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Remarks on Quantum Gravity*
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Abstract. Quantum gravity is analyzed from an axiomatic point of view. Under
some general conditions imposed on the asymptotic structure of space-time a
rigorous proof of the CPT theorem and a general discussion of the axiomatic
approach to quantum gravity are presented.

I. Introduction

In this paper we analyze in detail a set of axioms for quantum gravity recently
proposed by Hawking [1-3]. The interest of such an axiomatization is twofold: on
the one hand it allows us to make general statements about quantum gravitational
effects and to analyze what type of principles and results of ordinary quantum field
theory apply to quantum gravity; and on the other hand it may give a more
definitive answer to the question of whether the inclusion of nontrivial topological
configurations of the gravitational field generate loss of quantum coherence, i.e.
evolution of pure to mixed states. This possibility was suggested shortly
after the discovery that black holes can emit particles in a thermal spectrum [4, 5].
The semiclassical calculation carried out so far in the presence of a black hole seems
to suggest that such a process might take place. These arguments led Hawking to
infer that such an evolution from a pure to a mixed state could also occur on a
microscopic level due to quantum fluctuations of the metric. Since these gravi-
tational bubbles can have nontrivial topologies, the virtual geometries they describe
will not be globally hyperbolic, and thus, they could generate acausal poles in the
Green's functions of fields propagating through them [6-8]. Hence, it seems
plausible that an acausality intrinsic to quantum gravity, might generate the loss of
quantum coherence. Equivalently, one may interpret the quantum gravitational
bubbles as virtual black holes which form and evaporate.

Without a rigorous theory of quantum gravity, the most reasonable way to
assess the validity of the above conclusions is to try to formulate a minimal set of
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axioms for the Green's functions of quantum gravity. Then one can examine whether
the loss of quantum coherence could be a consequence of the axioms, or at least
compatible with them. This approach has recently been explored by Hawking [2, 3].

In this paper we will further investigate the consequences of Hawking's
axiomatic framework using the standard methods of axiomatic quantum field
theory. In Sect. II we present a brief summary of Hawking's formalism and some
interesting recent criticism [9-12] concerning the superscattering operator. Section
III contains the consequences of the axioms, in particular, we present a fairly
rigorous proof of the CPT theorem, and a more rigorous formulation of the axioms
in [2, 3]. Finally, we introduce a new axiom which helps eliminate certain
pathological cases where loss of unitarity would also follow in ordinary flat space.
We call this the axiom of weak asymptotic completeness.

II. Axioms for Quantum Gravity

The analysis of scattering processes which might result in the evolution of pure states
into mixed states can be most easily carried out by means of the superscattering
operator $ [1-3]. Let ^~® 2tf~' [13] be the Hubert space of incoming density
matrices defined in terms of states prepared in the asymptotic past region, and
Jf + (x) J^ + ' be the corresponding space of outgoing density matrices. The J^+ and
Jf ~ are assumed to have the structure of free field Fock spaces. All information
about scattering processes is now described by the operator $ which transforms
ingoing into outgoing density matrices. Since density matrices are hermitian
operators with unit trace, conservation of probability requires that $ transform unit
trace hermitian incoming matrices into unit trace hermitian outgoing density
matrices :

$ being hermitian in each pair of indices (AB) and (CD). Quantum coherence is
maintained only if Ύrp2 is conserved, i.e.

Tr($p_)2 = Trp2. (2)

In ordinary field theory in flat space- time, we usually have $ = S® S+ ,SS + = 1, so
(2) will always be satisfied, thus forbidding transitions from pure to mixed states.

The axiomatic formulation should provide us in principle with a method of
computing $ in terms of the Green's function of the theory. In order to define the
latter, we'll invoke the Euclidean formulation of quantum gravity and the
Euclidicity postulate [13, 14]. In ordinary quantum field theory it is well known that
the Green's functions for any operator ordering can be obtained as boundary values
of a single set of holomorphic functions. Thus, the ordinary Green's functions,
Wightman functions and Sch winger functions can all be obtained from a single set of
holomorphic functions (Wightman functions) [15]. Thus by appropriate analytic
continuation one can get the functions of interest for the problem at hand. While
these results have been rigorously established in Minkowski space [16, 17],
quantum gravity hasn't as firm a foundation and one has to appeal to the Euclidicity
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postulate which basically gives the conditions under which the same results are
expected to hold. It should be remarked that if we consider that the Green's
functions are given by the Euclidean functional integral, we have to integrate over all
topologies and geometries. Therefore the arguments of the Green's functions will
not have a well defined meaning in general. Since we are here interested in the effects
that gravitational vacuum fluctuations will have in scattering processes, we can
restrict the functional integral so that it averages over all asymptotically Euclidean,
positive definite metrics [2]. By asymptotically Euclidean it is meant that outside a
compact region, the metric approaches the flat Euclidean metric in R4 fast enough,
(We will say more about regularity conditions later on.) In this way, the Euclidicity
postulate gives us a way of computing in principle the Schwinger and Wightman
functions of the theory, and thus, the Wightman functions Wn(xί , . . . ,xπ) with their
arguments taking values in the asymptotic regions. In the remainder of this section
we will present the axioms that Hawking [2] imposes on the "expectation values"
Wn(xί9...9xn) obtained by the procedure outlined above. They are the following:

