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Abstract. As an approximation to a relativistic one-electron molecule,
K

we study the operator H =( — A +w2)1/2 — e2 £ Zj\x — ̂ /Γ1 witn Zj ^0,

e~2 = 137.04. H is bounded below if and only if e2Zj ^ 2/π, all 7. Assuming
this condition, the system is unstable when e2YjZj>2/π in the sense that
E 0 =inf spec (H) -> — oo as the Rj-+Q9 all 7. We prove that the nuclear
Coulomb repulsion more than restores stability; namely
E0 +0.069e2 ̂  ZiZ^IR,.-^!""1 ^0. We also show that £0 is an increasing

function of the internuclear distances | R. — Rj\.

Introduction

The problem of "stability of matter" consists in proving that a system of charged
particles (electrons and nuclei), interacting electromagnetically, does not collapse. In
the framework of nonrelativistic Schrόdinger quantum mechanics, with Coulomb
interactions between the particles, a first proof of this was given by F. Dyson and A.
Lenard [1]. A shorter proof, leading to a much better lower bound on the binding
energy per electron, was later given by E. Lieb and W. Thirring [2]. The strategy
these proofs followed was first to consider the nuclei fixed (i.e. with infinite mass); the
general case (nuclei with finite mass) then follows easily. With the K nuclei at fixed
positions jR 1 ? . . . , RK9 the problem then consists in proving that 1) the Hamiltonian
describing N electrons and K nuclei (including also the repulsion terms between the
electrons, and between the nuclei) is bounded below by a constant independent of
the Rji 2) the energy per particle, i.e. the ground state energy of the system of N
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electrons and K nuclei, divided by (N + K), is bounded below by some constant.
If electrons were bosons, it is known [3] that matter would not be stable:

statement 1) above still holds for bosons, but 2) does not.
As a first approximation to a relativistic approach to the problem of stability of

matter, we shall study stability for the Hamiltonian

Σί-ftV^+mV) 1 / 2 - Σ Σ z*« 2l*j-Λ*Γ 1+ Σ *2l*. -*, Γ
j = l 7=1 k = l i ,7=l

i<j

+ Σ ZkZle
2\Rk-Rl\-1=HNtK(m,Z,R\ (1.1)

M=l
k<l

where m is the electron mass, and where again the K nuclei are fixed at the distinct
positions Rl9 . . . , Rκ. We shall use the shorthand notation Z, R for the sets {Z }*= x ,

-
To simplify our expressions, we rescale the xj and Rk in units of the Compton

wave length of the electron h/mc. We also rescale the Hamiltonian by me2. In terms
of the variables xj = (mc/h)xj9 and with Rk = (mc/h)Rk, HN>K = (mc2)~ 1HN κ becomes

βN,κ(z,R) = Σ (-V1)1'2- Σ Σ z^xj-R^-1

7=1 7=1 *=1

N K

+ Σ xtft-xjΓ1* Σ ZfcZjαiΛi-ΛjΓ 1 ,
ί,7=l M=l
i<j k<l

where α = e2/hc ~ (137.04) ~*.
It is obvious from the definition (1.1) that HN κ(m,Z,R) is bounded below

by HN ^(0, Z, K). This will turn out to be very useful in some of our proofs below. We

therefore introduce also a rescaled version of HN >K(0,Z, g), with a different scaling,
since the Compton wave length is infinity if m = 0. We rescale //(O, Z, R) in units
hc/R0, where .R0 is an arbitrary length, and scale x and the R. by R0 . This yields

VΛ£®= Σ (-^ )1/2- Σ Σ
j = l 7 = l f c = l

+ Σ *\Xt-Xj\-l+ Σ
i ,7=l M=l

i<7 fc</

where again the tildes indicate the scaled variables. We shall henceforth always work
with these two scaled Hamiltonians, and omit the tildes.

It turns out that, unlike the Schrodinger case, even statement 1) above (i.e. the
existence of an /^-independent lower bound for the ground state energy of HN κ) is
not straightforward for HNK even if we restrict ourselves to the case J V = 1
(1 electron). First of all, there exists only a limited range of the Zy for which
HN κ is bounded below at all. This can already be seen for the simplest case



One-Electron Relativistic Molecules with Coulomb Interaction 499

1. (1.2)

This operator was studied independently by R. Weder [4] and I. Herbs t [5]. A
first important fact (which can be found in Kato [6]) is the existence of a critical
charge Zc for the operator H± 19 exactly as for the Klein-Gordon or Dirac theories.
To be explicit, let

f/ 0 =(-Zl + l)1/2, Zc = 2/(απ)c,87.2.

