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Semi-Classical Limit Theorems for Hartree-Fock Theory
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Abstract. Consider a large number of electrons with Coulomb repulsion
moving under the influence of static nuclei. It is assumed the potentials due to
the nuclei are Coulombic away from their centers but are smooth at the
centers, so no singularities exist. The author shows that the exchange energy
for the Hartree-Fock ground state of this system converges in a suitable limit
to the formula obtained by Dirac for exchange energy as an integral of the one
body density.

Introduction

In this paper we prove some semi-classical limit theorems for the Hartree-Fock
theory associated with a Coulombic Hamiltonian of electrons interacting with
static nuclei. We assume there are k nuclei with positive charges zj9 l^jύK
situated at the points RjE R3, 1 ̂ j ̂  fc, respectively. Let g:R3 ->R be a continuous
nonnegative spherically symmetric function with compact support whose integral
over 1R3 is 1. We assume the electrostatic potential at xeR 3 due to the nuclei is
— V(x), where

Σ^r^fdy. (1.1)

Thus for large x the potential - V(x) is the same as the Coulombic potential due to
the k nuclei, but for x close to the points Rp 1 SjύK V{x) is smoothed. Ideally we
would like to assume simply that V(x) is the Coulomb potential due to the k nuclei.
However the techniques of this paper do not apply to that case.

Next we introduce n electrons, each with charge — 1 and mass m, moving in the
field of the potential - V{x). Let x ^ R 3 x {-1,1} = Ω be the coordinate of the *th

electron in the product of R 3 with the spin space { -1,1}. Then the n electron wave
function ψ may be written as ψ = ψ(xv...,xn% where ψeL2(Ωn). Let Wu be the
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Hubert space of all such ψ which are anti-symmetric in the jci? 1 ̂  i'S n. By the
Pauli exclusion principle Jfπ is the state space for the n electron system. The
corresponding Hamiltonian Hn(V) is given by

HB(V)=-Λ2(8π2mΓ1 £ A- £ V(xJ+ t fri-XjΓ1, d-2)

with fo being Planck's constant, and Δt the Laplacian in the xf variable 1 ^ igrc .
Here we are concerned with estimating asymptotically the ground state energy

En(V) of the n electron system as n-»oo. If [,] denotes the inner product on J^Π,
then the Rayleigh-Ritz procedure yields

\\ψ\\ = 1}. (1.3)

Let z be defined by k

z= Σ zj (1.4)

It is known [14] that if n^z there is a function φeJ^Π which achieves the infimum
in (1.2). This function is not necessarily unique.

In Hartree-Fock (HF) theory one takes the infimum in (1.3) over functions ψ
which are anti-symmetric products of single electron wave functions. Let
ψ^x), ...,tpn(x) be an orthonormal set in L2(Ω) representing the wave functions of
the n electrons and ψ the Slater determinant of the ψi,...,ψn. Then

εH F(tp1,...,φΠ), (1.5)

W h e Γ e εH F = K + A + R + Ex. (1.6)

The kinetic energy K is given by

ί=lfi
$\VΨi(x)\2dx. (1.7)

The attractive and repulsive potential energies A and R may be expressed as
integrals of the one body density

(1.8)
i= 1

Thus we have

(1.9)

-no ι--/. ( U 0 )

The nonclassical exchange energy Ex is given by

π

Σw1
(1.11)
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Let E^F(V) be the Hartree-Fock ground state energy for the system (1.2). Lieb
and Simon [11] showed that if n<z+1, this ground state energy is achieved for
some orthonormal set of single electron wave functions ψx{x\ ...,ψn(x). Let ρ(x) be
the one body density (1.8) associated with these single electron wave functions. The
net electrostatic potential at a point xeR 3 due to nuclei and electrons is — φ (x),
where

φβ(x)=V(x)-So0-idy. (1.12)

The potential (1.12) is a local potential. We define a nonlocal potential operator
U ψ ψ J b y

!PXX)= Σ ψMiψ^dy, (1.13)
\χy\

for ueL2(Ω). The Euler equation condition for the ψv...,ψn is then that these
functions are the first n eigenfunctions of the operator

S(ψ1,...,ψn)=-h\Sπ2my1Δ-φρ(x)-L(ψv...,ψn)onL2(Ω). (1.14)

Next we consider Thomas-Fermi theory. Suppose there is a system of λ
electrons moving under the potential — V(x) with one body density /(x), xeIR3.
Thus/(x)^0, xeIR3, and

Sf(x)dx = λ. (1.15)

The Thomas-Fermi (TF) kinetic energy of the system is

(1.16)
E 3

where the constant c is given by

c = Λ2(2m)"132/3(8π)-2/3. (1.17)

The attractive and repulsive Thomas-Fermi potential energies are A(/, V) and R(/)
respectively as in (1.9) and (1.10). Hence the Thomas-Fermi energy functional

i s i b

εTF(/, V) = KτF(f) + A(/, K) + R(/). (1.18)