(a) Under a Poincare transformation of the past and future asymptotic regions,
the Wightman functions transform as they would in Minkowski space-time.

(b) The Wn(xί9...9xn)'s satisfy the ordinary positivity and hermiticity
requirements.

(c) If all the arguments of Wn(xί9. ..9xn) belong to to either of the asymptotic
regions then the Wn(xl9...9xn)'s satisfy the free field equations and commutation
relations.1 In other words, the theory is asymptotically noninteracting. This axiom
allows the definition of in and out Hubert spaces where the scattering data is given in
terms of the creation and annihilation operators associated with the fields
generating the given free field Wightman functions.

(d) Spectral condition : axioms (a), (b), and (c) imply that we can represent the
Wightman functions in terms of field operators A(x) (see below). Thus, one can
represent the field A(x) in the asymptotic past and future in terms of past and future
creation and annihilation operators satisfying the canonical commutation relations,
even though commutation relations between the creation and annihilation oper-
ators in the past with those of the future are not trivial. The creation and
annihilation operators in the past and future are then obtained by the usual Yang-
Feldman relations:

(3)
\ZJl) Σ±

Here Σ+ (Σ_) is a space-like or null Cauchy surface for the future (past) asymptotic
region. The spectral condition is then formulated [2] by saying that for any string Q
of creation and annihilation operators the corresponding expectation value < Q ) —
0 unless at each point in the string, the sum of the energies of the annihilation
operators to the right of the point is less than or equal to the sum of the energies of
the creation operators to its right. Similarly, one demands conservation of angular
momentum and electric charge.

Another way of formulating the spectral condition is to say that given the unitary

1 The field equations have to be satisfied in each argument separately in the asymptotic region
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representation of the Poincare group which is induced by axiom (a) on the
reconstructed Hubert space, the support of the spectrum of the generator of
translations is contained in the forward light cone. This axiom is very important in
the sense that it allows us to prove that the Wightman functions are boundary values
of holomorphic functions [18,19]. Those are the usual axioms in ordinary quantum
field theory, with only the axiom of asymptotic completeness omitted. It should be
mentioned though that the asymptotic completeness is independent of the oridnary
Wightman axioms plus the Haag-Ruelle scheme of defining the S-matrix (see Ref.
[20]).

III. Reconstruction Theorems

Given the axiomatic framework, we can apply the reconstruction theorem of
Wightman theory [18] in order to obtain the Hubert space field operator, etc. We
first present a simple outline of how this is done, and later we present a more
complete construction. In order to construct the Hubert space of states, we consider
the space of test functions whose support is contained in the asymptotic regions.
With each such test function / we can, in an abstract sense, associate a vector in a
topological vector space φ(f). Using the positivity requirement, we can then define
the scalar product between two vectors Φ(f1)φ(f2) in the following way:

<Φ(fl)\Φ(f2)> = ί fnXl>>'^Xn)f2(yii'*-,yJWn + m(x1,...,Xn,y1,...,ym),

D(/ι)MD(/ 2)

(4)

where D(f1) is the support of fti= 1, 2. The integral is well defined because the
functions involved are all well defined in the asymptotic region. The completion of
the quotient of this space by its radical is our Hubert space 2f. Next, we can define
the field operator A(f) by linear extension of the relation:

A(f)φ(g) = φ(f®g). (5)

Poincare in variance allows the definition of a continuous unitary representation
u(A,a) of the Poincare group (A,a represents Lorentz rotations and a translations,
respectively.) By construction, one can find a state |0> which is left invariant under
the action of u(A,a\ and such that we can represent the distributions Wn(x1 , . . . ,-xJ
as:

Wn(x1,...,Xn) = <Q\A(xl)...A(xn)\θy, (6)

proving CPT still requires some analyticity conditions which can be derived from
the spectral conditions (more on this shortly). Notice that the asymptotic condition
automatically implies that when the arguments of Wn(x±,... 9xn) are all in the future
or in the past region (M+ and M~, respectively), we obtain the Wightman functions
of a free field theory; thus by considering test functions with support in either M+ or
M" we apply the reconstruction theorem again, and obtain two Hubert spaces 3tf +

and 2tf ~, and two free fields A +, A~ which represent the asymptotic states. This
construction can be made in a more rigorous way, and we will present it here,
because it is important for our arguments.

