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Abstract. Recent results on the structure of the S matrix at the m-particle
threshold (m^2) in a simplified m-+m scattering theory with no subchannel
interaction are extended to the Green function F on the basis of off-shell
unitarity, through an adequate mathematical extension of some results of
Fredholm theory: local two-sheeted or infinite-sheeted structure of F around
5 = (mμ)2 depending on the parity of (m — 1) (v — 1) (where μ > 0 is the mass and v
is the dimension of space-time), off-shell definition of the irreducible kernel U
which is the analogue of the K matrix in the two different parity cases
(m— l)(v— 1) odd or even, and related local expansion of F9 for (m— l)(v— 1)
even, in powers of σβlnσ(σ = (mμ)2 — s). It is shown that each term in this
expansion is the dominant contribution to a Feynman-type integral in which
each vertex is a kernel V. The links between the kernel V and Bethe-Salpeter
type kernels G of the theory are exhibited in both parity cases, as also the links
between the above expansion of F and local expansions, in the Bethe-Salpeter
type framework, of Fλ in terms of Feynman-type integrals in which each vertex
is a kernel G and which include both dominant and subdominant
contributions.

1. Introduction

The two-sheeted, square-root type structure of the S matrix at the two-particle
threshold of a 2—>2 process in space-time dimension v = 4 is an old result of the
sixties [1-4] derived from two-body unitarity. The result has also been extended to
the Green function F of the process (whose mass shell restriction is the scattering
function T) either [5] in the Bethe-Salpeter framework in which the
Bethe-Salpeter kernel G is assumed to be irreducible (i.e. analytic at thereshold) or
[4] on the basis of off-shell unitarity (= asymptotic completeness).

Further results on the structure of the multiparticle S matrix and Green
functions near other Landau singularities have been obtained in axiomatic S
matrix [6-8] and field theory [4, 9, 10]. They include in particular local
decompositions in terms of "Feynman-type" contributions, or of analogous
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quantities defined in terms of pure on-shell S matrix elements in S matrix theory,
which are singular along well specified Landau surfaces and whose singularities
have a well defined nature. Such results all refer, however, to cases where the only
relevant Landau singularities are associated to graphs with sets of at most one or
two lines between any pair of vertices, and rely, whenever sets of two lines are
involved, on the known square-root nature of two-particle thresholds in dimen-
sion 4. There is so far no similar information, even from a heuristic viewpoint, on
m-particle thresholds for m ^ 3 . In parallel with investigations on the subject in the
actual theory (see in particular [9, 10]), it has then appeared, as discussed in [11],
that some interesting features could already be exhibited in the easier analysis of
the m-particle threshold in a simplified m^m scattering theory with locally a pure
m-^m interaction (i. e. no m' -»m" interaction with m! :g m, m" < m or rή < m, m" ^ m).
A theory with only one type of particle, a boson of mass μ>0, is considered for
simplicity. The simplified theory coincides with the exact one at m = 2, and its
study may thus also yield, as a byproduct, some supplementary results on
2-particle thresholds in the exact theory: e.g. in the present work, the off-shell
extension of the K matrix and the analysis of its links with the Bethe-Salpeter
kernel G.

Two possible approaches [12, 13] of the simplified theory, based respectively
on unitarity-type and Bethe-Salpeter type equations, have been proposed by
analogy with the case m = 2. As in the latter case [5], they are closely linked,
although not completely equivalent. The first approach has been developed in
[12] (see also [13]) in the on-shell framework. The purpose of the present work is to
extend some of its results to the off-shell Green function F of the theory (Sects. 4 and
5) and to clarify the links between these results and the Bethe-Salpeter type
approach [13] (Sects. 6 and 7). In order to exploit, in Sects. 4 and 5, the off-shell
unitarity-type equation, a mathematical extension of results of Fredholm theory,
which is different from that presented in [13,14] in the Bethe-Salpeter type
approach and is inspired by a method of [4], will be needed. It has its own
mathematical interest and is thus presented first, in Sect. 2.

The first approach of the simplified theory is then presented in more detail, in
the off-shell framework, in Sect. 3 where some preliminary notations and results
are also included.

In Sect. 4, the local maximal analyticity of F around s = (mμ)2 with either two
sheets if (m— 1) (v— 1) is odd, or an infinite number of sheets if (m — 1) (v— 1) is
even, is then derived from off-shell unitarity. (This result, which extends the
previous result of [12] on the scattering function T to the Green function F, is
analogous to that obtained in [13] in the Bethe-Salpeter type approach.)

In Sect. 5, a class of kernels U, which are adequate off-shell analogues of the K
matrix in the two different parity cases (m — 1) (v— 1) odd or even, is introduced.
These kernels are shown to be meromorphic and uniform around s — (mμ)2 as
a consequence of off-shell unitarity, with possibly a singularity at s = (mμ)2

and a discrete set of poles that may accumulate near s = k2 = (mμ)2. For

β= > 0 and under a boundedness condition on F near the thresh-

old, these singularities are excluded locally, in a complex neighborhood of

s = {mμ)2, for a subclass of kernels which are thus irreducible. This is the case in
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particular for the kernel U which is well defined by the integral equation:

F=U+f{σ)F*U, (1)

where f(σ) = \ if (m - 1) (v - 1) is odd, (β half-integer), f(σ) = — In σ if (m - 1) (v - 1)

2π
is even (/} integer), σ = (mμ)2 — s and * denotes on-mass-shell convolution over m
internal energy-momenta. The following convergent expansion of F in powers of
σβf(σ), which is the Neumann series of F in Eq. (1), is then obtained near σ = 0:

00

F = £ U*in+iXσβf{σ))'\ (2)

where * = σβ* and all coefficients £/* ("+ 1 ) are, like U, locally analytic
(U*(n+1)=U*U...*U, n+l factors).

These results are the off-shell extension of previous on-shell results of [12], and
are presented here independently of the symmetry assumption used there for
simplicity. The local expansion (2) of F is of interest mainly in the case (m—1)
(v—1) even, and then exhibits F as an infinite convergent sum of well specified
contributions that behave like (σβInσ)f\n = 0,1,2,.... These contributions can be
associated with the graphs

(3)

with n sets of m internal lines and n + l vertices, which all give rise to the same
Landau surface s = (mμ)2: each term is in fact an on-mass-shell convolution
integral Jj*{n+1} of kernels U associated with each vertex, multiplied by

/ i Y
(f(σ)T = \ — m σ I n the off-shell framework, it will also be shown that these

\2π j
terms are the "dominant" contributions to Feynman-type integrals Jjo{n+1)

(=U°U...°U,n+l factors, ° denoting Feynman-type integration) associated with
the graphs G{™]: Uo(n+ υ is in fact equal, in the case ( m - 1) (v- 1) even, to £/*(n+ υ

ί i Y
— σ^lnσ plus terms of lower order in σ^lnσ.