The Thomas-Fermi ground state energy for the λ electron system, £jF(F), is then
obtained by minimizing (1.18) subject to the condition (1.15). Lieb and Simon [12]
proved that if λ satisfies the inequalities

0</ί^z, (1.19)

there is a unique function ρJF(x)eL1(R3)nL5/3(R3) which achieves this minimum.
The corresponding potential function φY(x) is defined by (1.12) with ρ = ρlF. The
Euler equation for the variational problem is then

CQY(X)213 = max[(/>IF(x)- φλ,ΰ], xeR 3 , (1.20)

where the Lagrange multiplier φλ satisfies φλ^0 and φλ = 0 if and only if λ = z.
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We relate Hartree-Fock theory to Thomas-Fermi theory. For α > 0 let Va(x) be
defined in terms of the potential (1.1) by

Kα(x) = α 4 / 3 F(α 1 / 3 x) . (1.21)

Letting λ satisfy (1.19) we see that for any α > 0 such that ccλ is an integer, the
Hamiltonian Haλ(Va) of (1.2) has a Hartree-Fock ground state which may be
described by an orthonormal set of αA wave functions in L2(Ω), Λψv ...,aψaλ. Then
if we let α->oo through integer values of αλ it is known [12] that

l imα- 7 / 3 £» F (F α ) = £l F (K). (1.22)
α-*oo

This result is proved by the method of Dirichlet-Neumann bracketing. By
applying the Feynman-Hellman technique to (1.22) one can also see [12] that

lim α - 7 / 3 K ς φ i , ...,αΨαλ) = K T F (ρΓ). (1.23)
Λ-+ 00

If we let ρα(x) be the one body density (1.8) associated with the wave functions

α φ 1 9 ...,αtpαA, it follows similarly that

lim α" 7 / 3A(ρα, Kα)=A(ρJF, V), (1.24)
a-* oo

limα-7 '3R(ρ o i) = R(ρIF). (1.25)
α->oo

In 1930 Dirac obtained a semi-classical value for the exchange energy
associated with a one body density f(x) of electrons. His value is [4],

Έ.xD{f)=-3wπ-llH'1 f f(x)*l3dx. (1.26)

The main result of this paper is to relate the Hartree-Fock exchange energy to the
Dirac exchange energy as follows:

lim α- 5 / 3 Ex( α φ 1 , . . . , α φ α λ ) = ExI>(ρIF). (1.27)
α-* ooα-* oo

We also strengthen some results of Lieb and Simon [12] on the convergence of the
Hartree-Fock one body density to the Thomas-Fermi one body density. We prove
that for xelR3,

lim α" 2ρα(α~ 1 / 3x) = ρΎ

λ

F(χ). (1.28)
a-* oo

In order to prove (1.27) we use different techniques than those employed in
[12]. The reason is that exchange energy is a lower order term in the Hartree-Fock
energy functional. We need two results from the Lieb-Simon work. The first one is
(1.23). The second, although not explicitly stated in their work, can be obtained by
applying the Feynman-Hellman technique to (1.22). It is the following:

lim [ α - 4 / 3 φ ρ β ( α - 1 / 3 x ) - F(x)] = φΎ

λ

F(x)- V{x), x e R 3 , (1.29)
α-*oo

where φρ<x(x) is the potential (1.12) associated with the electron density ρα(x) and
the nuclear potential Va{x).
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This work stems from a previous paper [2], where we proved a version of
(1.27). In Sect. 2 we obtain some Sobolev inequalities necessary for our work. In
Sect. 3 we obtain (1.27) for the simple case of a large number of fermions with no
mutual interaction moving under the influence of a nonlocal potential. Then in
Sect. 4 we extend the method to the case under consideration.

For a review of the most recent rigorous work on Thomas-Fermi and related
theories see [8].

2. Sobolev Inequalities

Let LP(Ω) and Z/(R3), 1 ̂ p ^ 00, be respectively the spaces of functions on Ω and
IR3 whose pth powers are integrable. If a function u{x) lies in one of these spaces, we
denote its norm by ||w||p. We define the bilinear form (,) on functions u,v with
domains Ω or R 3 such that \uv\ is integrable by

(2.1)

where integration is over the appropriate domain, Ω or IR3.
For functions ψeL2(IR3) we associate an operator Lψ by

Lemma 2.1. (a) Let r,s be such that 2<r, s<β and

W-A- <"»
Then for ueU(WL3), ve LS(1R3), the inequality

\(v,Lψu)\^Cr\\ψ\\2

2\\u\\r\\υ\\s (2.4)

holds, where Cr is a constant depending only on r.
(b) The operator Lψ is positive definite and there is a constant C such that for

\u\\2\\Fu\\2. (2.5)

