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Canonical Maps Between Semidirect Products with
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Boris A. Kupershmidt1 and Tudor Ratiu2

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Abstract. It is shown that two canonical maps arising in the Poisson bracket
formulations of elasticity and superfluids are particular instances of general
canonical maps between duals of semidirect product Lie algebras.

1. Introduction

In the last years many models in classical physics have been shown to possess
Poisson structures. In many examples this Poisson structure is the canonical one on
the dual of a Lie algebra, sometimes supplemented by a two-cocycle. It turns out that
in almost all such cases, the Lie algebra in question is a semidirect product.

Quite often the same physical system allows descriptions in different sets of
variables, thus obtaining two Poisson structures for the same model. These
structures are not equivalent but connected. Such double descriptions commonly
occur, e.g., in systems coupled to the magnetic field by introducing magnetic
potentials; magnetohydrodynamics is such a system. The relation between the two
descriptions, when linear, is produced by a Lie algebra homomorphism (like in the
above-mentioned magnetic case of magnetohydrodynamics, see [5, 8]). In this case
the dual map of the Lie algebra homomorphism is naturally canonical between the
two Poisson structures. However, it was recently [5,6] observed experimentally that
in two physical models, elastodynamics and superhydrodynamics, the transfor-
mation between the two Poisson structures, even though non-linear, is still
canonical. We hasten to emphasize that this is not the standard case in the theory of
finite dimensional Lie algebras: given two general Lie algebras § and ©, there are no
natural non-linear canonical maps from ©* to §*. The problem of interpretation of
the above-mentioned non-linear canonical maps is the topic of this paper. Our
explanation turns out to be very natural and simple (see, e.g., Theorem 3.5 below):
canonical maps with range the dual of a Lie algebra are realized as momentum
maps. This underlying philosophy is closely related to [8].

1 Partially supported by NSF Grant MCS-8003104
2 Partially supported by NSF Grant MCS-8106142
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Let us describe briefly our set-up. In the final analysis, a simplified version of the
problem boils down to the following question. Let ©, <r> l 5 §2 be Lie algebras and
φ:®-+ΌQr(ξ)1) ^:©-»Der(§2) be Lie algebra homomorphisms, where Der
denotes the Lie algebra of derivations. Let / :§f -» §* be a maP Under what
conditions is the induced map id x/:(© x §1)*-»(© x §2)* between the duals of
semidirect products canonical? Our answer, given in different versions needed for
the treatment of the examples, is that /:§*-»§* must ^>e a canonical map of
Poisson manifolds compatible with the actions of © (see Theorem 3.3).

The plan of the paper is the following. Section 2 recalls the definitions and
formulas relevant for semidirect products of Lie groups and algebras. Section 3
describes the general set-up for getting non-linear canonical maps between
semidirect products and gives the general theorems to be used in the next section.
Section 4 starts with four theoretical examples which together with the main
theorems of the previous section enable us to show that the non-linear canonical
maps coming up in elastodynamics and superhydrodynamics are particular
instances of our general theorems.

Throughout trie paper we employ the following conventions and notations.
For a manifold P, !F(P\ 3C(P) denote the ring of functions and the Lie algebra of
vector fields respectively. A Poisson bracket on P is a multiplication {,} on
&(P) making (&(P\ { , }) into a Lie algebra and such that the map f\-+XfeSC(P\
Xf(g):= {/,#}, is a Lie algebra homomorphism of &(P) into !£(P\ i.e. X{ftβ} =
[Xf, Xg] A manifold P endowed with a Poisson bracket is called a Poisson manifold.
A map α:(P l5 { , }ι)-»(P2> { -> li) between Poisson manifolds is called canonical, if

for any f,ge^Γ(P2), where the upper star denotes the pull-back operation.
A Lie group action on a manifold P is a group homomorphism Φ:G->Diff(P),

where Diff(P) denotes the group of diffeomorphisms of P, such that the map
(9>P)*-*Φg(p) is smooth. If P is a Poisson manifold, Φ is called canonical if all the
diffeomorphisms Φg, geG, are canonical maps of P. A Lie algebra action on a
manifold P is a Lie algebra homomorphism φ:(&-+$C(P) such that the map
(ξ,p)\-+φ(ξ)(p) is smooth. If© happens to be the (left) Lie algebra of a Lie group G
acting on P, then φ = — Φ', where the upper prime denotes the Lie algebra
homomorphism induced by Φ.1 If P is a Poisson manifold, the Lie algebra action φ is
said to be canonical if for any £e© and fl9 f