In Sect. 6, a class of Bethe-Salpeter type kernels, depending on the choice of an
analytic cut off factor φ in the definition of the Feynman-type operation °, is
introduced in the first approach of the simplified theory, through the equation:

F = G + FcG. (4)

The mathematical analysis of [14] (together with the algebraic argument of the
Appendix: see below) allows one to show that these kernels are in general well
defined in terms of F and, like the kernels U, are uniform around s = (mμ)2, with
possibly a singularity at s = (mμ)2 and a discrete set of poles in k that may
accumulate near k2 — (mμ)2. We shall here assume, as in the Bethe-Salpeter type
approach, that these singularities are excluded locally, for an adequate choice of φ,
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the corresponding kernel G being thus irreducible. If F λ is defined in terms of G
(see [13]) through the equation:

Fλ = G + λFλoG (40

(with Fλ = F at λ— 1), the following local expansion, which is the Neumann series
of Fλ and is convergent at small λ, occurs naturally in this framework:

Fλ= Σ λnGo{n+1). (5)
n = O

Each term G o ( π + 1 } is here an actual Feynman-type integral associated with the
graph G^m) of Eq. (3), in which each vertex represents a kernel G. In contrast to the
expansion (2), the series (5) is not necessarily convergent at the physical value λ— 1,
and the terms Go{n+1) do not have the well specified behaviour in (σ^lnσ)" [for
(m— 1) (v— 1) even] of the corresponding terms in (2): as explained in Sect. 7, they
are rather, like jj°(n+1\ combinations of various contributions in (σβ\nσ)p, otίp
S n, with locally analytic coefficients.

In Sect. 7, we then exhibit the links between the kernels G and U (in both parity
cases), and explain how the expansion (2) of F can be recovered from the
expansion (5) by regrouping together all terms with common powers of σβ lnσ (and
then by analytic continuation in λ up to λ=l).

Once their analyticity or meromorphy around k2 = (mμ)2 has been established
by the methods of Sect. 2 and of [14] respectively, the uniformity of the kernels U
in Sect. 5 and G in Sect. 6 is based on an algebraic argument inspired by a method
of [5] at m = 2 and used previously in [12, 13] in the discussion of the on-shell
kernel U and of the kernel G respectively. This argument is presented in the
Appendix, where a general class of uniform or irreducible kernels, including the
kernels G and U, is also introduced in a qualitative manner on this basis.

Lorentz invariance is unessential in the present work and is therefore not
assumed.

2. Mathematical Extension of Some Results of Fredhom Theory

We consider below kernels A(k z, z'\ where z, z are real or complex π-dimensional
variables and k is a real or complex v-dimensional parameter, and a composition
operation * defined by the formula:

{A*B) (k, z, z') = J A{k; z, z(fe, ή)B(k z(fc, ί), z'Wk, t)dt, (6)
s

where S is a given r-dimensional real compact set, r<n, e.g. the unit spere Sr and
ί->z(fe, ί) is, for each fe, a mapping from S to a submanifold S(k) of real dimension r
in z-space z(fe, t) and α(/c, t) will have continuity or analyticity properties in t and k
specified later. We are then interested in the solutions Rλ of the equation:

Rλ-A = λRλ*A,λe<C. (7)

Equation (7) is formally identical to a Fredholm resolvent equation, but differs
from it in two respects which are here mixed together: the composition operation
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* denotes integration over a submanifold in z-space and the kernels considered, as

also the submanifold S(k) and the integration measure, depend on the parameter k.

Theorem 1. Let Λ(k z z') be analytic in k, z, z in a domain if x Q) x 3) where Q) is a

domain of (Cn and if is a domain of (Cv or of a Riemann surface over <CV, such that:

S(k)C@ VkeW, (8)

and let z(k,t), α(/c, ί) be continuous in t and analytic in k in W^teS.
Then, except for a discrete set A of values of λ, Eq. (7) admits a unique solution

Rλ(k, z, z'\ analytic in if x Q) x 3) apart possibly from a discrete set Σλ of polar
submanifolds (of complex dimension v— 1) in k. More precisely,

N(λ,k,z,z')

^ ( f e ; Z ' Z ) = D{λ,k) ' ( 9 )

where N is analytic in λ,k, z, z! in C x if x Q) x 3) and D is analytic in λ, kin C x W,
A is the set of values of λ such that D(λ, k) is identically zero and Σλ is the set of
zeroes of D(λ, k) for λ outside A.

Rλ satisfies the equalities:

(10)

Rλ-Rμ = {λ-μ)Rλ*Rμ, (11)

Rλ*Rμ = Rμ*Rλ. (12)

Proof Let a (k ί, t') = A(k z(fe, ί), z(/c, t') a is a continuous function of ί, ί' in 5 x 5
and is analytic in k in if in view of the assumptions made on A. Fredholm theory,
applied to the Fredholm kernels α(k, ί, ί'), considered as kernels of operators in t-
space depending analytically on the complex parameter k (see e.g. [13]), ensures
the existence for almost all λ (see below) of a unique solution of the resolvent
equation

rλ-a = λrλ*a, (13)
where * is defined by:

(a*

The solution rA is of the form:

b) (k, t, t') = J α(fe ί,

where n and d are the standard Fredholm series, and depend here analytically on k
in if. The solution does not exist at the discrete set A of values of λ such that
d(λjή vanishes identically in k. For other values of λ, it is well defined as a
meromorphic function in k in if, with poles in k at the zeroes of d(λ, k). The
relation:

rλ*a = a*rλ (16)

follows from Fredholm theory.
Any solution R? of Eq. (7), if it exists, satisfies, by restriction to z = z(k,t),

z =z(k, t'\ the relation:



240 D. Iagolnitzer

We show below that it must satisfy on the other hand the commutation rule:

Rλ*A = A*Rλ, (18)

and then construct explicitly a unique solution of Eqs. (7) and (18).

Proof of (18). We first prove (18) when z = z{k, t\ teS. Any solution Rλ of Eq. (7),
must satisfy, in view of (17):

Rλ(k z(fc, t\ z) = A(k; z(k, t\ z') + λ\rλ(k, t, t')A(k, z(k, t'\ z')α(fc, ήdt'. (19)

Thus:

(A*Rλ) (k, z(/c, ί), z') = Jα(/c, t, t')A(K AK f), z')a(k, t')dt'

+ λ\a(K U t"Yλ(h t\ t')A(K AK t'l z')<x(k, t'Ήk t')dt"dt'

= \rλ{k, ί, t')A(k, z(k, t'% z')α(fc, t')dt'

{Kt\*), (20)

where the second and third equalities follow from (13), (16), and (17) respectively.
We now remove the constraint z = z(k, t). If Rλ satisfies Eq. (7), one can write:

Rλ*A = Rλ*Rλ - λRλ*(Rλ*A) = Rλ*Rλ - λRλ*(A*Rλ), (21)

where the equality Rλ*(Rλ*A) = Rλ*(A*Rλ) follows from the previous result (20). In
view of the associativity of *, one thus has:

