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Abstract. Consider a large number of electrons with Coulomb repulsion
moving under the influence of static nuclei. It is assumed the potentials due to
the nuclei are Coulombic away from their centers but are smooth at the
centers, so no singularities exist. The author shows that the exchange energy
for the Hartree-Fock ground state of this system converges in a suitable limit
to the formula obtained by Dirac for exchange energy as an integral of the one

body density.

Introduction

In this paper we prove some semi-classical limit theorems for the Hartree-Fock
theory associated with a Coulombic Hamiltonian of electrons interacting with
static nuclei. We assume there are k nuclei with positive charges z;, 1=j=<k,
situated at the points R;€R?, 1<j<k, respectively. Let g:R*->R be a continuous
nonnegative spherlcally symmetric function with compact support whose integral
over R3? is 1. We assume the electrostatic potential at xeIR® due to the nuclei is

— V(x), where

Vix)=3 z | ﬁy—)a!y. (L1)

=1 7R Ix—)l

Thus for large x the potential — V(x) is the same as the Coulombic potential due to
the k nuclei, but for x close to the points R, 1 Sj<k, V(x) is smoothed. Ideally we
would like to assume simply that V(x) is the Coulomb potential due to the k nuclei.
However the techniques of this paper do not apply to that case.

Next we introduce n electrons, each with charge — 1 and mass m, moving in the
field of the potential — V(x). Let x;eR3 x {— 1,1} = be the coordinate of the i"®
electron in the product of IR? with the spin space { — 1, 1}. Then the n electron wave
function p may be written as p=y(x,,...,x,), where pe L(Q"). Let #, be the
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Hilbert space of all such y which are anti-symmetric in the x;, 1 Si<n. By the
Pauli exclusion principle 4, is the state space for the n electron system. The
corresponding Hamiltonian H (V) is given by

H, (V)= —h*8n*m)~! z A,— Z Vix,)+ Z Ix;—x;71, (1.2)
i<j=1
with h being Planck’s constant, and 4; the Laplacian in the x; variable 1 <i<n.
Here we are concerned with estimating asymptotically the ground state energy
E (V) of the n electron system as n—co. If [,] denotes the inner product on #,,
then the Rayleigh-Ritz procedure yields

E,(V)=inf{[y, H,(V)y]l:ype s, llpl=1}. (1.3)

Let z be defined by k
=2z (1.4)

=1

It is known [14] that if n £z there is a function we 5, which achieves the infimum
in (1.2). This function is not necessarily unique.

In Hartree-Fock (HF) theory one takes the infimum in (1.3) over functions y
which are anti-symmetric products of single electron wave functions. Let
P,(x), ..., p,(x) be an orthonormal set in L*() representing the wave functions of
the n electrons and y the Slater determinant of the y,,...,y, Then

['«PaHn(V)IP]=8HF(1Pp s, (1.5)

h
whete eup=K+A+R+Ex. (1.6)

The kinetic energy K is given by

K@y, ..., p,) =h*8n2m)~! 2 552 [P (x)|2dx . (1.7)

i=1

The attractive and repulsive potential energies A and R may be expressed as
integrals of the one body density

o)=Y lw(x)*, xeQ. (1.8)
i=1
Thus we have
A, V)=— 5 o(x)V(x)dx, 1.9
1 Q(X)Q()’)
R(g)= = .
(@ 2;(”52 )] (1.10)

The nonclassical exchange energy Ex is given by

i=1

= dxdy. .11
= y (1.11)

1
Ex(y,,...,p)=— 5,‘&;‘;
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Let EXF(V) be the Hartree-Fock ground state energy for the system (1.2). Lieb
and Simon [11] showed that if n<z+ 1, this ground state energy is achieved for
some orthonormal set of single electron wave functions y,(x), ..., p,(x). Let o(x) be
the one body density (1.8) associated with these single electron wave functions. The
net electrostatic potential at a point xeIR3 due to nuclei and electrons is — ? ,(x),

where
o)
¢ (X)=V(x)— | i——=dy. 1.12
¢ b=y (112
The potential (1.12) is a local potential. We define a nonlocal potential operator
Ly, ---¥,) by

L(yy, - wpulx)= Z wilx )jwl(yl (,y) (1.13)

for ue L*(£2). The Euler equation condition for the v, ...,y, is then that these
functions are the first n eigenfunctions of the operator

Sy, .. W)= —h*(87?m) ' A= ¢ (x)— L(y,, ..., w,) on L¥(Q).  (1.14)