Proof (a) We use the Hardy-Littlewood-Sobolev inequality [13]. Thus if p,q are
such that 1 <p, g<3/2, and p~x +q~ι =5/3, it follows from this inequality that

\(v,Lψu)\^Cp\\uψ\\p\\vψ\\q, (2.6)

where the constant Cp depends only on p. The result (2.4) follows by applying
Holder's inequality to the right side of (2.6) with

r = 2 ^ ' 5 = = 2 ^ (2 7)

(b) The operator Lψ is positive definite since the function | x | - 1 is positive
definite. The inequality (2.5) follows from (2.4) by putting u = v, r = s= 1/3, and
applying a Sobolev inequality [13].
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Next let tpf(x), i = 1,2,..., be an orthonormal set in L2(Ω). For each N = 1,2,...,
we define an operator LN by

y. (2.8)

Lemma 2.2. (a) Let r,s satisfy the conditions of Lemma 2.1. There is a Cr depending
only on r such that for ueU{Ω\ veLs(Ω\

(2.9)

(b) The operator LN is positive definite and there is a constant C such that for

(2.10)

Proof (a) Let us regard ueLr(Ω) and veLs(Ω) as fixed functions. We define an
operator T on L2(Ω) by

Tψ(x) = v(x) J dy. (2.11)
Ω \χ—y\

From the Hardy-Littlewood-Sobolev theorem one can see that T is a bounded
operator on L2(Ω). Furthermore, we have

\(v,LNu)\^Σ\(Ψi>τΨi)\' (2.12)
i= 1

The operator T is Hilbert-Schmidt if

l^f^ (2.13)

is finite. Applying the Hardy-Littlewood-Sobolev theorem to the integral in (2.13),
we see that there is a constant Cr depending only on r such that

Trace(TT*)gC 2 | iW | | 2 | | ι ; | | s

2 . (2.14)

The inequality (2.9) then follows from (2.12) and the fact that

1/2

i = l

g JV1/2{Trace(TT*)}1/2. (2.15)

(b) Just as in Lemma 2.1 we take u = υ and r±=s= 1/3 in (2.9).

Remark. Lieb [9] has shown by using a result of Cwickel [3] that one can replace
the constant CrΛΓ1/2 in (2.9) by C^N113, where C) depends only on r. It is easy to
see that iV1/3 is the lowest power of N which can occur in the inequality (2.9).

Finally we state a theorem of Lieb [7,10] which shows that Dirac exchange
energy is a lower bound for Hartree-Fock exchange energy.
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Lemma2.3. Let ψί(x\...,ψN(x) be an orthonormal set in L2(Ω) such that ψt is in
H1(Ω), l^i^N. Let ρ(x) be the one body density

Q(x)= Σ I V J M I 2 . xeΩ. (2.16)

Then for any Borel set ScΩ, the following inequality holds:

Σ ΨiWψi
-dxdy^C$ρ(x)4/3dx, (2.17)^ ί ί Π j

zss \χ—y\
where C is a universal constant.

Lemma 2.3 is Lieb's theorem stated for a Hartree-Fock wave function. Note
that his theorem is stated for S = Ω but the argument extends to any S C Ω.

3. Semi-Classical Theorems for Fermions Moving Under a Nonlocal Potential

We consider the operator H=—\Δ acting on L2(IR3). It is well known that H has a
unique self-adjoint extension which we also denote by H. This self-adjoint
operator generates a strongly continuous semi-group Ht = exp( — Ht\ ί > 0 , of
integral operators Ht with kernels

Next let W(x) be a continuous potential in L°°(1R3). The operator T=H+W is
then essentially self-adjoint on L 2(R 3) and generates a strongly continuous semi-
group T(ί) = exp(— Tt), t >0, of integral operators [13]. The kernel of the operator
T(t) may be expressed in terms of a path integral as follows: For x^yelR3 and t >0,
let dμx y t be the conditional Wiener measure on continuous paths β: [0, ί]->IR3,
such that βo = x9 βt = y. Then

*x.,.r (3.2)

Hence T(ί)(x,>;) is positive for all x,yelR3 and one can see [1] that T{t){x,y) is
continuous in (x,y, t). Furthermore, it is evident that T(t)(x,y) satisfies the
inequality

T(t)(x,y)^Ht(x,y)exp[\\W\\CXDt], ί > 0 . (3.3)

Here we wish to consider the operator S= T—Lψ on L2(1R3), where Lψ is given

by (2.2).