Rλ*A = Rλ*Rλ - λ(Rλ*A)*Rλ = (Rλ - λRλ*A)*Rλ = A*Rλ. (22)

Proof of Theorem 1 (continued). Let Hλ(k,t,z') denote the right hand side of Eq.
(19), which is well defined in terms of A and rλ. If Rλ is to be solution of Eq. (7), it
must also satisfy in view of (18) the equation:

Rλ-A = λA*Rλ. (23)

Hence, in view of (19), it must be equal to:

Rk(k z, z') - A(K z, z') + λ\A{K z, z{K t))Hλ(K U zΉK ήdt. (24)

By an argument similar to that used in the proof of Eq. (18), one checks that
this unique solution of Eq. (23) satisfies the commutation rule A*Rλ = Rλ*A, and
hence Eq. (7). It satisfies on the other hand the relation [derived from (24) and the
definition of ίf J :

Rλ(k, z, z) = A(K z, z) + λA*A(k, z, z')

+ λ2 \A{K z, z(fc, t))rλ(k, ί, t')A{k, z(k, t'\ z')α(fc, ί)α(fc, t')dtdtf, (25)

from which the expression (9) of Rλ follows with:

D(λ,k) = d(λ,k), (26)

Nλ(K zj) = d{λ, k) \_A{k, z, z) + λA*A(k, z, z')~] + λ2 \A{k, z, z(fe5 t))nλ(k, U t')

• A(k, z(k, t% z')α(fc, ί)α(fe, t')dt dt!. (27)

The analyticity properties of N, D, and Rλ follow from (26) and (27).
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Finally, Eq. (11) is proved by an algebraic argument analogous to that used in
standard Fredholm theory. Namely, in view of Eqs. (7) and (10) applied to λ and μ:

Rλ-R^ = XRχ*A - μA*Rμ

= λRλ*\_A + μA*R^ - μ[λRλ*A + A]*Rμ

= (λ-μ)Rλ*Rμ. (28)

Similarly Rμ — Rλ = (μ — λ)Rμ*Rλ. Equation (12) is then proved by comparison
with Eq. (11). Q.E.D.

The following complement to Theorem 1 will also be useful.

Theorem 2. Let iV* admit a real domain I in its closure, let Q) contain a real domain
Q)r, and let A(k, z, z), z(fe, t), α(fc, t) admit continuous limits A0(k, z, z'), zo(/c, ί), αo(fe, t)
in k,z,z and in k,t respectively when fee/, z,z'eQ)r, teS, with S(k)C@r, Vfee/.

Then the functions N and D of Eq. (9) admit continuous limits No, Do in fe, z, z',
which are entire functions of λ. For any λ outside A, the equation:

Rλ-A0 = λRλ*A0 (29)

N
admits the unique solution —- in this limit, outside the set Σ'λ of points kel such that

Do
Do(λ,k) = 0. This set is not dense in I.

If for a given value λ0 of λ, Eq. (29) is known to admit a (continuous) solution for
k,z,z' real, keΓ, z,z eQ)'r where Γ and 3)'r are subdomains of I and Q)v respectively,
λ0 does not belong to A.

Proof As in Theorem 1, the result first holds for the resolvent rλ in view of
Fredholm theory, the functions n and d having continuous limits in fe, z, z which
are entire in λ. The extension to Rλ is then made by the same methods as in
Theorem 1, and is thus omitted.

The set Σ'λ of zeroes of D0(λ, fe) for a given λφA cannot be dense in / since
otherwise the continuous function D0(λ, fe) would vanish in /: the function D(λ, fe)
would thus vanish identically in W by the edge-of-the-wedge theorem, which is
contrary to the assumption λφA.

Finally, if a solution Rλ of Eq. (29) is known for keΓ, z,z'e&)'r, the function
D0(λ, fe) is not identically zero for fe in /' and thus D(λ0, fe) is not identically zero in

3. The Simplified Theory: Preliminary Assumptions and Notations

The initial and final, real or complex, energy-momenta variables of the m->m
process considered are denoted p1,...,pm and p\,...,p'm respectively; they are
always restricted to the subspace c(2m~1)v of points (pv...,pm, p'v...,p'm)

m m

satisfying £ p. = Σ pf. (energy-momentum conservation). The complex m-particle
i = 1 i = 1

mass-shell is the set of points (fe15...,fem), kteCv, z = l , ...,m satisfying kf = μ2,
i=l,...,m (kf = kfo — kf where fe. 0 and k are the energy and (v—l)-dimensional
momentum components of fe.). The real m-particle mass-shell is defined by the
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further constraints kt real, /c i 0 >0, z = l,...,m. The complex, respectively real,
mass-shell of the m-^m process is the set of points (pv ...,pm, p'v •• ,p'm) such that
(Pv •• »Pm) a n d (Pi? •••sPm) both belong to the complex, respectively real, m-particle
mass-shell (and satisfy energy-momentum conservation).

The m-particle threshold of the process is the subset of the real mass-shell
defined by the condition p1 = ...=pm = p'ί = ...=p'm9 which belongs to the surface

I m x 2

s = (mμ)2, where s= £ Pi

It will be convenient to use the variables k,z,z, feeCv, ze(C(m~ 1)V, z' = <C(m~1)v, z
m

= (z15 ...,zm; z e(Cv, ι = l, ...,m, ]Γ z = 0) defined through the relations:
i = 1

(30)

zf = Pi — k/m (respectively z' = p — fe/m), i = 1,..., m. (31)

In these variables, the m-particle threshold is the set of points (K, 0,0) such that
H+μ, where H+μ = {K,KeW, K2 = K2

0-K2 = (mμ)\ Ko>0}.
The following assumption on the 2m-point function F in the first approach of

the simplified theory (= analyticity in a domain containing a cut neighborhood of
the threshold and off-shell unitarity) will be made:

Assumption 1. Being given any real point KeH^μ(K2 = (mμ)2, K0>0) there exist a
complex neighborhood iV*κ of K in k-space and a domain Q)κ containing a complex
neighborhood of the origin in z-space such that:

(i) F is analytic in a domain containing the union UKΔ^X\ where

Δ£t) = {k,z9z';keif«cut\ze@κ,z'e®κ}9 (32)

^ real)}, (33)

and admits continuous boundary values Fo, Fί at pv ...,pm, v'v- >v'm
 rea^ ( — Kz,zf

real) on the boundary s = k2>(mμ)2 of A{^x) from the respective sides Ims>0 and
Ims<0.

(ii) Fo and F1 satisfy the off shell unitarity-type equation:

= $F0(pί,...,pm,k1,--;km)F1(k1,...,km,p'1,-,p'm)-^δv( Σ K- Σ Pi)
m \i=ί 1=1 /

m

• \\δ{k^-μ2)θ{kuo)d% (34)
i = 1

in the region pv ...,pm, p'v > >p'm real, s>(mμ)2, k, z, z'ei^κx@κx 3)κ.