Next we consider Thomas-Fermi theory. Suppose there is a system of A
electrons moving under the potential — V(x) with one body density f(x), xeIR3.
Thus f(x)20, xeR3, and

| fx)dx=4. (1.15)
IRB

The Thomas-Fermi (TF) kinetic energy of the system is
Krp(f)= 3¢ j f(x)*Pdx, (1.16)
R® ’

where the constant ¢ is given by
c=h?*(2m)~ 13%3(8m)~ /3. (1.17)
The attractive and repulsive Thomas-Fermi potential energies are A(f, V) and R(f)
respectively as in (1.9) and (1.10). Hence the Thomas-Fermi energy functional
ere(f; V) is given by
| erel; V) =K+ AL V) +R(). (1.18)
The Thomas-Fermi ground state energy for the 4 electron system, E}*(V), is then

obtained by minimizing (1.18) subject to the condition (1.15). Lieb and Simon [12]
proved that if 4 satisfies the inequalities

0<i<z, (1.19)
there is a unique function ¢} (x)e L'(R*)n L3"*(R?) which achieves this mlmmum

The corresponding potential function ¢} (x) is defined by (1.12) with 9 =¢F. The
Euler equation for the variational problem is then

co ¥ (x)??=max[@ ¥ (x)—¢,,0], xeR3, (1.20)

where the Lagrange multiplier ¢, satisfies ¢, =0 and ¢, =0 if and only if A=z.
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We relate Hartree-Fock theory to Thomas-Fermi theory. For a>0 let V(x) be
defined in terms of the potential (1.1) by

V(x)=a*3V(a'?x). (1.21)

Letting A satisfy (1.19) we see that for any a>0 such that a4 is an integer, the
Hamiltonian H,,(V,) of (1.2) has a Hartree-Fock ground state which may be
described by an orthonormal set of a4 wave functions in L%(Q), ,¥,, ..., ,¥,;- Then
if we let a— oo through integer values of a4 it is known [12] that
lim o~ "2 ERF(V)=EF(V). (1.22)
This result is proved by the method of Dirichlet-Neumann bracketing. By
applying the Feynman-Hellman technique to (1.22) one can also see [12] that
lim o PR (s - oWai) = Krel@3')- (1.23)

a— oo

If we let g,(x) be the one body density (1.8) associated with the wave functions
W1 -5 aWq it follows similarly that

lim «~ "2 A(g, V) =A(lF, V), (1.24)
lim o~ "3R(g,) = R(gTF). (1.25)

In 1930 Dirac obtained a semi-classical value for the exchange energy
associated with a one body density f(x) of electrons. His value is [4],

EXD(f)=—34/37t_ 1/34-1 Sf(x)‘mdx. (126)
R3

The main result of this paper is to relate the Hartree-Fock exchange energy to the
Dirac exchange energy as follows:

}EE, " P EX(Y,, e oW,2) = Exp(01F). (1.27)
We also strengthen some results of Lieb and Simon [12] on the convergence of the

Hartree-Fock one body density to the Thomas-Fermi one body density. We prove
that for xeR?,

}Lrg a”2g, (0™ 3x) =g F(x). (1.28)

In order to prove (1.27) we use different techniques than those employed in
[12]. The reason is that exchange energy is a lower order term in the Hartree-Fock
energy functional. We need two results from the Lieb-Simon work. The first one is
(1.23). The second, although not explicitly stated in their work, can be obtained by
applying the Feynman-Hellman technique to (1.22). It is the following:

lim [a™*3¢, (a7 Px)— V(x)]=¢1F(x)— V(x), xeR3, (1.29)

a—* oo

where @, (x) is the potential (1.12) associated with the electron density g (x) and
the nuclear potential V(x).
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This work stems from a previous paper [2], where we proved a version of
(1.27). In Sect. 2 we obtain some Sobolev inequalities necessary for our work. In
Sect. 3 we obtain (1.27) for the simple case of a large number of fermions with no
mutual interaction moving under the influence of a nonlocal potential. Then in
Sect. 4 we extend the method to the case under consideration.

For a review of the most recent rigorous work on Thomas-Fermi and related

theories see [8].

2. Sobolev Inequalities

Let LP(Q) and LP(R?), 1 <p< o0, be respectively the spaces of functions on Q and
IR? whose p'" powers are integrable. If a function u(x) lies in one of these spaces, we
denote its norm by |ul|,. We define the bilinear form (,) on functions u,v with
domains Q or R? such that |uv| is integrable by

(u, v) = [ u(x)o(x)dx, 2.1

where integration is over the appropriate domain, 2 or IR3.
For functions ye L*(R*) we associate an operator L,, by

u
Lyul)=p(x) [ PO gy, 2)
g: 1x—)l
Lemma 2.1. (a) Let r,s be such that 2<r, s<6 and
1,12 -
ros 3 (2.3)

Then for ue L'(R?), ve L(R?), the inequality
v, L,w) £ C,llpl3lul,lvl 2.4)

holds, where C, is a constant depending only on r.
(b) The operator L, is positive definite and there is a constant C such that for
ue HY(R3),
0=(u, L) = Cllpll3llull |l Pull, . (2:5)