Lemma 3.1. The operator S is essentially self-adjoint on L2(1R3) and generates a
strongly continuous semi-group S(t), ί > 0 . The operators S(t) may be written as an
infinite series

S(t)= £ Sπ(0, (3.4)
« = o
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converging in the uniform norm, where S0(t) = T(t) and

Sn(t)= ί T{t-τ)LwSn_x{τ)dτ, n ^ l . (3.5)

o
Proof. Let MeL2nL°°. Then one can easily see from (2.2) that LψueL2, and there
exist constants a,b>0 such that

IIL^II^αlMU + blML. (3.6)

The essential self-adjointness of S now follows from the fact that there exist
constants c,d>0 with

Mloo^clMI 2 + <ίlMu||2, (3.7)

and the Kato-Rellich theorem [13]. Furthermore, the domains of the operators S,
T, and (— Δ) are identical. Taking a function g in any of these domains, we see from
(3.6) that there is a constant C such that

\\LψT{t)g\\2^^\\g\\2, 0<ί<l . (3.8)

Applying Theorem 8.1.19 of [5], we conclude that S generates a strongly
continuous semi-group S(ί) = exp( —Si), ί>0, with the properties stated in the
lemma.

Lemma 3.2. Each operator Sn(t\ π ^ l , has a continuous kernel Sπ(ί)(x,y) which is
symmetric. There exists a universal constant A such that for any r, 2 ^ r ^ oo, and
yelR3, the kernel satisfies the inequality

0 M2" t ( n ~ 3 + 3 ; r ) / 2 > t>o. (3.9)

Here Γ denotes the Euler gamma function.

Proof. The symmetry of Sn(t) follows from the representation (3.5) and the self-
adjointness of Lψ and T(t). The continuity of Sn{t){x,y) may be deduced from the
following argument to obtain the bound (3.9).

Putting M = || W\\ „, we have from (2.6) if 0 < τ < ί,

| 7 \ t - τ ) L Λ - i M ( * , ^ ^ (3.10)

On applying Holder's inequality, we have

IISll-1(τ)( ,y)vll^l |S l l . 1 (τ)(.,y) | | β | | v | | 2 , (3.11)

where s is given by (2.7). From Young's inequality we see that for 2 g r ^ o o the
function ||Hί_τ(x, )ψ||peLΓ(R3) and

τ)Γ* r pIMI2, (3.12)

where ηrp is given by

_ 3Γ3 _ _1 _ 1
η"~2\2~7~p'

(3.13)
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and a is a constant independent of r, p provided 1 ̂  p ̂  3/2,2 ^ r ̂  oo. If we use the
fact that

\\S0(t)(',y)\\sSbeMt(2πtΓ3il-1/s)/2, 2 ^ s ^ o o , (3.14)

where b is a constant independent of s, we see from (3.5) and (3.10) that

llSiWί^ίlUC^^iv^ (3.15)
o

Since p and s in (3.15) can be chosen arbitrarily subject to the conditions
p " 1 + s ~ 1 = 7 / 6 , l < p < 3 / 2 , we find that for some constant A the following
inequality holds:

IIŜ ίK ^ίll^^^llvll^-^3^, 2^oo. (3.16)

The inequality (3.9) now easily follows by an induction argument.
Next for - oo < λ< oo, let P{λ) be the projection of the self-adjoint operator S

on the interval (— oo,A]. By (2.5) we see that S is bounded below, and hence there
exists Λ o ^0 such that P(λ) = 0 if λ<λ0.

Lemma 3.3. For every λeJR, P(λ) is an integral operator with continuous kernel
P(λ)(x,y). For each xelR3, P(λ)(x,x) generates a positive Borel measure dP(λ)(x,x)
such that

S(t)(x9x)= J e-λtdP(λ)(x,x), f > 0 . (3.17)
λo

Proof. From Lemmas 3.1 and 3.2 we conclude that S(t) is an integral operator with
continuous kernel S(t)(x,y). Let Q(λ) be the operator Q(λ) = q(S), where
q: (— oo, oo)->IR is given by q(z) = 0 if z > λ, q(z) = e2z if z^λ. Thus we have

P(λ) = S(l)Q(λ)S(l). (3.18)

Note from the proof of Lemma 3.2 that 5(1) may be regarded as a continuous
mapping h: R3->L2(IR3) by setting

) = S(l)( ,y), y e R 3 . (3.19)

Thus for weL2(!R3) with bounded support, it follows that

S(l)u= $h(y)u(y)dy. (3.20)
R3

Applying Q(λ) to both sides of (3.20) we obtain

Q(λ)S(l)u= J Q(λ)h(y)u(y)dy, (3.21)
R 3

in view of the fact that Q(λ) is a bounded operator. Again from Lemma 3.2 we see
that S(l) is a bounded operator from L2(IR3) to C0(IR3). It therefore follows from
(3.18) and (3.21) that P(λ) is an integral operator with continuous kernel

P(λ)(x, y) = S(l)[β(A)%)] (x). (3.22)
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To show that dP(λ)(x,x) is a positive measure, we note that for λ>λγ the
operator P{λ) — Piλ1) is positive and so we may conclude that

for any xeIR3. Hence P{λ) (x, x) is an increasing function of λ and from (3.22) we see
that this function is continuous from above, so we may form the Borel measure
dP(λ)(x,x) on (— oo, oo). The identity (3.17) now follows from the fact that for any
ueL 2,

)= f e-λtd(P{λ)u,u), (3.23)

by choosing functions u which converge to the Dirac δ function at x.