In a large part of the results, Assumption 1 will be completed by the following
condition (local boundedness of F near the threshold):

Assumption!'. For each real point KeH*μ, \F(k,z,z')\ is uniformly bounded by a
constant Cκ in a complex cut neighborhood A'^i] of the threshold point (i£,0,0).
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Here Λ'^ is defined in the same way as A(™1\ Ψ"κ and <2)κ being replaced by
complex neighborhoods iΓ^CiΓκ and 2'κC3ικ of K and of z = 0 respectively.

In order to exploit the off-shell unitarity equation (34), we shall use the local
parametrization given in [12] of the real m-particle mass-shell by the variable

m

k= Σ fc varying in the set k real, /c2^(mμ)2, ko>0 and angular variables Ω
ί= 1

varying in the real [(m— l)v —m]-dimensional unit sphere S. Using this para-
metrization, Eq. (34) becomes for k, z, z in a real neighborhood of the threshold,
with k2>(mμ)2:

F0(k, z, z') - F^k, z, z') = (σ% J F0(k, z, zo(/c, Ω ) ) ^ , zo(/c, β), z')άo(/c, Ω)dΩ,

(35)

where σ = (mμ)2 — k2, β= , (σβ)0 is the restriction to k2>(mμ)2 of

the function σβ defined e.g. by the condition σβ>0 for σ>0, keif^\ if
(m— l)(v— 1) is odd (/? half-integer), and άo(fe,Ω), zo(fe,Ω) are the restrictions to k
real, /c2 > (mμ)2 of a function ά(fe, Ω) and a mapping z(/c, Ω) satisfying for each real
KeH+μ(K2 = {rnμ)2, Ko>0\ the following properties:

(i) ά(fe, Ω) is analytic in k in a complex neighborhood W'^ of X, is continuous in
Ω in S and satisfies the relation:

ά(fc,Ω) = ά(fc,-Ω). (36)

m

(ii) The mapping z(fc,Ω) = {zf(fc,Ω), i=l,...,m, Σ z.(fe,Ω) = 0} is continuous in
i = 1

Ω and is analytic in fe in a two-sheeted Riemann surface around k2 = {mμ)2, which
is a covering of iΓ^\{k2 = {mμ)2}\ it is in fact (see [12]) the restriction to
x = (k2 — (mμ)2)ί/2Ω of a mapping φ(k, x) analytic in k in a complex neighborhood
of K and in x in a complex neighborhood of the origin and such that φ(k, 0) = 0. It
thus satisfies the relations:

z1(fc,Ω) = z0(fc,-Ω), (37)

where z0 and z t are the two determinations of z(fe, Ω) obtained at fe real, k2 >(mμ)2,
with z0 corresponding e.g. to (k2 — (mμ)2)1/2>0, and:

lim z(fc,Ω) = 0. (38)

fc2^(mμ)2

The domain iV'^ will be chosen below, such that:

#l 'cτr x , (39)

and as always possible in view of (38):

Max j |ά(fc, Ω)|dΩ = Cκ < oo , (39')

where 5(fe) is the subset of the complex m-particle mass-shell such that Σ K = k
i= 1

and z={ki — k/m,ί=l,...,m} = z(k,Ω) for some Ω in S [z(fe,Ω) is here any one of
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the two determinations of the mapping z in its two sheets: S(k) is unchanged in
view of (37)].

Equations (34) or (35) will be written for brevity in the form:

the operation *r between kernels A(k,z9z
f), B(k,z,z) defined at k real, k2>(mμ)2

being generally defined for any reΊί by:

(A*rB) (k, z, z') = (σβ\ J A(k, z, z,(fc, Ω))B(k, zr(k, Ω\ z')όcr(k, Ω)dΩ, (41)
s

where zr(k,Ω) = z0(k,(- l)rΩ\ (σβ\ = (-\)2βr(σ\ and άr(fc, Ω) = αo(fc,Ω) are the
determinations of z(fc,Ω), ά(fc, Ω) and σβ obtained at k real, k2>(mμ)2 after r
(anticlockwise) turns around k2 = (mμ)2.

For kernels A,B depending analytically (or meromorphically) on k around
k2 = (mμ)2, possibly in a multisheeted domain, the operation * is defined by:

(A*B) (fc, z, z') = σβ j A(k, z, z(fc, Ω))β(/c, z(/c, Ω), z')ά(fc, Ω)dΩ. (42)
s

Finally, if we consider kernels A9B defined in a given sheet, i.e. in a given cut
neighborhood of the threshold [with the cut along fc2>(mμ)2], the operation *r is
defined by :

(A*rB) (K z, z') = (σβ)r J A{k, z,zr(k, Ω))B(k9φ9 Ω), z!)v£K Ω)dΩ,

(43)

where zr(k,Ω) = z0(k,(-l)rΩ\ (σβ\ = (-l)2βr(σβ)0 and &{k,Ω) = &&,Ω) are the
determinations of z(fe, Ω), σ̂ , ά(fe, Ω) in the sheet r obtained after r turns around
k2 = (mμ)2, zo(k,Ω) and (σ^)0 being the boundary values of zo(fe,Ω) and (σβ)0 from
the directions Im5>0.

We note that the determinations zr(k, Ω) and zr(fe, Ω) in the right hand side of
Eqs. (41) and (43) can be replaced there by zo(fe,Ω) and zo(fe, Ω) in view of (36) and
(37).

4. Off-Shell Unitarity and Local Maximal Analyticity of F

Theorem 3. // F satisfies Assumption 1 of Sect. 3, it admits, for each real K,
K2 = (mμ)2, Ko>0, a multisheeted analytic continuation in n0r^x^Kx^K, where
# ^ ' is the (universal) covering of i^£\{k2 = (mμ)2}, apart possibly from a discrete set
of polar manifolds in k. The Riemann surface of F has two sheets for (m— l)(v— 1)
odd, respectively an infinite number of sheets for (m— 1)(— 1) even, if F0*0F0 is not
identically zero.

If F satisfies Assumptions 1,1' and if β>0, F is analytic in each sheet (i.e. has no
poles) in a sufficiently small complex neighborhood of K.

The set # ^ in this statement is the complex neighborhood of K introduced in
Sect. 3 [and satisfying conditions (39) and (39")].