Then a) for Z ̂  Zc: Hx }1 ̂  0 as a form on Q(H0).
b) for Z> Zc :#! !, is unbounded below as a form on Q(H0).

Here Q(H0) is the form domain of f/0, which consists of all the functions / in L2([R3)
for which |p|1/2/(p) is square integrable, where/denotes the Fourier transform of/.

If Z is strictly subcritical (i.e. Z < Zc), more information concerning the spectrum
of HI i(Z) is known [4, 5]. The eigenvalues of H 1 X(Z) all lie between 0 and 1 as a
matter of fact, they are even separated from 0 by a gap which increases with Zc — Z.

1/2 ι \ (\ o\
,1J. (L.ό)

Since (1 — A)ί/2 ^ 1 — zl/2, and since — zl/2 — Ze2 |x| ~ x has infinitely many negative
eigenvalues, it follows that H1 X(Z) has infinitely many eigenvalues smaller than 1. It
turns out, from an argument we give in Sect. 3, that the lowest eigenvalue is
nondegenerate, and that the associated ground state is strictly positive.

On the other hand the essential spectrum always starts at 1, and it consists of
only an absolutely continuous spectrum: σ^H^§1) = σabscont(#1 ,ι) = [1, oo).

The operator/z l t(Z) = ( — A)1/2 — Za\x\~1 has the same critical Z as Hltl: it is
bounded below by 0 on Q(\p\) if Z^ZC, and unbounded below if Z>ZC. Its
spectrum is much simpler however: σ(Λ l f l ) = σa b s o o n t(ft l f x) = [0, oo).

One can easily extend the proofs in [4, 5] to show that HNtK is bounded below if
and only if Zyχ ̂  2/π for all; (we assume that all the Rj are distinct). From now on we
shall only consider this case. Even under this condition, however, it is not obvious
that an g-independent lower bound for HNtK exists.

Let us consider the case N = 1:
K

H = H° + Y Z Z o c l R — R I"1, (1.4)

where

is the 1-electron Hamiltonian without nuclear repulsion. Suppose that
K
£ Zkα > 2/π (this is possible when K ^ 2). It is a simple consequence of the

unboundedness below of H± X(Z) for Zα > 2/π that the ground state energy for H° κ

will tend to — oo if the internuclear distances shrink to zero:

K

lim infspectf? t K(Z,λR) = - oo, £ Zfcα > 2/π.
λ-»o ' k = ι
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Under the same conditions however, the nuclear repulsion term in (1.4) tends to
+ oo, and this may "cancel" the behavior of £0 = inf spec H® κ. The existence of an
K-independent lower bound for H1 K(Z9 R) is therefore only possible if the nuclear
repulsion is strong enough to overcome the "collapsing tendency" present in H? κ.
The fact that this is the case is the main content of the following theorem:

Theorem 1. Let h0 = (- A)1'2. Suppose zk g 2 / π f o r all fc, and Rk ± RJor all k^l.
K

Then h0 — £ z^x — R^1, considered as a form on Q(/ι0), is bounded below by
k=l

K
o _ V"1 _ _ I p ip I — 1

— J7Γ / ZjςZi I I\k — J\ι \

Since (— A + 1)1/2 ̂  (— ^)1/2, the theorem obviously also holds if we replace h0

In terms of the fine-structure constant α and the nuclear charges Zk = zk/α,
Theorem 1 can be rewritten as

X Z^αl^-KJ-1, (1.6)
k,l=l

k<l k<l

where b = 3πα ̂  6.88 x 10 ~2. The fact that b is strictly smaller than 1 implies that
the total energy (including the nuclear repulsion) increases to + oo if any two nuclei
coincide. Thus the nuclear repulsion is not only strong enough to prevent collapse, it
even pushes the nuclei apart !