Lemma 3.4. Let 9) CR3 be a bounded domain, and associate with Θ a measure μΘ on
R 2 defined by

π / i i , , P(λ)(x,y)P{v){y,x) A _
μ^{(-oo,λ]x(-oo,v]}= j J • • dxdy. (3.24)

& 2 \χ—y\

Then μ2 is a positive Borel measure on R 2 with support in the set {(λ, v):A^λ0,
v^A0}, and for any ί, τ>0, the following identity holds:

ϊf«- ^ . ) . ,3.25,

Proof We first show that the right side of (3.24) is positive. We consider P(λ)
restricted to L2(β\ Then P(λ) has eigenvalues aγ ^ α 2 ^ ... ^ 0 with corresponding
eigenfunctions φt(x), i ^ 1. The functions φf(x) are continuous on the closure of Qi
and

P{λ){x,y)= ΣaiH*)Ψi(y)i x,yε®, (3.26)
1

where the series in (3.26) converges in L\Q) x Q)\ We have a similar expression for
P(v)(x,y% namely

oo

Let Pf(A)(x,y), P/v)(x,y) denote the ith a n d / h partial sums in (3.26) and (3.27),
respectively. Then since |x|~ ι is positive definite, the integral on the right in (3.24)
is positive if we replace P{λ)(x,y) by P^λjix^y) and P(v)(x,>;) by PJ(v)(x,y). Now,
using the fact that

P(λ)(x,x)= Σα.-lvφ:)!2, xe®, (3.28)
i= 1

where the convergence in (3.28) is pointwise, we conclude from the dominated
convergence theorem that the right side of (3.24) is positive. It follows by a similar
argument that μ9 is a finitely additive positive measure on R2. From (3.18) we see
that μ^ is continuous from above and hence a Borel measure on R2.
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To prove (3.25) we observe that the function P(λ)(x,y) of A generates a signed
measure dP(λ)(x,y) on IR with total variation measure \dP(λ)(x,y)\ satisfying

\dP(λ)(x, y)\ ύ\ίdP{λ){x, x) + dP(λ)(y, y)] . (3.29)

Hence by (3.17) the Laplace transform of dP(λ)(x, y) exists, and one can easily see it
is given by

S(t)(x9y) = J e~λtdP(λ)(x,y), ί > 0 . (3.30)

The formula (3.25) now follows from (3.30) by using Fubini's theorem and the fact
that dP(λ)(x,y)dP(v){y,x)dxdy is a signed measure on R 2 x IR3 x IR3.

We introduce a parameter y > 0 and define the operator Ty = H + γW with
corresponding semi-group Ty(t) and the operator Sy=Ty — Lψ with semi-group
Sy(t).

Lemma 3.5. The following limits exist as y-+co: for any m>0, xeIR3,

limy-3/2Sy(m/7)(x,x) = (2πm)- 3 / 2 exp[-mPF(x)]. (3.31)
y-+oo

For any m, n>0, and bounded domain

= (2π)-
2
(w«)-

1/2
(w + n)-

1
 Jexp[-(m + n)W(x)]dx. (3.32)

Proof. By Lemma 3.2 we see that

\Sy(m/y)(x, x) - Sy

0(m/y)(x, x)\ = 0(y), (3.33)

as γ-+ oo. Thus it is sufficient to prove (3.31) with Sy replaced by Sy

0 = Ty. From (3.2)
this is equivalent to showing that

Γ m/y I

l i m j e x p \ - y j W{βs)ds\dμx^mly = ̂ Vi~mW(x)-\. (3.34)
y - oo L 0 J

Let b(s\ s^O, be Brownian motion in IR3 starting at 0. Then we have [15] for the

βs of (3.34) the relation

βs - x = b(s) - — b(m/y), O^s^m/y. (3.35)

For <5>0, let

Nδ = {β: sup \βs- x\ < ;4 , and - N δ be the complement of Nδ. (3.36)

Then from (3.35) and the reflection principle for Brownian motion we see that
there is a constant c > 0 such that as y->oo,

ί dμx_x.mlyύe^. (3.37)
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We write the integral on the left in (3.34) as a sum of integrals over Nδ and ~Nδ.
By (3.37) we have

f
~N

(3.38)

which converges to zero as y->oo. Hence by letting δ-+0 and using the continuity
of W at x, we obtain (3.34). We have therefore proved (3.31).

