9) then k(e) is analytic for
small ¢, and if o is a multiple solution, then k(¢) may have a branching point at e=0
of order at most the multiplicity of &, and k(e) is a multiple valued analytic function
in a complex neighborhood of ¢=0. Hence we have the following

Theorem 4.1. Let E(e)=k(e)*> be an eigenvalue or resonance of the multiple well

r 1
problem —A+ Y. V(x— Ex,.), where — A+ V(x) has a zero energy resonance, and
i=1
let us assume that |k(g)| < ce. Then k(e) is analytic in a complex neighborhood of ¢ =0
with the only possible singularity a branching point of finite order at e=0. Moreover

the derivative a =k'(0) at zero exists and is a solution of the equation

Det

/= 1la
1 0;;+(1=6;)G,(x;— x| =0,

A

where G (x)=(4n|x|)” 'e™*|. If « is a simple solution, then k(e) is analytic near ¢ =0,
and if a has multiplicity ¢, then k(g) has almost a branching point of order ¢ at zero.
Conversely if o is a solution of the equation above, then there is a resonance or
eigenvalue E(e)=k(e)?, which is analytic for ¢ in a complex neighborhood of ¢=0
such that k(0)=0 and k'(0)=u,; E(¢) is a resonance if Ima<0 and eigenvalue if
Ima>0.

It is also proven in [3] that the solutions ¢,(e, x) of (4.5) are analyticin e if o is a
simple solution of (5.9) and that ¢(e,x)=c;p,(x)+ex,(e,x), where yex) is
analytic. Here ¢ and c; are the eigenvectors in (5.8). Since the corresponding eigen-
or resonance function is given by

7 1
p,(x)= ) [ Gy (x —y—- x,.) (V)& y)dy. (4.10)
i=1

Using now that x (e, x) is uniformly bounded in L,-norm and that v(y) has compact
support, we get using ¢;= jgo°+£x ;and (5.7) that if k(£)? is an eigenvalue then
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z 1
lpe(x)= Z Cij (x_ Exi) +8Xa’ (4'11)
i=1
where [y, (x)| =c independent of ¢ and x. Hence we get
Theorem 4.2. Let E(e)=k*(e) be an eigenvalue of the multiple well problem
" 1
—4+ Y V(x— Exi)’ where — A+ V(x) has a zero energy resonance, and let us

i=1
assume that |k(e)| = ce. Moreover let us assume that a=k'(0) is a simple solution of

=0.

/= 1la
Deti 2 0;;+(1=0,)G,(x;—x;)

(0

If v (x) is the eigenfunction corresponding to E(e), then

n

P, (x)= Z Vo (x— %xi) +ex,(x),

i=1

where |, (x)| = ¢ independent of ¢ and x and p, =G vQ,, is the zero energy resonance
Sfunction of —A+V and c; satisfy

1
) y |/ —1ad;;+(1—06,)G,(x;,— x;)

J

cj=0.

5. The Critical Double Well

In this section we consider the Hamiltonian H,= — A+ V(x)+ V(x—z), where
—A+V has a zero energy resonance and V is again bounded with compact
support. From the previous section we then have that H has a sequence of
resonances kX(z)?> which tend to zero as z— oo, such that

£y y:c 2
ky(z)= I +0(z%), (5.1)

where y are the complex solutions of
iyt e’ =0. (5.2)

It is easy to see that (5.2) has exactly one solution in the upper half plane. This
solution is y, =io,, where o, is the unique real solution of

o,=e . (5.3)
Hence H, has only one eigenvalue tending to zero as z— oo and
0.2
Ey(2)=— El% +0(z73). (5.4)

This eigenvalue E(z) was found by Klaus and Simon in [1]. However in addition
to the unique solution in the upper half-plane (5.2) has infinitely many solutions in
the lower or unphysical half-plane. To see this we write y=x+iy, and then (5.2)
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takes the form

—y+ix=te ?(cosx+isinx), (5.5)
or
—ye’=+cosx and x=te Vsinx. (5.6)
Hence
si sin sin
e'= ad and $—>—Clog il =+tcosx,
X
or simply
sin sin
—xlog(——{) = —COSX. (5.7
X

sinx . . .
Now — is zero at nz, so that the left hand side of (5.7) is zero at nm, while the
X

right hand side is zero at (n+3)m. It is easy to see that (5.7) has exactly one solution
in each interval (n7, (n+3)n). Hence we have the following theorem.

Theorem 5.1. Let H,=—A+V(x)+V(x—z), where —A+V has a zero energy
resonance and V(x) is bounded with compact support. Then H_ has exactly one
1
eigenvalue E(z) which tends to zero as z— co. Ey(2) is analytic in H and
Ey(2)=—0aglz2l 72 +0(21 ),

where a, is the unique real solution of ¢ =e"°. However H, has an infinite sequence
of resonances E,(z), n=1,2,..., tending to zero as z— oo, such that

E(2)=v,1217 2+ 0(2]73),
where y,=x,+1y,, y,<0, where x, are the real solutions of

sinx sinx
——log

) = —COSX

sinx

and y, =log<

). There is exactly one solution in each interval (nm,(n+3)n).
Moreover for large n we have
x,~n+Hn, y,~—log((n+3n),

see Table 1. Table 2 gives the corresponding asymptotic resonances for three equal
distant centers.

By utilizing the methods in [4] it is possible to prove that

(iy,)’
1—1iy,

E,(2)=p7l2" 2+ (o, V)™ 2w, Vivo) l217%+0(z21"%),

where , is the zero energy resonance function.
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Table 1. The asymptotic re-
sonances for H,=—A4+V(x)
+ V(x—z) as |z] > o are E, (z)
=02|z|"2+0(|z|"3), where o,
=mn-x,+1y, and the first few
x, and y, are

xn yn
0.425655 —0.318132
1.392665 —1.533913
2.415536 —2.062278
3.430203 ~2.401585
4.440171 —2.653192
5.447408 —2.853582
6.452924 —3.020240
7.457284 —~3.162953
8.460827 —3.287769
9.463770 —3.398692
10.466259 —3.498515
11.468394 —3.589263
12.470248 —3.672450
13.471876 —3.749243
14.473317 —3.820554
15.474603 —3.887116
16.475759 —3.949523
17.476803 —4.008262
18.477753 —4.063742
19.478621 —4.116305
20.479416 —4.166242

Table 2. The asymptotic re-
3
sonances for H,=—A4+ ),
1=1

1
-V(x— —x,.) as e—0, where
[

X1 = x| =1x;, = X3| =Ix; —x5] =
1

are E,(¢)=02e?+0(e?), where
0,=mn-Xx,+1y, and the first few
x, and y, are

X, Y
0.425655 —0.318132
1.442028 —0.834310
2415536 —2.062278
3450418 —1.702259
4440171 —2.653192
5460185 —2.156909
6.452924 —3.020240
7.466639 —2.467530
8.460827 —3.287769
9.471153 —2.703946

10.466259 —3.498515

11.474492 —2.894923

12.470248 —3.672450

13477071 —3.055169

14.473317 —3.820554

15479128 ~3.193227

16.475759 —3.949523

17.480812 —3.314505

18.477753 — 4063742

19.482218 — 3422646

20.479416 —4.166242
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