Φ(ξ){f1J2} = {Φ(ξ}f1,f2}

If the Lie group G with Lie algebra © acts canonically on the Poisson manifold
P, a momentum mapping J:P-> ©* is a map satisfying

for all £e®, where J(ξ)e^(P) is defined by J(ξ)(p) = <J(p),O> where <,> denotes
the pairing between ©* and ©. J is said to be equivariant, if

1 The reason for the minus in front of Φ' is due to the fact that $Γ(P) is the right Lie algebra of Diff(P).
(See[lJ ex. 4.1G, page 274.)
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foral lgeG; here Ad g:©— > © denotes the adjoint action of G on© and Ad*: (5* ->©*
is its dual map. If we deal with a canonical Lie algebra action φ of © on P, the
definition of the momentum mapping is unchanged, but equivariance is replaced by

for all £E®, peP; here TpJ:TpP-+ ©* denotes the tangent map (differential) of J at
peP. (The formula has no minus signs since φ = — Φ'.) Lie group (algebra) actions
on a Poisson manifold admitting equivariant momentum maps are called
Hamiltonian actions.

The dual ©* of a Lie algebra © is a Poisson manifold with respect to the Lίe-
Poisson bracket given by

5 r c
δ£ δg_

for μe©* and /, g functions on ©* here <, > denotes the pairing between © and ©*.
The "functional derivative" δf/δμe(S is the derivative Df(μ) regarded as an element
of © rather than ©**, i.e.

for μ, ve©*. For infinite dimensional ©, the pairing is with respect to a weakly non-
degenerate form and the existence ofδf/δμ is a bona fide hypothesis on /. The same
formula defines the Lie-Poisson bracket on polynomial functions on the dual of a
Lie algebra over any ring.

The Hamiltonian vector field defined by the function h on ©* is given by

δh\*
—J (μ),

where ad (ξ)-η = \_ζ,η] is the adjoint action of © on© and (ad(£))*©*->©* its dual
map.

The following standard fact of great use in the paper can be found in the
symplectic context in e.g. [1, 3, 9].

Proposition 1.1. Let Pbea Poisson manifold and φ: © -> 2£(P) a canonical Lie algebra
action. The following are equivalent:

(i) the action is Hamiltonian',
(ii) there exists a Lie algebra homomorphism ψ :© -> ̂ (P) such that φ(ξ) = Xψ(ξ)

for all ξe<£;
(iii) there exists a ring and Lie algebra homomorphism χ:^(©*) -> ̂ (P) such that

X{χoj}(ξ} = φ(ξ) for all ξe®, where j:©->J^(©*) is the Lie algebra homomor-

phism given by j(ξ)(μ) = <μ,ξ>

In fact, if J is the momentum map of the action φ, then ψ = J and χ = J*.
A second standard fact to be used later on is the following.
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Proposition 1.2. Let (5,§ be Lie algebras and α:©->§ a linear map. The dual map
α* :§*-»©* is canonical if and only if & is a Lie algebra homomorphism.

For a study of the local structure of Poisson manifolds the reader is referred to
[10].

2. Semidirect Products of Lie Groups and Lie Algebras

Let G,H be Lie groups with Lie algebras © and §> respectively. Denote by Aut(#)
the Lie group of automorphisms of H and by Der (§) the Lie algebra of derivations of

§.
Let Φ:G->Aut(#) be a Lie group homomorphism. The semidirect product

G x H of G with H by Φ is a Lie group with underlying manifold G x H, composition
Φ

law

(9ι9h1){g29h2) = (glg29hlΦ{gi)(h2))9 (2.1)

identity element (e,e\ and inverse (g,h)~i = ( g ~ 1 , Φ ( g ~ 1 ) ( h ~ i ) ) .
The homomorphism Φ induces a Lie algebra homomorphism φ :© -» Der(§) in

the following way. For every 0eG, Φ(g):H^H is an automorphism which thus
induces a Lie algebra automorphism Φ(#): = Φ(g}' :£>-»§. In this way Φ:G->
Aut(§) becomes a Lie group homomorphism whose induced Lie algebra
homomorphism 0: = Φ':(5-^Der(§) allows one to define the semidirect product
© x § as the Lie algebra with underlying vector space © x § and bracket

(2.2)

where ξl9 ξ2 e©, ηl9 η2 e§. It is well known that the Lie algebra of G x H is © x §
Φ 0

(see [14]).
Let jSf(Aut(/0) denote the Lie algebra of Aut(f/). To identify elements of