Proof of Theorem 3. Let F0(k, z, z') denote the determination of F initially given in
Δ{^i] and let us restrict our attention to points k in #^ ; . According to Theorems 1
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and 2 of Sect. 2 (applied with A, t and α replaced by Fo, Ω and — σβόc respectively),
a unique function F^k.z.z'X which is analytic in -#^ / ( c u t ) x Q)κ x 2K, Ψ"^(cut)

~^κ\{k2 = (mfi)2}> a P a r t possibly from a discrete set of poles in k, is defined by
the equation:

Fo-Fi=Fo*oFi- (44)

In fact, the value λ=l does not belong to the set A since a (continuous)
solution of Eq. (44), namely Fv is known to exist in the limit Ims->0, from the
directions Ims>0, at k,z,z' real, k2>(mμ)2 [Eq. (40)]. Moreover F1 is known from
this analysis to be the boundary value of F1 from the directions Ims>0. Since it is
also, by Assumption 1, the boundary value of Fo from the directions Ims<0, the
edge-of-the-wedge theorem guarantees that F1 is analytic and that F1 is an
analytic continuation of F o in a new sheet r= 1.

Also Fx admits a boundary value F1 _ at k,z,z' real, k2>(mμ)2 from the
directions I m s < 0 of #^ / ( c u t ) , which, in view of the analyticity of Fx previously
established (and of a new application of Theorem 1) is analytic apart possibly from
a discrete set of poles in k, and satisfies (outside this set) the equation:

If (m—l)(v—1) is odd, * χ = — * 0 in view of the relation (σβ)1 = —(σβ)0.
A comparison of Eqs. (45) and (40) and the unicity of the solution in Theorems 1
and 2 entail that Fί _ = F0, i.e. the two-sheeted structure of F is proved.

If (m—l)(v—1) is even, * ! = *<) and similarly *,. = * 0, *r = *0, VreZ. Equations
(40) and (45) entail [by the same algebraic argument as that used in the proof of
Eq. (11)] that:

FO-FU_=2FO*OFU_. (46)

By the same arguments as above, this allows one in turn to define an analytic
continuation F2 of Fo in a sheet r = 2, with possibly a discrete set of poles in fc, as
the (unique) solution of the equation:

F0-F2 = 2F^0F2. (47)

More generally, one defines by induction a multisheeted analytic continuation
of i7, with possibly a discrete set of poles in k, in the covering of #^'\{/c2 = (mμ)2},
this continuation being analytic in z, z in Q)κ x 3)κ. The determination Fr of F in
each sheet r satisfies the relation:

Fo-Fr = rFo*oFr,VreZ. (48)

If Fr = F0 for some reZ, rφO, then in view of (48), FQXQFQΞΞO and similarly
F 0 * 0 F 0 = 0. Apart from this case, an infinite number of sheets is therefore obtained
around k2 = (mμ)2. This ends the proof of the first part of the theorem.

For the proof of the second part, we consider the Neumann series
00

£ (-^±0(11+1) of pr m Eq. (44) if r = ί, or in Eq. (48) (VreZ) for (m-l)(v-l)

even. This series is absolutely convergent in the region (k.z.
\σ\β <d r = (rC x Cy~ 1 , where Cκ is the bound on | F 0 | given in Assumption Γ, Cκ is
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defined in Eq. (39') and HT'K, 3f'κ are chosen such that iV'κZ.Hr'^ S{k)C@'κ, Ίke1V'κ,
as always possible. The convergence of the series then follows from the bounds:

\Ff{n+1)\<Cκ[_CκCκ\σ\βΎ, (49)

which are easily derived from the definition of * 0 in the region Δ'^.
Thus Fr, which is equal to the sum of this series (unicity of the solution) is

bounded in modulus in the region ft^z'Jezl^, \σ\β<dr, and therefore cannot
have poles in k.

Remark. It has been shown in [12, 13] that, for (m—l)(v—1) even, the on-shell
restriction

Γ(fc, Ω, Ω') = F(k, z{k, Ω), z(fc, Ω') (50)

of F is nonholonomic at s = (mμ)2 unless T0*
ί9) = 0 for some q>0. More precisely,

the vector space generated by the successive determinations of T in its various
sheets is not finite-dimensional. The same result trivially follows for F.

5. The Off-Shell Irreducible Kernels U and Related Results

Theorem 4 (definition and uniformity of a class of kernels U). Let F satisfy
Assumption /, let g be a function of k analytic in a complex neighborhood
JT=υκJίκ of H+μ = {K\KeR\ K2 = (mμ)\ K o > 0 } , and let:

if ( m - l ) ( v - 1) is odd, (β half-integer) , (51)

χ(k)= ^-σβ\nσ + g(k) if ( m - l ) ( v - 1) is even, (β integer) , (52)
2π

with e.g. lnσ real at σ > 0 (k2<(mμ)2) in the sheet r = 0 where F is originally de-
fined.

Then, if χ(k) is not an eigenvalue function of T(k, Ω, Ω') = F(k, z(k, Ω), z(k, Ω'))
with respect to the integration measure ά(k,Ω')dΩ\ there exists a unique solution
U{k, z, z') of the equation

F-U = χ(k)F*U, (* = σ/?*), (53)

and U is analytic in k9z,z' in (i^^rλJ^κ)\{k2 = (mμ)2} x &κx @κ, apart possibly
from a discrete set of polar manifolds in k.

Proof Theorem 1 of Sect. 2, applied with A, t and α replaced by F o , Ω and
— χ(fe)ά(fc, Ω) ensures the existence of a unique solution (70(fc,z, z'), analytic in the
cut domain (i^^nJ^κ)\{k2^(mμ}2} x Q)κ x 2K apart possibly from a discrete set of
poles in fe, of the equation:

Fo-Uo = Fo(χ(k)*)Uo (54)

In fact, the assumption that χ is not an eigenvalue function of T(k, Ω, Ω') with
respect to the measure ά(fe,Ω)dΩ ensures (by a standard argument of Fredholm
theory) that the function d(λ, k) does not vanish identically at the value λ = 1, when
the operation * of Theorem 1 is the operation χ(/c)*.



Irreducible Kernels and Nonperturbative Expansions 247

The kernel Uo, on the other hand, admits boundary values Uo, Uι at k, z,z'
real, k2>(mμ)2, from the respective directions Ims>0 and I m s < 0 which in view
of the known analyticity of Fo, Fx (Sect. 4) and of a new application of Theorem 1,
are analytic apart possibly from a discrete set of poles in k.

The operation x = χ(k)* satisfies in each parity case (in view of the analyticity
of the functions g and ά in k) the relation:

x o - χ i = *o(Ξ(Λ>*o)> (55)

where x 0 = (x(k))0*0, x 1=(z(fe))1*1. The algebraic argument described in the
Appendix thus ensures that:

U0 = Uί9 (56)

i.e. the uniformity of U around fc2 = (mμ)2. Theorem 4 is therefore proved.
We next state:

Theorem 5 (irreducibility of V and local expansion of F). Let F satisfy Assumptions
ί, 1' and let β be >0. Then being given any function g of k analytic in a complex
neighborhood Jf of H*μ and satisfying g(k) = 0 at k2 = (mμ)2, there exists a unique
solution U(k,z,zf) of Eq. (53). This kernel is analytic in k,z,zf in
(ifr^r\Jίκ)x^κx^κ apart possibly from a discrete set of polar manifolds in k
which all lie outside a complex neighborhood of H^μ.