Proof. (a) We use the Hardy-Littlewood-Sobolev inequality [13]. Thus if p,q are
such that 1 <p, g<3/2,and p~ ' +q~*=5/3, it follows from this inequality that

v, L,w) = Clluyll lvwll,, (2:6)

where the constant C, depends only on p. The result (2.4) follows by applying
Holder’s inequality to the right side of (2.6) with
2p 2q
s= e (2.7
(b) The operator L, is positive definite since the function |x|~! is positive
definite. The inequality (2.5) follows from (2.4) by putting u=v, r=s=1/3, and
applying a Sobolev inequality [13].
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Next let p(x), i=1,2, ..., be an orthonormal set in L?*(Q). Foreach N=1,2, ...,
we define an operator Ly by

Lyt9= Y. vix )[R0 5, 3)

Lemma 2.2. (a) Let r, s satisfy the conditions of Lemma 2.1. There is a C, depending
only on r such that for ue L'(Q), ve L%(£),

(v, Lyw)| < C,N*2[lull, [lv]l,. (29)

(b) The operator Ly is positive definite and there is a constant C such that for
ue HY(Q),

0<(u, Lyu) S CNY2ul,||Pull, . (2.10)

Proof. (a) Let us regard ue L'(Q) and ve L%(R) as fixed functions. We define an
operator T on L%(Q)*by

Tp(x) = v(x )5 UW(T} y. (2.11)

From the Hardy-Littlewood-Sobolev theorem one can see that T is a bounded
operator on L%(£). Furthermore, we have

N
(v, Lyw) = Y (w;, Tyl (2.12)

i=1

The operator T is Hilbert-Schmidt if

Trace(TT*)= | jwdx d

(2.13)

is finite. Applying the Hardy-Littlewood-Sobolev theorem to the integral in (2.13),
we see that there is a constant C, depending only on r such that

Trace(TT*)= C7llull?lloll? . (2.14)

The inequality (2.9) then follows from (2.12) and the fact that

N 1/2
S (v, Tw.-)lz}

i=1

N
S 1 Tw.~)|§NU2{

i=1

SNY2{Trace(TT*)}'/2. (2.15)

(b) Just as in Lemma 2.1 we take u=v and r=s=1/3 in (2.9).

Remark. Lieb [9] has shown by using a result of Cwickel [3] that one can replace
the constant C,N'/2 in (2.9) by C! N'/3, where C} depends only on r. It is easy to
see that N'/? is the lowest power of N which can occur in the inequality (2.9).

Finally we state a theorem of Lieb [7, 10] which shows that Dirac exchange
energy is a lower bound for Hartree-Fock exchange energy.
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Lemma 2.3. Let y,(X), ..., py(x) be an orthonormal set in L*(Q) such that v, is in
HY(RQ), 1Si<N. Let 9(x) be the one body density

N
ox)=Y lyxI?, xeQ. (2.16)
i=1

Then for any Borel set SCSQ, the following inequality holds :
2

N —_——
Y wiw(y)

=1
[x—yl

1
25s
where C is a universal constant.

Lemma 2.3 is Lieb’s theorem stated for a Hartree-Fock wave function. Note
that his theorem is stated for S=Q but the argument extends to any SCQ.

dxdy<C {o(x)*3dx, (2.17)
5

3. Semi-Classical Theorems for Fermions Moving Under a Nonlocal Potential

We consider the operator H= —1 4 acting on L%(R?). It is well known that H has a
unique sclf-adjoint extension which we also denote by H. This self-adjoint
operator generates a strongly continuous semi-group H,=exp(— Ht), t>0, of
integral operators H, with kernels

H/(x,y)=Qnt)"32exp[ —|x—y|}/2t], t>0. (3.1)

Next let W(x) be a continuous potential in L*(IR3). The operator T=H + W is
then essentially self-adjoint on L%(R3) and generates a strongly continuous semi-
group T(t)=exp(— Tt), t >0, of integral operators [13]. The kernel of the operator
T(t) may be expressed in terms of a path integral as follows : For x, ye R* and ¢ >0,
let dp, ,,, be the conditional Wiener measure on continuous paths f: [0,1]—R?,

such that f,=x, B,=y. Then

ﬂM&ﬂzﬂudﬁﬂ4~iWWM4ﬂam' (32)

Hence T(t)(x,y) is positive for all x, yeR® and one can see [1] that T(t)(x, y) is
continuous in (x,y,t). Furthermore, it is evident that T(f)(x,y) satisfies the

inequality
T(O)(x, y) SH(x, y)exp[[ W], t>0. (3.3)

Here we wish to consider the operator S=T— L, on L*(R?), where L, is given
by (2.2).