JS?(Aut(ff)), let c:( — ε, ε) -> Aut(H) be a smooth curve with c(0) the identity map of
H. Then for any fte/f, d/dt\t=0c(t)(h)εThH, i.e. c'(0) defines a vector field
on H by /zι— >c'(0)(Λ). Thus, if ^(/ί) denotes the vector space of all vector fields
on H, j£?(Aut (#))<=#•(#). It can be shown from the fact that c(ί)eAut(/f), that
c'(Q)(e) = 0, but this fact will not be used in the sequel. If Φ':© -> JSf (Aut (H)) is the Lie
algebra homomorphism induced by Φ, we have Φ'(ξ)E^(H) for all ξe®. With these
notations, the adjoint action of G x H on © x § is given by

Φ 0

Ad(^)(^^-(Ad^,(Ad,o%))(^)+TΛ-Xή([Φ'(Ad^)](/z-1))X (2.3)

where ξe®, 77 e§, 0eG, /ze// and Th-1Lh:Th-1H^ξ) is the derivative of the left
translation LΛ on H ath'^eH. To compute the coadjoint action, more notation is
needed. For any Lie algebra homomorphism F:®->JS?(Aut(H)) and any /ιeH,
denote F^(Λ):© -> TΛH the linear map given by F^(h)(ξ) = F(ξ)(h). Thus the dual
map Fv (ft)*: TJ #->©*. With this notation the coadjoint action is given by

-̂ ,-̂ ). (2.4)
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The Lie-Poisson bracket of F15 F2 :(© x £>)* -> R, becomes with the use of (2.2)

/ <5v

μ J δv / \ I δv δv

where the functional derivatives δF1/δμe®, δF^/δveξ^ for μe©*, ve§*. The
Hamiltonian vector field of F :(© x §)* -> [R equals

<5F\*

where μe©*, ve§*, and for 77 e§, φη:(5^ξ> is given by φη(ξ) = φ(ξ)mη.
Let us specialize the foregoing definitions and formulas to the case H=V,

a vector space, regarded as an abelian Lie group under addition, and Φ:G -> Aut(7)
a linear representation. Since the Lie algebra of V is F itself, Φ = Φ, and φ = Φ':
G->End(F), where End(F) denotes the algebra of endomorphisms of F. The
composition law in G x F is hence

the bracket in © x F is
Φ

[(ξ,, Olλ (ξ2> »2)] = (KL ίj, φ(ί ,)ι;2 - φ(ξ2)Vl),

and the adjoint and coadjoint actions are given by

Ad(9,u)(£, υ) = (Mgξ, Φ(g)v - <^(Adβς)u), (2.7)

Ad*>ur .(μ, α) = (Ad*. ,μ + 0*Φ(0- 1)*α, Φfe- 1)*α), (2.8)

where geG, w, i eF, ̂ 6©,μe(5*, αeF*. Finally, the Lie-Poisson bracket and
Hamiltonian vector field take the form

{r ,. F,)M . , . - . .δμ ]/ \ \δμ)δa/ \ \ δμ J δa /
(2.9)

/ fδF\* ίδF\* \
XF(μ,ά) = I adί — J μ - φ*F/δaa, φl — \ a I (2.10)

where μe©*, αeF*, F15F2,F6^"((© x F)*).
Φ

3. Canonical Maps Associated to Semidirect Products

Let G be a Lie group with Lie algebra ©, F, W vector spaces and Φ:G->Aut(F),
Ψ : G -> Aut(PF) two linear representations. Let /: F* -> PF* be any map compatible
with the representations, i.e.

f (3.1)



240 B. A. Kupershmidt and T. Ratiu

for all geG. If instead of the group representations one works with Lie algebra
representations, this relation is replaced by

Df(a)(φ(ξ)*a) = ψ(ξ)*(f(a)) (3.2)

for all £e(5, αeK*, where φ:®-^End(V\ ψ:®^End(W) are Lie algebra repre-
sentations. If (5 is the Lie algebra of G, then φ = Φ',ψ = Ψ'. Guided by the formula
(2.8) of the coadjoint representation, define an action of G x W on (© x K)* by

ψ φ

(ftw)-( ju,α) = (Ad*.1μ + ^*Ψ(^-1)V(4 Φ(d~l)*a) (3.3)

for 0eG,weW,μe(δ*,αeK*; recall that ψw:(5-^>W is given by ψw(ξ) = ψ(ξ)-w. It can
be shown quite laboriously that this action is canonical. We shall not do this here
since it will follow trivially later on. It is convenient to give a different formula for this
action.