For

hltK(Z,R) = h°tK(Z,® + Σ Z^αl^-^Γ1, (1.7)
k,l=l

k < /

with

-^Γ1, (1.8)

we can say even more. By scaling one sees that h^ K(Z,R) and λh± κ(Z,λR) are
unitarily equivalent. Theorem 1 implies therefore that in this case the total energy is
minimal if the nuclei are infinitely far apart.

Incidentally, note that the exact numerical value of α plays a decisive role.
This can be understood by the scaling behavior of H1 κ. By simple scaling one
sees that H1K(Z,R) is unitarily equivalent to λH^ κ(λ~l\Z,λR), where we define

HίtK(μ;Z,R)=(-A+μ2)V2- f Zkα|x - KJ'1 + £ ZkZμ\Rk - R^1.
k=l k,l=l

(The same is true for HN κ.) This means essentially that we can scale the mass away:
the existence of any S-independent bound for H1 x(l;Z,g) implies that the zero-
mass Hamiltonian H1 ^(0;Z,R) = hί iK(Z,R) is bounded below by zero, inde-
pendently of R. (Since H1 κ ̂  h1 K9 the converse statement is trivial.)

This, in turn, implies that the value of α is decisive. Let us illustrate this for the
special case K = 2, Z^ = Z2α = 2/π. On the one hand, if Hl 2(Z, R) is bounded
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below by an β-independent constant, then h± 2(Z, R) is bounded below by zero.
Thus, for all ψ in Q[_( - Λ)1/2],

(h® 2 is hl 2 without the nuclear repulsion; see (1.8)). On the other hand, by a scaling
argument,

inf spec [Λ?i2(Z,fi)] = - C\R, -R2\
-i

for some positive constant C, which is completely independent of α. It is here that the
numerical value of α comes into play: if α is such that 4/(απ2) ̂  C, then the required
bound will hold (for K = 2) 9 if 4/(απ2) < C, the one-electron- two-nucleus system is
definitely unstable in this model. By the argument above, this conclusion will hold as
well for H1 κ, i.e. for any positive mass, as for hί κ, which has zero mass.

We prove Theorem 1 in Sect. 2.
In Sect. 3 we show that, for one electron, E® κ = inf spec H? K(Z,R)9 and

e\ κ = inf spec h°ίtK(Z,R) are monotone increasing functions of the internuclear
distances:

Theorem 2. Keep the Zk fixed, where Zka ^ 2/π for all k. If for all kj:
\Rt-Rt\Z\Ri-Ri\, then EQ

lfK(Z,R)^E°>κ(Z,R') and e?)X(Z, β) ̂ ?>X(Z, £').

Our proof borrows its basic ideas from [7] and [8], where the analogous statement
K

for the Schrodinger operator - A - £ Zke
2\x-Rk\~l was proved (first for

k=l

dilations, i.e. R'k =λRk with λ ̂  1, in [7J; this proof was extended to the general
situation | R'k - Rί \ ̂  | Rk - Rl \ in [8] ).

If all the Zk are strictly subcritical, i.e. Zfeα < 2/π for all /c, one can
extend a result of [4, 5] and show that σess(#? κ) = [1, oo) and analogously
σess(h°ι,κ) = [0> °o ). For any Z (provided all the Zk are not zero) one can find a
variational function (e.g. a suitable exponential) such that <^, H°ίίKψy<l.
This shows that for Zk < Zc, all k,E\ κ is an isolated eigenvalue of //° κ. (Actually,
by the same argument as for H1 1? one sees that H^ κ has infinitely many eigen-

values smaller than 1.) For h°ίtK9 matters are slightly different. If ]Γ Zfc^Zc,
k = l

one can easily extend arguments of [4, 5] to show that h® κ ̂  0, in which case
K

e°lκ=Q, and h® κ has no eigenvalues. If ^ Z f e>Zc, one can again find a
k = l

variational function ψ for which < ψ, h\ κψ > < 0, which implies that in that case e\ κ

is also an isolated eigenvalue.
We prove in Sect. 3 that, if Zk < Zc for all /c, E°lfK is a nondegenerate eigenvalue of

H® x, and that the corresponding ground state is strictly positive. The same is true
K

for e\ κ under the additional assumption ]̂ Zk > Zc.
fc=l

We have no results in this paper concerning HN κ for N > 1. The same scaling
argument as for H1 κ applies, and the existence of an g-independent lower
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bound for HN κ would therefore imply that hN κ (i.e. the same Hamiltonian with
( —zJ)1/2 instead of ( — A + 1)1/2) is bounded below by zero. We do not know,
however, whether such a lower bound exists for general N9 K.