The following convergent expansion of F holds in any sheet when k lies in a
sufficiently small complex neighborhood of K and (z,z')e@κx ζ/)κ\

F(k,z,z') = Σ(χ(k)γU*("+1\k,z,z'), (57)
n = 0

where all terms jj*(n+1) are, like U, analytic in k in a common complex neighborhood
of K and in z, z in @κ x &>κ.

The proof is given below. We first note that a natural choice of g under the
assumptions of Theorem 5 is g = 0, in which case U is defined by the equation:

F-U = f(σ)F*U, (58)

where

\ if (m-l)(v-l) is odd, (59)

f(σ)=—lnσ if ( m - l ) ( v - 1) is even, (60)
2π

if^nJ^κ = /Wr^ and the expansion (57) of F becomes the expansion (2) given in
Sect. 1.

Proof of Theorem 5. Ψ*'κ and 3)'κ are chosen in Assumption Γ, such that
n Λ . S(k)C@'K9 MkeW^. The bounds

in the region A'^i] [see Eq. (49)] and the fact that the function g considered is of
the form σβ'g'(k), where β' is a > 0 integer and g is analytic in JVK, ensure the
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oo

absolute convergence of the Neumann series ^ (~ l)"(x(k))'T$o('?+1) °f ί̂ o m

n = 0

terms of F o in Eq. (54) for |σ| sufficiently small and k,z,z' in A'^t]. Thus L/o, which
is then equal to the sum of this series, is bounded in that region. Therefore U
cannot have poles in k for k in a sufficiently small complex neighborhood of K. A
singularity of U at k2 = (mμ)2 is excluded similarly, first when z,z'eΘ'κ and
therefrom for z,z'eQ)κ.

The first part of Theorem 5 is therefore proved. On the other hand, the
expansion (57) is the Neumann series of F in terms of U in Eq. (53). This series is
absolutely convergent in each sheet for k in a sufficiently small complex
neighborhood of K which, like χ(/c), depends in the case (m — l)(v — 1) even on the
sheet considered. This follows from the analyticity of U previously established and
the corresponding bounds:

IU*in+ 1}(/c, z, z')\ ̂ MaxΩeS|U(k, z, z{k, Ω)\ x Max^JU(k, z(k9 Ω), zf)\C'gjLCκDκy-1

(62)

which hold, for each K, when z, z'e£)κ and k lies in a given complex neighborhood
of K, Dκ being a bound on | C/(fc, z(fc, Ω), z(fc,Ω')| independent of Ω, Ω'eS. This
proves the second part of the theorem. Q.E.D.

Remark. The kernel u(k,Ω,Ω')=U(k9z(k9Ω), z(fc,Ω')), which is the mass-shell
restriction of U (for Ω, Ω' real) is not necessarily analytic in k at k2 = (mμ)2, but is in
general two-sheeted around k2 = (mμ)2 and satisfies the relation:

Wl(/c, Ω, Ω') = uQ(k, - Ω, - Ω'), (63)

which follows from the uniformity of U and the equality (37). The uniformity of
this kernel in [12} is there a consequence of the symmetry assumption made on T
(T(fc,Ω,Ω')=Γ(fc,-Ω,-Ω')).

We below restrict our attention to the kernel U obtained from Theorem 5 in
the case when g = 0.

We shall consider in Sect. 6 cases when the domain Θκ in z-space is not
bounded and contains in fact a neighborhood of the euclidean space $κ (see
Sect. 6). In this case, it can be checked, e.g. from the formula:

UxF, (64)

where x =/(σ)* and in particular:

FxUx F(k, z, z) = (f(σ) σβ)2 j F{k, z, z(k, Ω)) U(k, z{k, Ω\ z(fc, Ω'))

• F(k, z(k, Ω'\ z') ά(/c, Ω) ά(fe, Ω') dΩdΩ', (65)

that U(k9 z, z') has the same type of decrease, or increase, as F itself in euclidean
directions. [Note in fact that z(fe,Ω) and z(k,Ω') remain in a bounded complex
neighborhood of z = 0 when / C G # ^ . ]

If the analytic cut off factor φ in the definition of the Feynman type operator
(see Sect. 6) has a sufficient decrease at infinity, Uo(n+I\k,z,z') is then well defined
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for each neN, and can be written for the same reasons as G o ( π + 1 ) in Lemma 4 of
Sect. 7 in the form:

U«n+1\k9z9ϊ) = Σ Ufihz^HσPftσ))*, (66)
p = 0

where the coefficients U^ are analytic in the same domain as U and satisfy Eq. (82)
of Sect. 7 with G replaced by U. In particular:

U{

n

n\Kz,z')=U*{n+1)(Kz,z'). (67)

The "leading" or "dominant" contribution to Uo(n+1) is by definition the term
of maximal degree r = n in the decomposition (66), which in the case (m— l)(v— 1)
even is the term of maximal power in lnσ. The expansion (2) of F established in
Theorem 5 thus appears, as announced in the Introduction, as a sum of dominant
contributions to the Feynman-type integrals Uo{n+ υ associated with the graphs (3).

6. Bethe-Salpeter Type Kernels

We first discuss below the first approach of the simplified theory in which F
satisfies Assumption 1. We shall assume moreover that for each K, the domain Q)κ

contains a neighborhood of the euclidean space Sκ (Imz—Rez, <0 = 0, /= 1, ..., m,
in a Lorentz frame where X = 0, K0 = mμ), and that F is bounded, or has at most a
polynomial or exponential increase at infinity in euclidean directions.

For each choice of an analytic cut-off factor φ, equal to one on the mass-shell,
e.g.:

(68)

the Feynman-type operation ° between kernels A(k,z,z'), B(k,z,z') [with e.g. at
most exponential increase at infinity of a given order in euclidean directions if φ
has the form (68)] is defined by the formula (see details in [13]):

A°B(k,z,zz')= j y , z , Z W z , z ) f\mK2r))M2r)t ( 6 9 )

k
where k (k,z") = z" -\— is an energy-momentum variable attached to each internal

m
line i=ί,...,m of the diagram ^ ^ A ^ ^ T ^ ^ ? p^fή j s a n integration contour of
real dimension (m— l)v obtained by a continuous local distortion of the euclidean
space when k2 turns around (mμ)2, and dμ(z") = άz\... άz"m_ γ if z" is represented e.g.
by the set z"v...,z!^_v

The mathematical analysis of [14], which includes an adequate extension of
results of Fredholm theory, is applied in [13] to the second approach of the
simplified theory in which G is given and is assumed to be irreducible and in which
properties of Fλ or F are derived in turn from Eq. (4). It can be equally applied to
the first approach. Together with results of Sect. 4 (analytίcity of Fo, F x), it then
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provides (as explained below) the following result: if φ has a sufficient decrease at
infinity and apart possibly from particular choices of φ, there is a unique solution
G of Eq. (4), which is analytic in a domain containing, for each K real, K2 = (mμ)2,
Ko>0, the domain ifr

κ\{k2 = (mμ)2} x Θκ x £$κ apart possibly from a discrete set
of polar manifolds in k, and satisfies F°G = G°F.