Lemma. For w e W ζ αeF* we have

nf(ά)=ΦioDf(a^ (3 4)
where on the right hand side w is thought of as an element of W**.

Proof. For £e(5 we have

Thinking now of w as a linear functional on W* this equals (w oDf(a)) φ(ξ)*f(a).
Thus w oD/(α)e W** denoting by the same symbol the corresponding element of V,
the above equals

f(a) φ(ξ)(w oDf(a)) = f ( a ) φwoDf(a)(ξ) = <Φ*w.DAa}f(a)9ξ>. D

Replacing a by Φ(g~1)*a in (3.4) and taking into account (3.1), we get
lΓa. Thus an alternate expression of (3.3) is

,w) (μ,α) = (Ad*. ,μ + Φl.Dmβ-^(9~1)*^ Φ(g~l)*a). (3.5)

The corresponding Lie algebra action of (5 x W on ((£> x K)* thus has the
Φ Φ

expression

(ξ, w) (μ, α) - ((ad ξ)*μ - Ψ* /H φ(ξ)*α)

) (3.6)

for ξe (5, w E PK μe(5*, «e K* recall that the Lie algebra action is minus the derivative
of the Lie group action.

Let us compute the momentum map J :((δ x V)* ->(© x VF)* of this action. By
Φ Φ

definition we must have
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for all ξε®, wεW, μe©*, aeV*. A comparison between (3.6) and (2.10) shows that

, , ,
= ξ, — - - = w °Df(a) = D(wof)(a),,

oμ δa

whence J(ξ, w) (μ,α) = <μ, ξ > + /(α)(w), i.e.

J(μ,a) = (μ9f(a)). (3.7)

Since the action of © x W on (© x F)* has a momentum mapping, this Lie algebra
ψ φ

action is canonical. Hence the action of G x W on (© x K)* is also canonical, thus
ψ φ

proving our earlier claim.
Finally, note that J is equivariant. Let us verify this for the group actions, the

proof for the Lie algebra actions being similar. We must verify that

for all geG, w e W ζ μe©*, αeK*. We have by (2.8), (3.1), (3.3), and (3.7)

))=Ad* f W ). l(μ J/(£i))

= (Ad*-,,/ + Ψ*Ψ(g-*)*f(a), Ψ(g~l)*f(a))

and equivariance of J is proved. By Proposition 1.1 J preserves Poisson brackets.
We summarize our results in the following.

Theorem 3.1. Let Φ G^Aut(K), ^ G^Aut^) be linear representations on the
vector spaces V and W and let f \V* -» W* satisfy f°Φ(g)* = Ψ(g)*°f for all geG.
Then the mapping

J:((S x F)*->(© x W7)*Φ ^

given by J(μ, a) = (μ,/(α)) is canonical.
The Lie algebraic version of this theorem is the following.

Theorem 3.2. Let 0:(5->End(K), ψ :(5 -> End (W) be linear representations of the
Lie algebra (5 on the vectors spaces V and W. Let f : K* -> W* satisfy Df(a)(φ(ξ)*ά)
= Ψ(ξ)*(f(a))for all ξε&, aεV*. Then the mapping

J:(® x V)*->(© x WO*
0 I//

^f/z en by J(μ, a) ~ (μ, f(a)) is canonical

Corollary 3.3. Let φ:®l-> End (V\ ψ :(52 -> End (VF) be Lie algebra representations
and α :©2 ̂  ® i β ̂ ^ algebra homomorphism. Assume that f: K* ->• W^* w compatible
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with α,0, and ψ, i.e., it satisfies D f (a)(φ(u(ή))* a) = ψ(η)*(f(a)) for all ?/e©2,
. Then the map

*./:(©! x K)*^(©2x W)

given by J(μ9a) = (α*(μ),/(α)), μe©*, αeK* is canonical, where α*:©f -> ©* is the
dual map to α.

Proof. Let χ = φ oα :©2 -> End(K). Clearly / satisfies (3.2) with respect to χ and ^
so that the map (v,0)e(©2 x K)*ι— >(v, f(α))e(©2 x W)* is canonical. But since

χ Ψ

the map (77, f)e©2 x Vt->(<x,(η)9 v)ε(δ1 x F is a Lie algebra homomorphism, the map
x Φ

(μ9a)e(&ί x K)*h->(α*(μ),α)e(©2 x K)* is also canonical. The composition of the
Φ x

above mappings equals J. Π
We turn now to the generalization of this result to the case of semidirect products

of Lie algebras. If one replaces the vector spaces V and W in Theorem 3.2 by Lie
algebras § and ft, the mapping J is in general not canonical as the following example
shows. If © = {0} condition (3.2) is obviously satisfied and thus the mapping J is
canonical if and only if /:§*-> ft* is canonical. It turns out that this necessary
condition is also sufficient. We formulate the next result only in Lie algebraic terms
having the applications in mind.