Regardless of the statistics, and neglecting the electron repulsion, we
know that if K = 1 (one nucleus only) HNtί ^ 0 (because Hltl ^ 0). On the other
hand, the lower bound (1.6) shows that for N^ 14 and arbitrary K, we also have
HN>x^0 (because 1 — 14b^0, where b = 3πα). For general values of N,K it is
obvious that the Fermi statistics and the electron repulsion will have to play a role.

It is clear that the strategy of [2], which used a density functional lower
bound on the kinetic energy, and then applied results of Thomas Fermi theory,
will not work here. The lower bound on the kinetic energy for the operator
(-zl + l)1/2 has the form [9] (ψ9(-Δ + l)1/2ι/<> ^K$d3xF(\ιl/(x)\2l where

a

F(ά) = Jdφ2/3 + l)1/2. One sees that for small a, F(a) behaves like or5/3 + α,
p

which is similar to the p^/3 bound one obtains for <^,( — A)ψ) [2], and which is
caused by the fact that for small p, (p2 +1)1/2 behaves like 1 + p2/2. For large
p, however, (p2 + 1)1/2 behaves linearly in p, which is reflected in the α4/3

behavior of F(a) for large α. Hence the lower bound on the kinetic energy is of
the form Jd3xp^(x)4/3 in the region where p^ is large; the corresponding Thomas-
Fermi functional (including the other contributions to the energy) is not bounded
below, and therefore does not lead to a useful lower bound on the ground state
energy of HNK.

Heuristically, one can argue that Thomas-Fermi theories are "large Z theories"
(i.e. they give the correct asymptotic behavior for Z -> oo this is rigorously true for
the Schrόdinger case [10].) Hence it is only natural that the Thomas-Fermi theory
corresponding to HN κ is unbounded below, since HN κ itself is unbounded below
whenever one Z7 becomes supercritical.

Throughout this paper we consider only the three-dimensional case, i.e. the
Hubert space we use is L2((R3). For functions on R3, the symbol || || will be used to
denote the L2(R3)-norm only; for operators, this symbol will always mean the norm
as a bounded operator from L2(IR3) to itself.

2. The Nuclear Repulsion Restores Stability

We shall prove Theorem 1 in two steps: first we shall prove it in the case
Zk = Zc, all fc. Then we shall apply a concavity argument to conclude the desired
result for all Zk. In the proof of the first step we shall need the following lemma,
which can be considered as a refinement of the result | | |xΓ1 / 2 |pΓ1 / 2 | | =
(π/2)1/2. This norm was evaluated in [5], and by a different method also in [ 11] the
critical value Zce

2 = 2/π actually has its origin in this number.

Notation. B(a, R) = {x\ \x - a\ <. R}.

Lemma 2.1. Let ψ be an L2-function with supp ψ c £(0, R). We denote by K the
bounded operator K = 2π-1 |xΓ1/2 |pΓ VΓ1 / 2 Then

(2.1)



One-Electron Relativistic Molecules with Coulomb Interaction 503

Proof. Note first that since ψ has compact support, the integral
Jd3x|x I ~ 1/2 1 i/φc) I converges. By simple scaling, we can obviously assume that R = 1,
which we shall do henceforth in this proof.

We denote the symmetric decreasing rearrangement of ψ by ψ*. Since |x |~ 1 / 2

is symmetric and decreasing, we have J^*|x|~1/2^ J|^||*Γ1/2. Analogously,
using the fact that Ipp1 is the same as convolution with (2π2)~1\x\~2, one
sees that <ι/f*,Λty*> ^ (ψ,Kψy (this follows from the generalized rearrangement
inequalities proved in [12].) Hence we can restrict our attention to φ which are
symmetric decreasing, i.e. ψ = ̂ *.