Recall that throughout, we are considering asymptotically Minkowskian
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manifolds, and therefore we can assume that the structure of,/2 is that of Minkowski
space. In order to ensure this, it is clear that one needs to impose certain regularity
conditions on the space of gravitational bubbles we integrate over. In order to give a
more concrete characterization of these manifolds, we can identify the asymptotic
regions by saying that a point x belongs to M + (M~) if its future (past) light cone
intersects J + (J ") in a shear free cross section. These regions (M + ,M ~) must be four
dimensional and clearly form a neighborhood of J>. The meaning of the shear free
condition can be most easily understood by recognizing that the passage of a beam
of light through a region of gravitation can be described by idealizing gravity as a set
of lenses [22] which produce among other effects, astigmatic focusing (i.e., shear).
This can be avoided asymptotically by requiring the Weyl tensor to vanish
sufficiently quickly. Since the gravitational bubbles are essentially concentrated in a
compact region, the regions M+, M~ will have a notrivial set in common, so that
they are not totally disconnected.

For the manifolds considered it is possible to construct an abstract Minkowski
space-time Jί by associating to each shear free cross section of </ the tip of the light
cone which would produce the cross section, had the original asymptotically
Minkowskian manifold been true Minkowski space. (Recall that each point of
Minkowski space is in one-to-one correspondence with a shear free cut of«/.) Due to
our formulation of the geometrical asymptotic condition, M+ and M~ can be
identified with subsets of M. Within this framework, the functional integral will
provide the Wightman functions over the asymptotic regions and J> +, J~.
According to (c), the PFs will then satisfy the free field equations in each argument,
and thus we can use the values of W at J + as initial data on the null hypersurface J +

for the free field equations. This allows one by standard formulae [23] to obtain a
unique extension of Wn to the whole of Jί. In this way, we obtain from Wn at J + a set
of Wightman distributions satisfying the free field equations throughout Jί. The
distributions so obtained will be denoted W*. Since the W*'s are defined in Jt, we
can now apply the standard reconstruction theorem and obtain a free field ^4 +

throughout Jί and a Hubert space J f + whose vectors represent out states.
Moreover, by standard arguments we can construct the free CPT operator θ +

associated with A + [19]. Before we go on to the case when some of the arguments of
Wn are in j^+ and some in J~, there are several remarks worth pointing out:

(i) The axiom of Poincare invariance can be formulated naturally for W* as a
consequence of the asymptotic structure of the manifolds we sum over. In general
relativity, there is an important asymptotic symmetry group defined for flat
manifolds, the BMS group [24-26], which can be defined as the set of transfor-
mations preserving the strong conformal geometry of null infinity. In the generic

2 J is the three dimensional manifold that is obtained by conformal compactiflcation of the original
four-dimensional manifold M[28, 29]. Briefly, a conformaί compactiflcation cf(M,g) is given by a triad
(M,#,ί2), where M corresponds to the manifold M with all the "end points" of maximally extended
geodesies in M which reach the asymptotic regions. Thus J = dM and M is diffeomorphic to M — g. Here
Ω is a smooth positive field in M so that g = Ω2g in M, and Ω = 0 at J> so that VμΩ(«/) =£ 0. If we consider
the parts of M which correspond to null infinity, it is easy to see that it is formed by two pieces </ + ,«/",
J*+(^~) corresponds to the end points of the maximally extended null geodesies towards the future (past)
which are not captured inside space-time. The </+ and J*~ have global topology S2 x IR
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case, however, it is not known how to extract a canonical Poincare subgroup of
BMS; although it is well known [26] that if we consider those transformations
which send shear free cross sections to shear free cross sections, we obtain a Poincare
group. For manifolds whose global asymptotic structure is Minkowskian, we can
take this Poincare sub-group as the Poincare group of the theory; and in fact, the
transformations induced in J> by Poincare transformations in Jί are exactly those
preserving the shear free property of cross sections. Axiom (a) in this context implies
that the Poincare group has a well defined unitary action on 3? +, and the spectral
condition can be formulated in the usual way in terms of the generator of
translations in Jf +. Finally, we can find a Poincare invariant state |0+ > so that
W* may be represented as:

WΪ(x19...9xn) = <0 + \A+(Xl)...A+(xn)\0+y9 (7)

in Jί, and coincides with the original Wn in M+.
(ii) A totally similar construction can be applied mutatis mutandis to the

Wightman functions W ~ ( x , . . . ,x J whose arguments lie in J ~. Using again the
asymptotic structure of the manifolds consider the corresponding abstract
Minkowski space is identical with Jt endowed with the usual Poincare group. Thus
there will exist J f ~ , ^ l ~ , | 0 ~ > , θ ~ , s o that the states of 3? ~ represent asymptotic in
states, θ~ represents the in CPT operator, and throughout M\

W;(xl9...9xn) = <Q-\A-(Xl)...A-(xJ\0-y. (8)

Both W* 9W ~ are distributions defined on the usual space of test functions S(Jίn).
Finally, we come to the far less trivial case of studying the case where

Wn(xl9...9xn) has arguments at both M+ and M~. These distributions will
somehow exhibit the effect of the gravitational bubbles. In this case, the Wn's will be
distributions defined on S(M+ UM~). Since M+ and M~ are subsets of Jt, we have
S(M+UM~) c S(Jf), and the Wn's are linear functionals on S(M+UM~). We can
now apply the Hahn-Banach theorem (see, for instance [20] and references therein)
and extend the set of distributions {Wn} to a new set {Wn} defined on S(J() and such
that on S(M+UM~) Wn and Wn coincide for all n. Poincare invariance will imply
that the extensions Wn will also be Poincare covariant; however, the Hahn-Banach
theorem does not imply uniqueness. (This is somewhat similar to the situation
encountered in the theorems concerning renormalized perturbation theory, where
one first defines the Wick ordered distributions G(x1,... ,xn) in M", where Mn stands
for Minkowski space with the points where the arguments coincide removed. Then
one can define the renormalized distributions in S(Mn) through the Hahn-Banach
theorem [27].) With all our distributions now lifted from the original scenario to Jί
we can analyze the consequences of the axioms in more detail. By using the
Euclidicity postulate, or the weaker assumption of weak locality which states that
(for simplicity we only consider a single Hermitian scalar field):

<0\A(x1)...A(xn)\θy = (0\A(-xn)...A(-x1)\Qy (9)

the analyticity condition and the spectral condition, one can now follow the
ordinary proof of CPT [19]. Thus we have

, (10)
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and an anti-unitary operator θ such that #|0> = |0> and θ is defined by an anti-
unitary extension oϊθφn(φ) = φn(φ~], where φ~(x1 , . . . ,xj = φ*( — xl , . . . , — xn) is a
test function, and φn(φ) is its associated state in the Hubert space.

The generalization to higher spin fields is trivial and will not be presented here.
This concludes our proof of the CPT theorem for the axioms presented in [2, 3],

following the methods of axiomatic field theory.
It is also interesting to point out that in [9, 11] a proof is given that CPT

invariance in a strong sense is incompatible with loss of quantum coherence. Even
though the original argument was basically concerned with the quantum effects
related to black hole formation and evaporation, the argument goes through
without change in the present context. For completeness we briefly reproduce the
argument (more details can be found in [ 1 1 , 1 2] . Following our conventions, p _ ( p + )
represents an incoming (outgoing) density matrix in j^ ~ ® JV ~ '(Jtf + ® Jtf + '). If
there exists a CPT symmetry, then there are two operators :

/, (11)

', (12)

satisfying 0 _ 0 + = 0 + 0 _ = l. Writing θ = θ_=θ~1 and applying the CPT sym-
metry one easily obtains:

0 = $0~1$, (13)

Γ1=θ~iW~1. (14)

It is now easy to show that $ having an inverse is incompatible with loss of quantum
coherence, for if $ transforms a mixed state into a pure state (or vice- versa) using (1 3),
(14) and hermiticity, it would follow that $ is not one-to-one and therefore its inverse
would not exist.

If one wants to find loss of quantum coherence in this general context, it is
possible to propose weaker forms of CPT invariance, and in fact this is done in [9,
10].