The uniformity of G(G0 = G1) around k2 = (mμ)2 follows here from the
algebraic argument of the appendix, and the formula:

o - - i = * o - (70)

The latter is a consequence (see [14]) of Picard-Lefschetz theory and Leray's
several dimensional residue formula; 0 and , are the limits of at k, z, z real,
k2>(mμ)2 from the respective sides I m s > 0 and I m s < 0 of the physical sheet r = 0
[integration being made over the corresponding contours Γ0(k) and ΓJ/c)].

The result on G just described is analogous to that obtained on the kernels U in
Theorem 4 of Sect. 5, with the following differences:

(i) The meromorphy domain of G in k is larger than that obtained for U. For
each K real, K2 = (mμ)2, Ko>0, it includes the full domain i^κ\{k2 = (mμ)2},
whereas the corresponding domain obtained for U is restricted to Ψ^^\{k2 = (mμ)2}
as a consequence of the condition S(k)C@κ.

(ii) Under Assumptions 1, Γ and for β>0, it was shown in Sect. 5 that the
kernels U are well defined and irreducible for any choice of the analytic function g
such that g = 0 at k2 = (mμ)2 (and in particular for g = 0). A similar analysis has not
yet been achieved for the Bethe-Salpeter type kernels G. (In this connection, see
note added at the end.)

We shall below assume, as in Bethe-Salpeter type approach of the simplified
theory, that G is indeed irreducible for an adequate choice of the operation °, and
more precisely that G is analytic in a domain containing, for each K, a set of the
form Yκ x Q)κ x Q>κ, where Ψ*κ is a complex neighborhood of K {Vκ C Wκ). For the
simplicity of the following discussion, we moreover assume that \G\ is uniformly
bounded in i^κ x 3)κ x Q)κ, although similar results would hold equally for kernels
G with e.g. polynomial or exponential increase in euclidean directions, for
adequate analytic cut-off factors φ.

Assumption 2. G(k, z, z') is analytic and uniformly bounded in modulus in a domain of
the form ^κx@κ* @κ, far each K real, K2 = (mμ)2, Ko > 0, where i^κ is a complex
neighborhood of K and *3)κ is a domain containing the euclidean space Sκ.

The following lemma, based on results of [14], then holds.

Lemma 1. For any nelN, n ^ l , G o ( / ί + 1 ) is well defined and analytic in the same
physical sheet domain as G, in particular in i^^x) x Q)κ x Q)κ (\/K real, K2 = (mμ)2,
Ko > 0) and satisfies there the bounds:

|G o ( ' 7 + 1 ) (/c,z,z / ) |<C 1 C" 2 , (71)

where Cv C2 are constants independent of k,z,z' (which may depend on K).

Go(n+1) admits an analytic continuation in the domain ^K^^K X ^K X ®R> where
Ϊdenotes the universal covering of iΓ\{k2 = (mμ)2} and ΪΓ^ is the domain
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introduced in Sect. 3. It is two-sheeted if (m— l)(v— 1) is odd, or infinitely sheeted if
(m—l)(v—1) is even, (unless G o * o G o = 0), and satisfies in each sheet r(reTL if
(m — 1) (v — 1) is even, r = 1 if (m — 1 (v — 1) is odd) the bounds:

\G0^ "(k, z, z')\ < Cι{C2 + rCγCκ\σ\βf,

where Cκ= MaxJ|α(fc,Ω)|dΩ.

The following convergent expansion of Fλ holds correspondingly in the physical
sheet if \λ\<l/C2, and in other sheets for \λ\ sufficiently small:

00

Fλ(k,z,z')= Σ λ"Goi"+1\k,z,z'). (73)
M=0

Proof The first, nontrivial part, including the bounds (71), is contained in [14].
The second part, including the bounds (72) is a consequence of formula (70). In
fact, the latter entails that the restriction _,. of to the sheet r satisfies:

2r = 2o~
r*o if (m—l)(v—1) is even, (74)

_1 = _ ϋ - * o ? - 2 = -o i f ( m - l ) ( v - l ) is odd. (75)

It thus yields, in the sheet r (r= 1 if (m— l)(v— 1) is odd, reΈ otherwise):

Go(n+i)= £ ( _ I ) P £ G £ o ( / i l + 1 V * 0 ) G £ o ( " 2 + 1 ) ( r * o ) ( ^ o ) G £ o ( Π p + 1 + 1

p i , , p i
Σrii = n — p

The bounds (72) follow from the previous bounds (71) in the physical sheet and
from the properties of the operation * 0 (see Sect. 3).

Finally, the expansion (73) follows from the convergence of the series at the
right hand side of (73), which is the Neumann series of Fλ in Eq. (4'), and from the
unicity of the solution of the latter established in [14]. (Note that Fλ is well defined
in terms of G through Eq. (4;) in view of the results of [14, 13], outside possibly a
discrete set of values of λ)

7. Irreducible Kernels and Local Expansions of F or Fλ

Lemma 2. The operations and x =f(σ)* satisfy the relation:

o=x+Δ, (77)

where A is uniform around k2 = (mμ)2 (Δι =Δ0, where Λr= ,.— xr).

Formula (77), in which the uniformity of zl directly follows from formulae (55)
and (70), thus exhibits the operation as a sum of the uniform operation A and of
the nonuniform operation f(σ)σβ*: the factor f(σ)σβ has in fact either a square
root singularity at σ = 0 (arising from σβ) if (m— 1) (v— 1) is odd, or a logarithmic
singularity [arising from /(σ)] if (m— 1) (v— 1) is even.

Lemma 3 (link between the kernels V and G). The kernels V and G satisfy the
integral relation.

U-G=UAG = GAU. (78)
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Proof. The relations

F-U=Fx U=UxF,

F-G = FoG = G°F,

yield:

U-G = GoF-Fx U

= GoU-GxU = GAU. (79)

Similarly

U-G=U4G. Q.E.D. (80)

In (79) and (80), the uniformity of the operation A is fully consistent with the
fact that both U and G are themselves uniform.

We next state the following decomposition of each term G o ( n + 1 ) in powers of
σβf(σ) with well specified locally analytic coefficients:

Lemma 4.
n

where the functions A^ are equal to:

n\...np + i
nι ^0,Σnι = n~ p

and are analytic in (ΫκnΨ£) x&κ x@κ{VK real, K2 = (mμ)2, Ko>0).

Proof The decomposition (81) and (82) of Go(n+1) is a direct consequence of
formula (77). The uniformity of the functions Λ^ follows from the uniformity of G
and of the operations A and *. As a byproduct of Lemma 5 below, each term
QΔ(nι + i) j s bounded in modulus, and is thus analytic in ( ^ π # ^ . ' ) x @κ x @κ. The
same result holds in turn for each term in the sum ^ at the right hand side of (82)
in view of the properties of the operation *, and therefore for A^ itself. Q.E.D.