For any such ^(r), defined for O ^ r ^ l , we define, for r^l,(^(r) =
r'Vίr'1). Consider the function f(r) = ψ(r), r^ l,/(r) = φ(r)9 r^ l . One
easily checks that / is in L2([R3), with ||/||2 = 2||ι^||2. Straightforward
calculation also leads to </, K f y = 2<>, Kψy + 2<^,L^>, where L has
the integral kernel L(x,y) = π~ 3 |x |~ 1 / 2(l + xV - 2x'yΓ1\y\~1/2 Since
]l l*Γ 1 / 2 |pΓ 1 / 2 l l=(π/2) 1 / 2 , we have | |K|| = 1, hence </,£/> ̂  </,/>, which
implies

(2.2)
By computing the spherical average of the kernel L(x, y), we obtain

i i
=(8/π) \dr $

o o

in f(u), (2.3)
«6[0,1]

where f(u) = w~ 1ln[(l + u)/(l - M)].
One can easily check that / attains its minimum at u = 0, with /(O) = 2.

Expression (2.1) now follows immediately from (2.2) and (2.3).

Remark. The constant π~3 is probably not optimal in (2.1). We suspect that the
optimal constant is given by functions behaving like r~3/2. This is also the typical
behavior of functions optimising the expectation value of \ x \ ~ 1 / 2 \ p \ ~ 1 \ x \ ~ 1 / 2 (see
[11], [13]).

If we define ψn(r) = 0 for r < n l, ψn(r) = r~3 / 2 for n~ ΐ < r ̂  1, it turns out that

with a= Σ (2/c+l)-3=(7/8)C(3)-1.05. We think aπ~3 is probably the best
k = 0

constant for (2.1); in any event the sharp constant lies in the interval [π~ 3, 1.05π~ 3].
With the help of Lemma 2.1, we can now prove Theorem 1 for the case where all

the Zj are critical.

Proposition 2.2. For all ψeQ(\p\), \\ ψ \\ = 1 :

) ^ \Rj-R.r1. (2.4)
J,k=ί
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Proof. Note first that since | x | ~ x is relatively form-bounded with respect to | p \ (see
[4-6]), the left hand side of (2.4) makes sense for all ψ in β(|p|)

Let us rewrite the desired result (2.4) as

;=ι
(2.5)

For the time being, we shall not fix A. We shall determine below a value A0 such that
(2.5) holds for all A ^ AQ. It will turn out that AQ = 3, which then implies (2.4).

For r real, we shall use the notation r + = max (0, r). For K arbitrary real numbers
rΊ,...,^, we have

j=ι j / +

Hence (2.5) will certainly be satisfied if

(2.6)

where Wj(x) = [(2/π)(|x - Rj\~l - A % \Rk - Rj\~ 1)+]1/2.
W

For any A, Wj has support in a ball with center Rj and radius ίj? where

tj-^AΣlRt-RjΓ1. (2.7)
W

Provided ^ is large enough, all the balls B(Rp tj) are disjoint: by (2.7), we have tj

^ A ~ 1 1 Rk - Rj I for all k i=j. Therefore

\Rk-Rj\-(tj + tk)^(l-2/A)\Rk-Rj\. (2.8)

which shows that B(Rp tj) n B(Rh, tk) = 0, for all ji=k,iΐ A> 2. From now on we
shall assume ^4 > 2.

For any 7, let /. be the characteristic function of B(Rptj). Since
J .̂ = HA/,., and W^x) ̂  (2/π)1/2 |x - ^-Γ 1/2

5 we have

Σ »V*) = Σ Wj(x)fj(x) ^ (2/π)1/2 Σ |x - R j Γ l l 2 f j ί x ) = H/(x). (2.9)

Since |x - Rj\~1/2fj ^ |x- ̂  Γ1/2, and |x|"1/2|ί?Γ1/2 is bounded, one easily
sees that W\ p\~l/2 is bounded. We shall prove now that as an operator from L2 to
L2, || WΠ/?Γ 1 / 2 | | ^1> provided A is larger than some constant which we shall
evaluate below.