We turn to (3.32). As for (3.31) we first show that it is sufficient to prove (3.32)
with Sy replaced by Sy

0. By Lemma 3.2 there is a constant C such that the following
inequalities hold as y-*oo for any x,yeIR3, 2 ^ r g oo:

3(l-r)/2

l-3/2r

(3.39)

(3.40)

Hence we have

\S\m/y){x, y)\ \S\n/y)(y, x)- S&nli)iy, x)\

\χ—y\

\S\n/y)(y,x)-Sl(n/y)(y,x)\

\χ~y\
dχ

dx 11 / 2

ί*y ί ϊr-^iτ llsγ(«/y)0', )-sδ(n/y)ϋ', )ll2\χ-y\

\χ—y\

1/2

(3.41)

from (3.39), (3.40), and the Holder inequality. Since 7/4 < 2, (3.41) shows that it is
sufficient for us to prove (3.32) for Sy

0.
From (3.2) we have

Sl(m/y)(x, y) = Hm/y(x, y) j exp [ - γ " f W(βs)ds^ dμx, Λ m/γ. (3.42)

It easily follows from (3.42) that for any δ >0, there i s a o O such that Sy

Q(m/y)(χ, y)
tends to zero faster than exp(-cy) as y->oo in the set {(x,y):\x — y\>δ/2}. It is
therefore sufficient to prove (3.32) with Sy replaced by Sy

0 and the domain of
integration 2 x 9 replaced by {(x, y)e 9 x 2: |x - y\ < δ/2}. The process βs in (3.42)
is related to the standard Brownian motion b(s) by

m m
(3.43)

Hence we see just as in (3.37) that if |x - y\ < δ/2, then there is a constant c > 0 such
that as y->oo,

f dμXtytmlySe-cy. (3.44)
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It follows that in evaluating (3.32) we may replace Sγ

0(m/γ)(x, y) by

Hm/γ(x,y) J exp\-γmfw(βs)ds]dμXfy>m/γ. (3.45)
~Nδ L 0 J

The asymptotic formula (3.32) now easily follows by letting <5-»0 in (3.45) and
using the fact that W(x) is uniformly continuous in B. This completes the proof.

We let PΊ(λ\ — oo < λ< oo, be the projection operators associated with Sγ. By
(2.5) we see that there is a λ0 ^ 0 independent of γ such that Py(λ) = 0 if λ<γλo. In
the following we denote by / + the positive part of a function /:IR3->]R.

Thus

/+(x) = max{/(x),0}. (3.46)

Theorem 3.6. The following asymptotic formula holds:

1

6π
limy-3/2Py(O)(x,x)=^l-W(x)YJ2, for any xeR 3 . (3.47)

Proof Observe that the right side of (3.31) may be written as a Laplace transform,

^ 2 ϊ e~mu[u- W(x)~\ll2du, (3.48)

where λ0^ — \\W\\n- The left side of (3.31) may also be written as a Laplace
transform

j e-muy- V2dpy(yu)^ χ ) ( 3 49)
λo

The result (3.47) now follows from the Tauberian theorem of Karamata [15]
which we state in the form:

Lemma 3.7. Let mγ, 0<γ^ oo, be a set of positive Borel measures on the interval
[Ao, oo), such that for every α>0, 0 < y ^ oo,

00

J e-*udmγ(u) < o o , (3.50)
λo

and oo oo
lim J e~audmy(u)= J <ΓαMdm°°(w). (3.51)

y->°° λ0 λ0

Then the following asymptotic formula holds :

lim my[A0,0] =m°°[Λ0,0]. (3.52)
y->oo

Next let μ\ be the measure (3.24) associated with Pγ(λ). Then

Theorem 3.8. The following asymptotic formula holds:

lim y~2μl{(- oo,0]x(- oo,0]} = - ^ J [ - W{x)]2

+dx. (3.53)
Z71•y-̂ oo



146 J.G.Conlon

Proof Let f(u,v) be defined for w,ι?g:0 by

f(u,v)= —j log -: ιϊ72~ p (3.54)

and b(u,v) be defined for {u,v)elR2 by

M«,»)= ί / ( [ « - m x ) ] + , [ » - W{x)]+)dx. (3.55)

Then one can see [2] that the right side of (3.32) is a two dimensional Laplace
transform,

j j
λo λo

From (3.25) we see that the left side of (3.32) is also a Laplace transform,

00 00

ί \e-(mu+nv)y-2dμl(yu,yv). (3.57)

The theorem now follows from a two dimensional version of Lemma 3.7:

Lemma 3.9. Let my, 0 < y ^ o o , be a set of positive Borel measures on the subset
[Ao, oo)x[λo, oo) of R 2, such that for all α, β > 0, 0 < γ S oo,

j j e-(™+βv)dmy(u,v)<oo, (3.58)
λo λo

aiiCl oo oo oo oo

lim j J<Γ ( α u + ^W(u,t;)=ί J β - ^ + ^ m 0 0 ^ , ! ; ) . (3.59)
V^^λoλo λ0 λo

Then the following asymptotic formula holds:

lim mmλ0,OMA0,0]} = m00{[Ao,O]x[Ao,0]}. (3.60)
y-oc

Remark. The techniques of this section are limited to potentials WeL00. One would
clearly like to extend the results to potentials Win U + L™ for p>3/2. We can
show, using a bound of Carmona [1], that (3.34) holds for such potentials if p>3.
By considering the Coulomb potential, one can see that (3.34) does not necessarily
hold if p < 3 . Thus to prove (3.47) and (3.53) for potentials in L^ + L00 with p>3/2
one requires a technique entirely different from the one presented here.