Theorem 3.3. Let ©, §, ft be Lie algebras and φ :© -> Der (§), ψ:& -» Der(ft) be Lie
algebra homomorphisms. Let f :§* -» ft* be a canonical map compatible with φ and ψ,
i.e.

f(v)) (3.8)

for all £e®, ve§*. Then the map

J:(©x§)*^(©x ft)*
Φ Ψ

given by

J(μ,vH(μ,/(v)),μe©*,ve§* (3.9)

is also canonical.

Proof. A comparison between (2.5) and (2.9) shows that the first three terms in the
Lie-Poisson bracket of (© x §)* coincide with the Lie-Poisson bracket of the dual of

Φ
the semidirect product of © with the vector space §. Hence by Theorem 3.2, J
preserves these three terms. The fourth term is the Lie-Poisson bracket on §>*. Since
/:§*-> ft* is by hypothesis canonical, J also preserves this term. Π

Remark. One can further notice that in the above case J is also a momentum map.
The action of © x ft on (© x §)*, which has J as an equivariant momentum map is:

ψ Φ
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(ξ, χ) (μ, v) = ( - (adξ)*μ + ψS/(v)^v, - φ(ξ)*v - ad(D/(v)*χ)*v)

= ( - (adξ)*μ + ψ*f(v\ - φ(ξ)*v - ad(£/(v)*χ)*v),

where ξe®, χeft, μe©*, ve§*.

The following is proved in a similar way as Corollary 3.3.

Corollary 3.4. Let ©15 ® 2, §, ft fee Lie algebras andφ:(δί-^ Der (§), ̂  :©2 -> Der (ft),
α:©2 -> ©! fee Lie algebra homomorphisms. Let f: §* -> ft* fee α canonical map com-
patible with φ9 ψ, and α, t/zαf is, satisfying D/(v)(</>(α(f/))*v) = ψ(η)*(f(v))
for all ^e®2? ve§*. T/ien ί/ze map

fey J(μ, v) = (α*(μ), /(v)), μe©*, ve§* w canonical, where α*:©* -> ©* denotes
the dual map to α.

So far all Lie algebras under consideration could have been also over rings, if we
replace everywhere the functions on the dual by polynomials on the dual. The next
corollary however deals explicitly with Lie algebras over rings. It is needed in
example 6 of the next section.

Let ft be a Lie algebra and 0:ft->End(K), ι/^ft->End(J^) be linear represen-
tations. Let f\V*^W* be compatible with φ and ψ, i.e. satisfying (3.2). Then
(μ, α)ι-*(μ, f(a)} is a canonical map of (ft x V)* ->(ft x W)* by Theorem 3.2. Let R

Φ Φ
be a ring containing the field of scalars of ft. Then R (g) ft is a Lie algebra in the
obvious way [r (x) ξ, s ® η] = rs (x) [£, η] for r, se#, ξ, η eft. Let Λ. be an R- module and
form Λ®V,Λ®W, the tensor product being over the field of scalars of ft. Then
there are linear representations φRίΛ:R®$t-+EΏ.d(Λ®V)9

End(Λ ® W) given by

ΦR,Λ(Γ> £Kω> v) =

ψR,Λ(r> £)'(ω, w) =

for re^, ^eft, ωeΛ veV, weW. The map
ΩeΛ*, ae F* is easily seen to satisfy (3.2) with respect to φR Λ and ψR Λ. Thus the map

(3.10)

is canonical by Thoerem 3.2.
Now let § be another Lie algebra and p:§->End(#), σ:ξ>-^End(A) be linear

representations, where End (jR), End (A) denote the algebras of endomorphisms of R
and A as vector spaces over the field of scalars of §. In addition assume that p, σ are
compatible with the ^-module structure of A9 i.e.
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for ξeξ>, reR, ωeA. Then there are Lie algebra homomorphisms χF:§->

Der((#®ft x (A®V]\ χ^:§->Der((^®ft) x (A ® W}} given by

for ηeξ>,r eR, ξεSt9ωEΛ,v£V,weW.Itis easily seen that the map (3.10) is compatible
with the duals of χv and χw in the sense of (3.8). Thus by Theorem 3.3, the map

R,Λ

is canonical. We summarize this result in the following.