Let ψ be any function in C*, so that WψeL2. Then

(2/π) Σ

+(2/π) Σ (Λ μ-^ r^^iprVJ^-^r1^). (2.10)
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The "diagonal" terms in (2.10) can be bounded above by applying Lemma 2.1:

(2/π) £ Uj4',\x-RjΓll2\P\-1\x-RjΓll2fjψ)
j=ι

^ Σ, Il/^ll2-π-3 |ίrχ, (2.11)

where

m f / 7 3 γ l v n i — 1 / 2 / * I , / I /^) -j 9\
— j X\X — -K I J j l Ψ l V^ ^ /

To find an upper bound for the "non-diagonal" terms in (2.10) we use (2.8) and
the fact that (pp 1 is the same as convolution with (2π2)"1|x(~2. We obtain

(2.13)

where mj is defined by (2.12).
Combining (2.11) and (2.13) we obtain

2 Σ m/n
j,k=l
j?k

Using mjmk ^ (m2 + m^)/2 we can rewrite this as

where bj = π'3t]-2 -π~3[l -2/^]~2 Σ |Kfc-^r2. By the definition (2.7) of ίj?

w
we have

This shows that all the b} will be positive, and hence |||pΓ1/2PF^|| ^ ||^||, if
^2^(l-2/^l)-2,or

A^AQ = 3. (2.14)

Thus, provided (2.14) is satisfied, we have || \p\~1/2Wψ\\ ^\\ψ\\ for all ψ in
C?, hence || W\p\~ 1/2|| = \\ \p\' l'2W\\ = 1. This implies |p| - W2 = \p\1/2

ί \2

Since I Σ Wj Λ ^W2 by (2.9), we have therefore proved (2.6) and a fortiori (2.5)
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Remarks

1. In terms of Zc and e2, we can rewrite (2.4) as V^eβ(|p|), || ψ \\ = 1 :

|-Zcα X Ix-^Γ1]^)^-^^ £ \Rj-Rk\-\ (2.15)
j=ι J / Λ*=Ij < f c

where b = πaA0 g 6.88 x 10 ~2.
K

2. Note that (2.15) implies that ]Γ Z7 α|x — β/Γ1 is relatively form-
j = ι

bounded with respect to |p|, with relative bound (maxZ7.)/Zc. This means that
h^ κ and Hί κ can be defined as form sums, with form domain Q(\p\) if Zj< Zc

for all 7'; if Zj = Zc for some 7, we define /f1>x, Λ l f X to be the Friedrichs extensions of
the quadratic forms on Q(\p\).

With Proposition 2.2 ends our first step in the proof of Theorem 1 which is now
established if Zj = Zc for all 7. From this result we shall derive Theorem 1 for all
possible values of Z, by a concavity argument. First we prove another technical
lemma:

Lemma 2.3. Let f be a real function on the n-dimensional unit cube [0, l]π, convex in
each variable separately. Let h be the smallest concave function on [0, 1]" (jointly
concave in all the variables) agreeing with f on all the vertices of the cube, i.e.

MPk vertex of [0, 1]" (*=!,..., M, with M = 2"): h(Pk) =f(Pk).

Remarks

1 . We shall apply this lemma to the function f(χl9 ...,xn) = £ α^ XjX,.. If we keep all
i<j

the variables but one fked, / is affine in the remaining variable. The requirement
that / be convex in each variable separately is therefore obviously satisfied.

2. By changing signs, one immediately sees that the lemma is still true if we
exchange "concave" and "convex," if we make h the "largest convex function..."
instead of the "smallest concave function. . . ," and if we reverse the inequality sign in
the conclusion.

3. Since h is the smallest concave function agreeing with / on the vertices, the
conclusion h ̂  / automatically implies that h is the concave envelope of /. The
lemma tells us therefore that to construct the concave envelope on a cube of a
function which is convex in each variable separately, one only has to consider the
values of / at the vertices of the cube.

4. At any point (xl9...9 xn) in the cube, h can be explicitly constructed as follows :
for any decomposition of (x l5...,xn) into a convex combination

M M

of the vertices: xm = £ λ. (P)m , m = 1, ... ,n, with / ίy^O and £^ = 1>

M '"
we define F(λ) = £ ^/(Pj); h is given by the maximum of F(λ\ taken over all

;=ι
possible convex decompositions of (xί9 . . . , xn).
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Proof of Lemma 2.3. Fix y2, •••>)?„ so that each is either 0 or 1. Considered as a

function of xί only, (h -f)(xl9 )>2, . . . , yn) = M*ι> 3>2» » JU ~/(*ι> y2> - - > Λ,) is con-
cave (h is jointly concave, and — / is concave in each variable separately.)