It is at the present not known whether CPT will be satisfied in the strong sense or
not (even though it does not seem it will) because a generalization of the LSZ [20]
formalism for $ in this context is lacking. However it is unlikely that this could be
proven, because one can think of examples of field theories in flat space time where
one would have loss of unitarity even though there is CPT invariance. The simplest
example of this kind of field theories3 consists of a set of two scalar fields A9 B in
interaction in ordinary flat space, with the condition that full A, B theory is
asymptotically complete. If out of the A, B theory we just extract the Wightman
functions of the A field, they satisfy all the axioms of Sect. II, although in the reduced
theory there is loss of unitarity as can be seen by the following argument: In the
truncated theory, we can only predict and calculate (at least naively) processes where
the initial and final states are just v4-mesons. It is a well known fact of elementary
field theory that the optical theorem is a consequence of the unitarity of the S-
matrix; therefore we could in principle calculate the forward scattering amplitude
for two A-mεson elastic scattering. Thus we obtain the total cross section for A +

3 We are grateful to S. Hawking for suggesting this example
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A^> anything. Since we have all the A's Wightman functions, we could in principle
check whether processes involving only ,4-mesons in the final state saturate the total
cross section for A + A -» anything. Obviously in this example, this is not the case,
because we know from the beginning that we could also have B particles in the final
state, and thus the S-matrix that one would define using the ordinary Haag-
Ruelle construction to the A Wightman functions would not be unitary.

It is also clear in this case which is the way out of the apparent loss of unitarity.
By using simple analyticity arguments, we can study the cross section for A +
A^> anything as a function of the energy. As is well known we should find in all the
Green's functions different cuts at the different thresholds, and therefore knowing all
the Wightman functions for the A-field should allow us to infer the existence of the
^-particle and most of its properties. In order to try and avoid the loss of quantum
coherence due to this type of problem, one might try to postulate that all the fields
appearing in the Wightman functions should be a complete set of fields at least in so
far as to describe all the asymptotic states as seen by asymptotic observers. In other
words, in the example explained, asymptotic observers with detectors only turning
on to ,4-mesons would certainly observe energy momentum and angular momen-
tum nonconservation, and one would certainly like to exclude this possibility by
strengthening postulate I and imposing the condition of completeness of the
asymptotic fields. It seems to us that one should add the condition that the
asymptotic fields A+, A~ should be a complete set of fields so that the observers in
the asymptotic regions could describe the scattering states in terms of them in a way
consistent with conservation of charge, energy, momentum and angular momen-
tum. This postulate of weak asymptotic completeness would eliminate the
pathologies mentioned before, and may help to pin down whether the topological
degrees of freedom of the gravitational field do in fact generate loss of quantum
coherence. Given the scheme presented before, it is not hard to extend the Haag-
Ruelle construction of scattering states to our situation [19]. Using the Wn's9 we can
obtain by using the standard reconstruction theorem, a Hubert space ffl in which we
can give sense to the Haag-Ruelle definition of asymptotic states. The spectral
condition and the asymptotic behavior of our Wightman distributions implies the
existence in 2tf of the asymptotic Hubert spaces tf^ 3?oui related through CPT 3tf.m

= θtfout. The jtf.m and 3?out are clearly unitarily related to 3? ~ and Jf+ because
they are defined by the same free Wightman distributions, and therefore we can also
define a unitary isometry between J f ~ and ̂ + : θθ m, which is not necessarily
related to the 5-matrix of the theory. It seems plausible that a construction of $ a la
Haag-Ruelle rather than using the LSZ formalism should immediately verify
whether loss of quantum coherence is possible in the more interesting case of
theories satisfying the axiom of weak asymptotic completeness. Work in this
direction is in progress.

IV. Conclusions

We have shown that the axiomatics presented in [2, 3] can be expressed in a more
rigorous manner if certain asymptotic conditions are imposed on the space-times
one sums over in the functional integral.-Under these conditions one can prove the
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CPT theorem for quantum gravity. The result depends crucially on two facts:
(i) The Wightman functions obtained approach the free Wightman functions in

the asymptotic past and future.
(ii) We have been summing only over a set of geometries with very strong

asymptotic constraints; in particular, we were able to identify an abstract
Minkowski space-time and consider M+ and M~ as subsets of Jt so that the whole
problem could be formulated on Ji, and therefore the application of axiomatic field
theory techniques is greatly simplified. We believe that this formulation could be
made more accurate and perhaps some of its conditions relaxed by using the
techniques of 2?-space [30], although we have not pursued this approach.

If one wants to maintain CPT one can relax conditions (b) and (c) of Sect. II
without affecting very much the proof, which basically depends on Poincare
invariance, weak locality, and the spectral condition. However, relaxing (b) and (c)
might lead to acute problems in the identification of scattering states, the asymptotic
description of the theory in terms of Fock spaces, and therefore the asymptotic
description of the theory in terms of a particle interpretation.

Finally we formulated the axiom of weak asymptotic completeness in order to
simplify the analysis of loss of quantum coherence in quantum gravity due to the
topological degrees of freedom of the gravitational field. Wherever this line of
thought may lead to, we believe that the axiomatic approach started in [2] will teach
us many things about the structure of quantum gravity, and is certainly worth
pursuing.
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