Lemma 5.

\GΔ{n+ X\K z, z')\ < Cι(C2 + Cx Cκ\σβf(σ)\r (83)

in (i^κr\Hr'^) xΘκx 3>κ.

The proof is the same as that of the bounds (72) in Lemma 1 of Sect. 6,- the
relations (74) and (75) being replaced here by A = Ao = o0 — x 0. [The uniformity of
A and Eq. (77) have been used.]

In view of Lemmas 4 and 5 the expansion (73) of Fλ in terms of G then directly
provides:

Lemma 6. The following convergent expansion of Fλ holds at small λ:

Fλ(k,z,z')= f Ufn+1\λσβf(σ))\ (84)
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where

Uλ(k,z,z') = Σ λ"GA("+1\k,z,z'). (85)
n = 0

The kernel Uλ is well defined at small λ by Eq. (85) as an analytic function of
k, z, z in Wκc\'W'£) x <3K x 3ικ, in view of Lemma 5.

Proof of Lemma 6. The expansion (73) of Fλ and Lemma 4 yield:

Fλ(k,z,z') = lim Σ (λσ"f(σ)γXpJλ,k,z,ϊ), (86)
JV->co p = o

where

N

XPtN(λ,k,z,z')= X Σ ( ^ G ^ 1 + 1 0 * . . . * ( ^ + 1 G ^ + 1 + 1 ) ) . (87)
n = p n1...np+ i

2Ήι = n — p

As easily checked, lim X N= Ό*{p+ υ and the following more precise bounds
iV^oo

are obtained (see below):
i + 1 ) p

2 £ ) N , (88)

with constants DVD2 independent of λ,k,z,z in the region \λ\<—Γ,
4D2

fc, z, z e f f ^ n f ; ' ) x 9K x ^ X 9 D'2 = (C2 + C1CK Max|σ^/(σ)|). In fact, in view of (85)
and Lemma 5:

£ (λniGA{ni + 1 ) ) * . . . * ( λ n ? + ιGAinp + 1 + 1)) (89)
« i . . . n p + i

Σnι = n — p

forμ|<-ί-

The bound (88) follows, with D 1 = 2 C 1 , ^2 = 2 ^ ^ .

/

Note that
i . . .np+ i
"/if — n — p

The expansion (84) of FA is obtained in turn at small λ. Q.E.D.
The kernel Uλ defined by Eq. (85) at small λ clearly satisfies the integral

equation:

Uλ-G = λUλAG = λGAUλ. (90)

By combining the methods of Sect. 2 and those of [14, 13], one can check that Eq.
(90) defines in fact Uλ in terms of G for more general values of λ (outside a discrete
set). The kernel U of Sect. 5 then appears in this framework as the analytic
continuation in λ of Uλ up to the value λ — 1, at which Eqs. (90), (78) coincide. The
expansion (84) of Fλ can similarly be extended analytically up to λ = 1, under some
technical conditions not discussed here.
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Note. In the first part of [10], it will be established that at m = 2 (v arbitrary) the
Bethe-Salpeter kernel G is indeed irreducible (i.e. analytic at s = 4μ2) if F satisfies
off-shell unitarity (= asymptotic completeness), is bounded near s = 4μ2

(Assumption Γ), if β is > 0 and if the cut-off factor φ is of the form (68) with a
sufficiently small. Under similar conditions, the expansion (73) of Fλ is also valid at

/ 00 \

λ=l i.e. the series ]Γ G0{n+1) is convergent a n d is equal to F) for |σ| sufficiently
\ « = o /

small. The method used indicates that the same result is probably true also for
arbitrary values of m in the simplified theory.

We note that, as in the present work, kernels G and U( = K at v = 4) are still
expected, at m = 2, to have poles in s below the next threshold [s = (3μ)2, or
s = (4μ)2 in an even theory] and possibly on the real axis, even if Fo and Ft remain
continuous and satisfy off-shell unitarity.

Appendix: A General Class of Irreducible Kernels: Heuristic Discussion

We consider here the approach of the simplified theory in which F is given and
satisfies Assumptions 1 and possibly Γ. In both cases of the kernels U and G, a
kernel V is introduced through an equation of the form:

F=V+FxV, (A.I)

where x is a convolution operation of the form:

(A x B) (fe, z, z') = j A(k, z, z")B(k, z", z')dμ{K z"), (A.2)
z"eΣ(k)

with an integration measure dμ{k9 z") depending analytically on k when k2 turns
around (mμ)2 and an integration set Σ(k) depending continuously on k. [We recall
that the dimension of Σ(k) is not the same in the case of the kernels U and G.] The
kernels G or U also satisfy the relation

FxV=VxF. (A3)

Let us consider a general class of convolution operations x of the form (A.2),
or linear combinations of such operations, such that V is well defined, as in the
previous cases, as an analytic or meromophic function around k2 = (mμ)2 and
satisfies (A.3). (We do not construct explicitly this class here.) The relations:

Fo-Vo = VoXoFo=FoxoVo, (A.4)

obtained as the limits of (A.I) and (A.3) from the respective directions Ims>0 and
Ims<0 of the physical sheet, then provide the algebraic relation:

(A.6)

easily checked from the associativity of the operations * 0, x 0, x χ and the relation
Fί x ί(tί — Vx)= V1 (1 1 and i 0 denote here the unit operators with respect to x 1

and x 0, respectively).
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If off-shell unitarity (Fo —F1—Fo*oF1=0) is assumed, (A.6) thus entails the
uniformity of V around k2 = (mμ)2 (Vo = FJ, provided that:

x o - χ i = * o ( A 7 )

[In fact, (A.6) entails under this condition that ( i o + Fo) x 0(V0 — KL) = 0; by
"multiplication" on the left by ( l 0 — Vo) x 0 and use of (A.4), it provides in turn Vo

— ̂ = 0 . ] Conversely, Eq. (A.7) is needed if V is to be uniform, apart from
exceptional cases.

The uniformity of V entails its irreducibility, e.g. if the Neumann series
00

]Γ vx{n+1) is absolutely convergent in some complex neighborhood of the
n = 0

threshold.
As we have seen the operations x and ° that give rise to the kernels U and G

satisfy (A.7). On the other hand, any operation x satisfying (A.7) is equal, locally,
as ° in Sect. 7, to:

x = / ( σ ) * + p? (A.8)

where I7is uniform (V0=V{) and kernels K V satisfying Eqs. (A.I) and (A.3) for
respective operations x, x ', satisfy as in Sect. 6 the relation:

V-V' = V(x - x ')V = V\ x - x f)V, (A.9)

where x — x ' = V— V is uniform around k2 = (mμ)2. [The proofs of (A.8) and (A.9)
are the same as those given for G and U in Sect. 6.]
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