Since h and / agree on the vertices, we have (h—f)(Q9y29...9yn)^.Q9

(h -/) (1 , y29 ...9yn) ^ 0. By the concavity of h-f in χl9 this implies
(h — /)(*!> y2, - - j yn) = 0 f°r all x1 e[0, 1]. Now fix xl9 and note that A and / satisfy
the stated hypotheses in the variables y2,...9yn. The complete result follows by
iterating the argument n times.

With the help of this lemma and Proposition 2.2, we can now prove Theorem 1 :

Proof of Theorem 1. For (z1,...,zfc)e[0, 1]*, we define

F(zl9...,zκ)= inf [<^|p|^>-(2/π) £ zk<ψ,\x- Rk\
1 = 1 fc=l

As the infimum of linear functions, F is concave. Define

/(z1?...,zx)=-(12/π) Σ |Λ f c-K|ΓVι (2.16)
k,/ = l

k < /

Proposition 2.2 tells us that

F(Pk)^/(P,) * = !,..., 2*

where the Pk, /c=l,. . . ,2 x are the vertices of the cube [0,1] x. (When all the
components of the vertices are 1, i.e. Pk = (1, . . . , 1), (2.16) follows from Proposition
2.2. When some of the components of Pk are zero, (2.16) still follows from
Proposition 2.2, but now with a smaller value for K.) Since F is concave, (2.16)
implies that F is larger than A, the smallest concave function agreeing with / at the
cornerpoints Pk of the cube. But A is larger than / by Lemma 2.3 by combining these
two inequalities we obtain F ̂  /, or for all zfce[0, 1], k = 1,. . . , K:

inf

^-(12/π) f zΛlΛi-K,!- 1. (2.17)
M = ι

k < /

Remark. In terms of the fine- structure constant α and of the nuclear charges Zk, with
Zk^Zc= 2/(απ) for all fc, (2.17) can be rewritten as

\p\- ΣZk«\x-Rk\-^-b Σ ZkZloi\Rk-Rl\-^
k=l k,l = l

k < ί

where fc^ 6.88 x 10~2.

3. Monotonicity of the Ground State Energy in the Nuclear Coordinates

We prove Theorem 2 by essentially the same method as used by one of us [8] in
the proof of the analogous statement for the Schrόdinger Hamiltonian
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K

ι-ι_ j _ £ zk\x — Rk\
 1. The strategy followed there was the following (modulo

k = l

some epsilons):

1) E0(R) = inf spec H (R) = -limΓ1ln G(x, x, f, £) (3. 1)
t->oo

for all x, where G(x, y, t, R) is the kernel exp [ - ί#(β)](x, y).
2) By the Trotter product formula, G(x,y, t,R) can be approximated by

multiple integrals involving exp [ — (t/n)( — A )] (x, y) and exp [(ί/n)Zfc| x —
Rfcl" 1]. (Here one of the epsilons mentioned above comes into play: in order to
ensure convergence of the integrals, one writes G(x,y,;f,β) as lim Gε(x,y;ί,S),

ε-»0
K

where Gε is the kernel of the semigroup corresponding to — A — ]Γ Zk(|x —
fc=l

βk|
2 -f ε2)" 1/2. The whole argument is then carried out for Gε rather than for G and

the limit ε-»0 is taken at the end.)
3) Since exp[<zs~1/2] is completely monotone, it can be written as the Laplace

transform of a positive measure; this can be used to write exp [(t/ri)Z\x — .R | ~ *] as
an integral, over a positive measure, of exp [ — s\x — £|2].

4) Since all the kernels in the Trotter product approximation for G have been
reduced to positive superpositions of Gaussian kernels (the kernel of exp[(ί/n)zl]
was already Gaussian in the Schrόdinger case [8]), a lemma involving only
Gaussian functions (Lemma 4 in [8]) can be applied, leading to the conclusion:

5) If R,R' are given with \R. - Rj\ ^ \R'. - Rj\\/i,j, and if x9y,x',yf are such
that I x - K i l ^ l x ' - R i U y - R ^ g i y - R i l f o r a U i , and |x-j;| ̂  |x'-/|, then

Combined with 1) this proves the theorem. One uses the fact that given R, Rr and x,
one can always find x' satisfying | x' - R \ ̂  | x - R. | by choosing x ' far enough away
from the #;.