4. Hartree-Fock Theory

We use the notation of Sect. 1. With λ satisfying (1.19) and α > 0 such that od is an
integer, let αΨ!, .. ,αψα ; ι be the orthonormal set of wave functions representing a
Hartree-Fock ground state for the Hamiltonian HαA(Fα). Then aψ19 ...,αy>αλ are the
first aλ eigenfunctions of the operator S(aψv ...,αtpαA) in (1.14), where we replace V
in the expression for φQ by Va. Let U be the nonlocal potential defined by
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where the ^ ( α " 1 / 3 •) denote the functions jφ^aΓ ί/3x) and L is given by (1.13). We
put

S β = - Λ 2 ( 8 π 2 ι π ) " 1 2 l - α " 2 / 3 0 β β ( α " 1 / 3 A : ) - ^ β . (4.2)

Then it is clear that αφt(α~ 1 / 3x), 1 ̂ i<ΞαΛ, are the first txλ eigenfunctions of Sα.
We need to strengthen (1.29). Let Φa(x) be given by

Φβ(x) = α - 4 / 3 0 β β ( α " 1 / 3 x ) - K*) (4.3)

Lemma 4.1. For α > 0 the function Φa(x) is in L°°(IR3) and WΦJ^ is bounded as
α-*oo. The functions Φα converge uniformly on compact sets as α-+oo to the function
φY(x)-V(x).

Proof We have , ^ . - 4 , 3 j ftΛO ^ ( 4 4 )

We can write the integral in (4.4) as a sum

φ α ( x ) = α " 4 / 3 j + α " 4 / 3 J . (4.5)
ly-a-VϊxlXx-V* \y-*~ 1/3x\ ύ<*~ 1 / 3

The first term in (4.5) may be estimated as

α-4/3 j ^α- 1 Jρ β (y)dy = λ. (4.6)
ly-x-VSxlXx-1'3 Ω

To estimate the second term we apply Holder's inequality. Thus

α " 4 / 3 J ^(8π) 2 ' 5 α- 7 / 5 [ f ρ α ( y ) 5 / 3 ^ ] 3 / 5 . (4.7)
| [ J

Now we use Lieb's lower bound on the kinetic energy of fermions [6]. Thus there
is a universal constant C such that

\QΛ{yγi*dy^CK{aΨv...,aψJ. (4.8)
Ω

Hence from (1.23) we see that the right side of (4.7) is bounded as α->oo. It follows
that || Φβ II a, is bounded as α-*oo.

For 0 < σ < 1 and x Φ z w e consider

r|0" =

1 1
(4.9)

We estimate the integral in (4.9) to obtain

We write the right side of (4.10) as a sum of three integrals / j + / 2 + /3, where

/i=«" 5 / 3 ί , (4.11)
|α~ 1 / 3 J C _ y | < 2 - i α - vajjc-z)

/2 = α~ 5 / 3 S , (4.12)
|«-l/3z-y|<2-l«-l/3|χ-z|

/ 3 = α ~ 5 / 3 J . (4.13)
inf[|oi-1/3χ-y|,|tt-1/3z-y|]>2-iα-1^|x-z|
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Evidently we have , x

The integral in (4.14) may be estimated just the way we estimated (4.4). We
conclude that if σ<l/5, then / 1 is bounded as α->oo. To estimate J 3 we observe
that for y in the set {y\\Ώt\\<Γιl*x-y\A<Γιί*z-y\\>2-ι<Γm\x-z\},

1 / 3 z-y | , (4.15)

and so we have

fj <3 2 α f dv
3~ l\χ-1/3χ-y\1+σ y'

which shows that / 3 is bounded as α->oo.
Thus the left side of (4.11) is uniformly bounded in x and z as α-*oo provided

σ<l/5. Hence the functions Φα are equicontinuous on any compact set. From
(1.29) we know that the Φα converge pointwise to the function φΎ

λ

F(x)-V{x) as
α->oo. Hence by the Arzela-Ascoli theorem we deduce that the Φα converge
uniformly on compact sets to this same function. This completes the proof of the
lemma.

Next let εα be the odth eigenvalue of the operator S" in (4.2).