Theorem 3.5. Let §, ft foe Lie algebras, V, W vector spaces, R a ring containing the
field of scalar s ofξ> and ft, and A an R-module. Let φ : ft -> End ( 7), ̂  : ft -> End ( FT) foe
//near representations which naturally induce the linear representations

φRΛ\R®&^ End (Λ ® 7), ι/^ : jR ® ft -» End (ΛL ® J7).

Let p :$) -> End (#), σ:§^End(/l) foe /mear representations compatible with the R-
module structure of A. Finally, let f:V*-* W* be a map satisfying (3.2). Then the map

J:[_ξ>x((R®ξ>) x
*v

given by

J(μ,A®v,Ω®a) = (μ,A®v,Ω®f(a)) (3.11)

is a canonical mapping; here μe§*, AeR*, veft*, ΩeA*, aeV*, and χv,χw are
the Lie algebra homomorphisms of § in Der((#(x)ft) x (A ® V)) and

ΦR,Λ

Der((jR(x)ft) x (Λ®W)) cononically induced on the first factors of the tensor
*R,Λ

products by p and σ respectively.

4. Applications

In this section we consider two physical models: elastodynamics and anisotropic
superfluids in the presence of spin. We break up the presentation by treating four
mathematical examples first, and then using them in the analysis of the physical
systems.

1) Let F15 V2 be vector spaces and φ1 :&1 -> End (K:) φ2 :(52 -» End (V2) be linear
representations of two Lie algebras (δ1 and (52. Then there are induced
representations

φ:(δ10(δ2->End(F leF2) given by
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and

^:©10©2->End(K1 ® F2) given by

for £.€©,., i^eF,., i = l, 2. The map / ̂  ® V2}*->(V, ® F2)*, f ( a l 9 a 2 ) =
al®a2,aieVi, i = \ 9 2, is easily seen to be compatible with the duals of the
foregoing actions. Consequently, by Theorem 3.2 the map

given by

μ29aί9a2) = (μl9μ2,aί<8>a2) (4.1)

for μ f e©f, a t e V f 9 i = 1,2, is a canonical mapping. This example can be generalized
to any number of factors.

2) A related example occurs when ©j = ©2 = ©. Composing the actions φ and
ψ with the diagonal homomorphism ©-»©©©, we get the actions φ1®φ2:(5
-»End(K 1 0K 2 )and φ1 ®φ2:®~>End(Vl ®V2). As before, the map f : ( V l @ V 2 ) *
-^(Fj (x) F2)* given by f(al9 a2) = a^ ®a2 is compatible with the duals of the above
actions. Consequently, by Theorem 3.2, the map

J:[ffi x (*ίΘF2)]*->[© x (Vί®V2)γ9
Φl ®Φ2 Φl®φ2

given by

J(μ, al9 a2) = (μ, a1 ®a2) (4.2)

for μe©*, a t e V f , i = 1, 2, is a canonical mapping. As before, this example has a
straightforward generalization to any number of factors.

3) Let S2 V c V ® V denote the symmetric homogeneous polynomials of degree
two on V. The canonical map (4.2) for V=Vί = V2 induces another canonical map

x S2V)*,

given by
(4.3)

for μe©*, αeF*. In fact, the following diagram of canonical maps commutes

[© x

(© x v)*M

where α is the dual map to the Lie algebra homomorphism (ξ9v9w)e® x (F ® F)ι—>
(ξ9v + w)e© x F and β is the dual map to the canonical inclusion © x S2F-» ©
x(F(χ)F). Similarly, the map J:(© x F)*-+(© x SkV)*9 where ψ = <

given by J(μ,fl) = (μ,α ® p ® α) is canonical; SkV denotes the space of homogeneous
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polynomials of degree k on V and is regarded as a subspace of V®- ® V(k factors).
4) Let fi'.Vf^Wf be compatible with the duals of the representations