The same argument can be used to prove Theorem 2 in qur case. Some
modifications are needed, however. We shall only describe these in detail, and not
repeat the whole proof as given in [8].

The first modification concerns the kernels exp[(ί/n)( — A + 1)1/2] and
exp[ — (t/n)( — Δ)1/2~\. These are not Gaussian kernels, but they can again
be written as positive superpositions of Gaussian kernels. Indeed, exp[ — fes1/2]
is again a completely monotone function, and can therefore again, by Bernstein's
theorem, be written as a Laplace transform of a positive measure:

an explicit formula for μ can be found in any table of Laplace transforms:
dμ(v, b) = (bπ " 1/2/2)v ~ 3/2 exp [ - b2/4v]dv. It follows now that

exp [- (t/n)(- A + l)1/2](x,>;) =J(2v)-3/2exp[- |x - j;|2/4v>- *dμ(v,t/n)9

exp [ - (ί/n)( - zl)1/2](x, y) = J(2v)~ 3/2exp [ - |x - y |2/4v]rfμ(v, t/n\ (3.2)

which are indeed positive superpositions of Gaussians.
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The second modification is more a set of comments on step 1) than a real
modification.

First of all, note that it is enough to prove Theorem 2 for the case Zk < Zc for
all k. As the infima of decreasing linear functions of the Zk,£?x(Z) and
e° K(Z) are decreasing, upper semicontinuous functions of the Zk, which ensures that

Z^O,*?fJC(Z) = lim <κ(Z^ε),

where we use the notation Z — ε for the set {Zj — ε}. This implies that if Theorem 2
holds for the case where Zk < Zc for all /c, it also holds in the case where some of the
Zk are equal to Zc.

We can therefore restrict ourselves to the case Zk < Zc, all k. In this case
E? κ is an isolated eigenvalue (one can easily show E° κ < 1 by a variational
argument, and since Zk<Zc for all /c, we know that σess(#? )K) = [1, oo)). For

K
e°1)K, matters are slightly different. If £ Zk^Zc, we know that e° K(Z,R)=Q,

k = l

independently of β, in which case the monotonicity in R is trivial. We shall
K

therefore not consider this case in the discussion below. Whenever ^ Zk > Zc,
fc=l

however, one has again e® κ<0 by a variational argument, and since σess(^?>A:) =
[0, oo), this shows that then e° κ too is an isolated eigenvalue. We shall there-
fore assume in the following that E® κ,e\ κ are isolated eigenvalues. We
know then that (3.1) will be true, for all x, if there exist ground states for
^ I . X J ^ I K which are strictly positive. The argument in the next paragraph
shows that this is indeed the case: we show that the ground states for H° K,h\ κ

K
(where £ Zk > Zc in the last case, and Zk < Zc for all k for both Hamiltonians) are

k=l

nondegenerate and strictly positive, which is an interesting result in its own right.
Since H° κ = H0- V(R, x), h°ltK = h0~ V(R, x), where H0=(-Δ + 1)1/2,

ft0 = ( - A)1'2, and where V is positive, the kernels exp [ - f/f J>x](x, y),
exp [ — th°tK] (x, y) will be pointwise larger than exp [ — £#0](x, y) and
exp[ — ί/ι0](x,j;), respectively. By (3.2) one sees immediately that
exp[-£#0](x,y), exp[- ί/z0](x,y) are strictly positive for all x, y, which
implies therefore exp [ — tH°tK] (x, y) > 0, exp [ — th°tK] (x, j;) > 0 for all
x, y. By the extension of the Perron -Frobenius theorem to operators (see e.g.
[14], Theorem XIII.43), this implies that the ground states of H® κ, h® κ (which
correspond to the largest eigenvalues of exp [ — ί/f?^], exp [ — ί/ι?>x]) are nonde-
generate, and the corresponding eigenvectors strictly positive.

Taking into account all the remarks made above, the proof given in [8] can now
be completely transcribed to our case; this completes our proof of Theorem 2.
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