Lemma 4.2. lim α~ 2 / 3 ε α = — φλ, where φλ is defined by (1.20).
α-* oo

Proof. We bound Sa above and below by simpler operators. Let SJ = Sa 4- Lα, so S£
does not contain a nonlocal potential. Since La is positive definite, it follows that
Sa ^ SJ. To bound Sα from below we observe from Lemma 2.2 that

(4.17)

Hence if we define S\ by

S\ = - [h2(8π2mΓ ' - CA1/2α" 1 / 6 2 " ι]Δ - α" 2 / 3 φ ρ β (α" 1 / 3 x ) - CA 1 / 2 α 1 / 2 2" ', (4.18)

it is clear from (4.17) that S\^t
For <5>0, let Nδ(Sa) be the number of bound states of Sa with eigenvalues less

than -α 2 / 3ί5. From the above we have

Nδ(Sl) S Nδ(S*) ̂  Nδ(S\), (4.19)

provided α is sufficiently large. Now we use the fact that V(x) falls off at oo and
Lemma 4.1 to conclude that

lim 0L~1Nδ{S*) = c~312 f [φT F(x)-<5] 3 / 2dχ, ΐ = 0, l , (4.20)
R 3

where c is given by (1.17). This follows from the method of Dirichlet-Neumann
bracketing [14]. From (4.19) we see that (4.20) also holds for the operator Sa.
Suppose 0<λ<^z. Then from (1.20) we see that if δ>φλ, then lim a~ιNδ{Sa)<λ.
Consequently we conclude that α °̂°

l iminfα~ 2 / V^-<5. (4.21)
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If λ < z and δ < φλ, then lim α" 1Nδ{Sa) > λ. Hence
α-*oo

lim sup α" 2 / 3 ε α ^ - δ. (4.22)
α-*oo

Letting δ-+φλ in (4.21) and (4.22) we obtain the result of the lemma in the case
λ < z. For λ = zwe may take δ = 0 in (4.22), since εa < 0 for all α. Then (4.21) implies
the result.

Theorem 4.3. The asymptotic formula (1.28) holds for xeIR3.

Proof. We proceed in exactly the same way we obtained (3.47). First we prove the
analogue of (3.31) for Sa, taking y = α 2 / 3 . By Lemma 4.1 the analogue of (3.34) holds
for Sa. From Lemma 2.2 we have

|(ι;,Lα

M)|^C rA
1 / 2α 1 / 6 | |u | |Γ | | t; | | s. (4.23)

Thus for 2 ^ r ^ oo there is a constant C such that

1 / Γ, α ^ α o . (4.24)

It follows from (4.24) that (3.31) holds for Sa. Let Pa(ξ) be the projection of the
operator Sa on (— oo, £] for — oo < ξ < oo. Then we may obtain a version of (3.47)
for P* from the version of (3.31) for Sα. We conclude that

lim α-1Fχ(εα)(x,x) = ̂ ρIF(x), xeΩ, (4.25)
α-*oo

by virtue of (1.20) and Lemma 4.2. The conclusion of the theorem follows
immediately from (4.25).

Lemma4.4. Let ^ C R 3 be a bounded domain and @1=@x{— I, l}cί2. Then

lP*(ε«)(x,y)P«(ε«)(y,x) -1/3.-1
lim α 4 / 3 J J - j : dx dy = 3 4 / 3 π 1 / 3 4

(4.26)

Proo/Tirst we observe that (3.32) holds with Sa

0 in the place of Sγ and y = α 2 / 3 . This
follows from Lemma 4.1. Then (3.32) with 5α in place of Sy is obtained from this by
using (4.24). Finally we get (4.26) from Lemma 4.2 and (3.53).

Theorem 4.5. The asymptotic formula (1.27) holds.

Proof. Evidently (1.27) is (4.26) with S>1 =Ω. Since we have proved (4.26) only for
bounded domains 3), we need Lemma 2.3. Let stf C@> be the set of x e ® whose
distance to the complement of £&, ~<3, is at least 1. Then we have

ί J + 2 J J , (4.27)

where the integrands in (4.27) are the same as in the left side of (4.26). Now by
Lemma 2.3 we have

J J ^ C a - 4 / 3 J [ a - ^ a ( a " 1 / 3 x ) ] 4 / 3 d x . (4.28)
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By Holder's inequality we have

ί ββ(«" 1 / 3 x) 4 / 3 Λc;g f J ρ β (α" 1 / 3 x)^x| 1 / 2 f J QJ,OΓ
 ll3x)5l3dx}112. (4.29)

s* [si J [si J

Thus, using Lieb's lower bound on the kinetic energy of fermions, we obtain

j J ^Cfία- 2 ρ α (α- 1 / 3 x)ίίx] 1 / 2 , α-oo, (4.30)

for some constant C. The second integral on the right in (4.27) may be bounded as

2 J J Sa'413 ^ Pa(ea)(x,y)Pa(εa)(y,x)dxdy
~3)x s4\ Ω Ω

= α" 1 / 3Λ. (4.31)

Finally we let ^ / R 3 . By the Lieb-Simon weak version of (1.28) the right side of
(4.30) converges to zero. Letting α-+oo we obtain the result of the theorem.
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