φί:©-»End(P/

ί), ^:(S->End(W9 for each i= !,...,«. Since the map (a^... 9 aj*-*
n n __

(fι(aι)> >fn(an)) °f ® Vf to © W* is compatible with the duals of φ =
i = l

\*

</>!©. . . ®φn and ψ = ψ®...®ψn, the mapping of (5 x 0 VΛ to
\ 0 i = ι /

π \ *

(δ x © W, given by
Φ i = l /

ί)9...9fa(a^) (4.4)

is canonical.
Assume now that all Wi = W9ψi = ψ9i=l9...9n and compose the mapping (4.4)

with the dual of the Lie algebra homomorphism (5xPF->(8x0^,
Φ Φ

(£,w) ι—»(£, w,...,w). In this way we get a canonical map

/ „ \ *
J:[ ©x 0Ff ->(©x JP)*,

V Φ i = ι / *

given by

Jί^fli , . . . ,απ) = (μj,(a,} + + />„)), (4.5)

μe(5*, a^

5) Elasticity. The map (4.5) arises in the Poisson bracket formulation of
elasticity. The following is the relevant material from [5]. The equations of
elastodynamics in IR" are Hamiltonian on the dual of the semidirect product Lie
algebra

where a vector field in 3£(Un) acts by Lie derivative on every factor. The
corresponding duals are:

— %(Un] has as dual the one-form densities; the pairing is the action of one-form
densities on vector fields followed by integration; the physical variables are Mί? i
= 1 , . . . , n, the components of the momentum density, which as vector field equals pv,
p being the density of the material and v the velocity field of the displacement;
— ^(M") has as dual the densities on [Rn; the pairing is multiplication of a function
by a density followed by integration; the physical variables are the density of the
material p for the first factor and the entropy density σ for the second factor;

n n

— Θ Λn~\Un)(i) has as dual φ Λ^U^ί); the pairing on each summand is the
ι=l i = l

wedge product of an (n— l)-form with a one-form followed by integration; the
physical variables on the ΐh summand are the n components Ftj of the deformation
gradient FJ = !,...,«.

The bracket of two functions /,# depending on the variables Mi9 p, σ, Ftj is given
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by (see (80)-(86) in [5])

{f,g}(M,,p,σ,FtJ) = {Λ -(M^ + < W -

δf

where dk = d/dxk ana (-)>k = d( )/dxk.
If one uses the standard hypothesis of material frame indifference, then

the stored energy function, and hence the Hamiltonian, depends only on the
Cauchy stress tensor e = FtF (see e.g. [2]). In this case the equations of elasto-
dynamics become Hamiltonian on the dual of the Lie algebra $C(Rn) x [J^ίR")®
^(^n)®(S2(%(Rn})®Λn(Un))~\, where SC(Rn) acts by the Lie derivative on every
factor and S2(&(Un)) ®Λn(Un) are the contravariant symmetric two-tensor densities
on U". The dual of this space is the vector space of co variant symmetric two-tensors
S2(A1(Un)) and the corresponding physical variable is the Cauchy stress tensor e.
The bracket of two functions /, g depending on the variables (Mt, p, σ, ei}) is given by
(see (88) in [5])

= {f,g}Mitp,σ + μnxΓ(2dkeίβ - ekβ,)-
oehβ

δeiβ

where {/, g}M.tpttr denotes the part of the bracket (4.6) independent of Ftj given by its
first two rows the corresponding bracket in terms of the finger deformation tensor is
given in [8].

The passage from (4.6) to (4.7) is achieved by the map

n

defining the Cauchy stress tensor in terms of the deformation gradient. Denoting
by Ak the one-form on R" having components Fki9 i =!,...,«, (4.8) is a map of
Γ π Ί*

® An 1(IR")(i) \ -+S2(Al(W1}) given by (y41,...,y4Jι—^A ί ®A1 - f . . . + An®An.
u=ι J
Take now in (4.5) (5 - 9C(W), Vt = ... = Vn = An~ ^R"), W= S2(%(R")) ® A"(Un\
/! = ... =fn =/, f ( A ) = A ®A, AeA^R"). By (4.5) the mapping (Mf, Fij)\-^(Mi,etj)
is canonical. Hence by (4.4) the map (Mi,p,σ,Fi^)}-^(Mi,ρ,σ,eij} is also canonical.
We summarize this result in the following.

Theorem 4.1. The mapping (Mi,p,σ,Fij)\-*(Mi,p,σ,eij=(FίF)ij), which on the last
component represents the definition of the Cauchy stress tensor, is a canonical mapping
between the Poίsson structures (4.6) and (4.7) associated to the equations of
elastodynamics.
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6) Anisotropic superjluid with spin. In [6] it has been shown that the equations of
motion for an anisotropic superfluid with spin are Hamiltonian on the direct sum of
two Lie algebras whose description follows. We shall use the notations of Theorem
3.5.

The first summand is a semidirect product § x [(β(x)ft) x (A ® K)], where

ξ> = %(Un\ R = ̂ (Un\ A = An(Un\ & = © Θ © 0 (R, where © is a finite dimensional
Lie algebra representing the internal symmetry algebra of the superfluid
(for 3He-A, © = so(3)), and K=©e©Θ© The relevant actions are the
following: ft acts on Fby

for ξ1,ξ2,?/1,?;2,^3E(5,αe[R, where m is an arbitrary constant (the mass of the 3He
atom in physics). Finally, § = ^(IR") acts on R and A by Lie derivative.

The second summand is the semidirect product §> x R = &(Un) x J^((R"), where
§ acts on R by Lie derivative.

The description of the dual of this Lie algebra is the following. The first
summand :

— 3£(Un) has as dual the one form densities; the pairing is the action of one-form
densities on vector fields followed by integration; the physical variable is the
momentum density M of the superfluid
— in (#(χ)5V)* the three summands have the following interpretation:

a) R (g) © has dual Λn(U") (x) ©* the physical variable S is called the orbital spin
density;

b) R®© has dual A"(Un) ® ©* the physical variable L is called the orbital
angular momentum density;

c) (R®R)* has dual A"(Un); the physical variable is the density p of the
superfluid.

— in (A ® F)* the three summands have the following interpretation :

a) A ® © has dual «^([RW) ® ©*; the physical variable n is called the spin vector;
b) The following two summands in the dual are again ^(Un) (x) ©* and the two

physical variables are the first and second order parameter ψl and ψ2.

The second summand:
— 3ΐ(Un) has as dual the one-form densities, and again the physical variable is the
momentum density;

n) has as dual Λn(Rn)\ the physical variable is the entropy density s.

The Poisson bracket of two functions F, G depending on (M,S,L,p, π,
equals (see (23) in [6])

δG δG δG δG ~] OF
' ~^ΓdιLv + IF"5'5/* + ~s~dιP + IΪ7~(MA + a/Mfc)

dL ^ dύ ^ dp dMΛ
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δG Γ dF_ δF OF OF OF
~ k ~ Π " ψk ~ ψk +

OF δF~] ^ f δG M δG /2\δF
cy- + 2m TΓϊ^-TTT^ ΠΓ
(5pJ V^^ί Wμ JδP

^ δGiδF .δF\ ίδGδF δG δF
2m

μ v μ

δG δG \δF δG δF δF

δG δF
(4 9)

where t°μ are minus the structure constants of ©.
The order parameters i/^1 and ^2 are the real and imaginary parts of the complex

order parameter ψ = ψ1 + iψ2 used in physics. However, other order para-
meters are sometimes in use in the description of superfluids (see e.g. [7]):
AμV = nμ\l/l, Aμv = nμψy. As was observed in [6] there exists a counterpart of
the bracket (4.9) in terms of the variables A1, A2 instead of n, ψ1, ψ2 (with all
other variables unchanged). Let us show that this fact follows directly from
the theorems of Sect. 3. The map J/* -> W* = [(5 ®(© (g)©)]* =
(®*®©*)®(©*®©*), such that the associated map ^(R")(χ)F*^
«^(IRW)® W7* is given by (n9ιl/

1

9ιl/
2)h^(A1,A2)9 A1 =n®ψl,A2 = n®ψ2 is canonical

by Theorem 3.2 and formula (4.4). Now apply Theorem 3.5 to get a canonical map

(/I® WO)]*,

Finally apply (4.4) to conclude that (M, S, L, p, n, ^S i/^2, s)ι->(M, S, L, p, A1, A2, s) is
canonical. The bracket in these new variables being a Lie-Poisson bracket can be
now written directly for any two functions F, G depending on (M, S, L, p, n9 A

 1 , A2, s) :

2 δF δF~

^ δGί 2 δF 1 δF
_ι_ OVM _ / Λ 2 _ A 1

" " " v
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δF MΛ δF ^ δF
i

' ^^ε εμ

δF ,Λ δF ^ δF

+ ̂ ίAlίσ^ + A2

σ-^-\ + ̂

(4.10)

Thus we have proved the following.

Theorem 4.2. With the foregoing notation, the mapping (M, S, L, p, n, ψ1, ψ2, s)ι—>(M,
S, L, p, A1, A2,s), A1 = n®ψ\i = \,2is a canonical mapping between the Lie-Poisson
structures given by (4.9) and (4.10) describing the Hamiltonian structure of the
equations of motion of an anίsotropic superfluid with spin.
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