Lemma 3.1. The operator S is essentially self-adjoint on L*(R®) and generates a
strongly continuous semi-group S(t), t>0. The operators S(t) may be written as an

infinite series

m=ium (3.4)
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converging in the uniform norm, where S (t)=T(t) and
S(= | Tt—1)L,S,-,(v)dt, n=1. (3.5)
0

Proof. Let ue L>nL*. Then one can easily see from (2.2) that L ue L?, and there
exist constants a,b>0 such that

IL,ull,=alull,+bllull, - (3.6)
The essential self-adjointness of S now follows from the fact that there exist
constants ¢,d >0 with

lull o S cllull,+dll dull,, (3.7

and the Kato-Rellich theorem [13]. Furthermore, the domains of the operators S,
T, and (— A) are identical. Taking a function g in any of these domains, we see from
(3.6) that there is a constant C such that

(o
1L, TOgl, < = lgl,,  O<e<L. (3.8)

Applying Theorem 8.1.19 of [5], we conclude that S generates a strongly

continuous semi-group S(tf)=exp(—St), t>0, with the properties stated in the
lemma.

Lemma 3.2. Each operator S,(t), n=1, has a continuous kernel S,(t)(x,y) which is
symmetric. There exists a universal constant A such that for any r, 2=<r=< o0, and
yeR3, the kernel satisfies the inequality
A"exp[| Wl t]
I'(n/2+1)

Here I' denotes the Euler gamma function.

IS0, I, < lpl3rn=3+3m2 0 >0, (3.9)

Proof. The symmetry of S,(t) follows from the representation (3.5) and the self-
adjointness of L, and T(¢). The continuity of S,(t)(x, y) may be deduced from the
following argument to obtain the bound (3.9).

Putting M =||W|| ., we have from (2.6) if 0<t<¢,
IT(t—1)L,S,— (D, =" 2C I H, _ (x, Wl IS,_,()(-, y)wl,. (3.10)
On applying Holder’s inequality, we have
1S,— 1Dl US, -, @D G0l (3.11)

where s is given by (2.7). From Young’s inequality we see that for 2<r< oo the
function ||H,_ (x, )yl ,€ L'(R?) and

IIH, -6l |l Sal2n(t— )] "2l ,, (3.12)
where 7, is given by

331 1
nrp=§ E_——_ > (3.13)
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and a is a constant independent of r, p provided 1 g P=3/2,2=<r= o0. If we use the

fact that
ISo()(-, Y, SbeM(2me) 30~ 192 1 2<s< o0, (3.14)

where b is a constant independent of s, we see from (3.5) and (3.10) that

1S, Y, = Cpabe™ 1]} | [2n(t — )]~ (2mr) 301924z, (3.15)
0

r=-pr

Since p and s in (3.15) can be chosen arbitrarily subject to the conditions
p~'+s71=7/6, 1<p<3/2, we find that for some constant A the following

inequality holds:
IS, Il S Ae p)) 571320, 2<r<o0. (3.16)
The inequality (3.9) now easily follows by an induction argument.
Next for — oo <A< 00, let P(4) be the projection of the self-adjoint operator S

on the interval (— o0, 2]. By (2.5) we see that S is bounded below, and hence there
exists Ao =0 such that P(4)=0 if A<A,.

Lemma 3.3. For every AeR, P(1) is an integral operator with continuous kernel
P(A)(x,y). For each xeR®, P(1)(x, x) generates a positive Borel measure dP(3)(x, x)

such that °
S@)(x,x)= [ e"*dP(A)(x,x), t>0. (3.17)

Proof. From Lemmas 3.1 and 3.2 we conclude that S(t) is an integral operator with

continuous kernel S(¢)(x,y). Let Q(4) be the operator Q(A)=q(S), where
q:(— o0, 0)—=IR is given by g(z)=0 if z> 4, g(z) =e** if z< A. Thus we have

P(A)=S(1)Q(4)S(1). (3.18)
Note from the proof of Lemma 3.2 that S(1) may be regarded as a continuous
mapping h:R3>—L*(IR?) by setting
h(y)=S(1)(-,y), yeR>. (3.19)
Thus for ue L*(IR?) with bounded support, it follows that
S(Qu= 11!3 h(y)u(y)dy . (3.20)

Applying Q(4) to both sides of (3.20) we obtain
Q(A)S(u= I3 Q(Dh(y)u(y)dy , (3.21)

in view of the fact that Q(4) is a bounded operator. Again from Lemma 3.2 we see
that S(1) is a bounded operator from L*(R?) to C,(IR?). It therefore follows from
(3.18) and (3.21) that P(4) is an integral operator with continuous kernel

P(3)(x, y)=S(DLQAA(Y)] (x). (3:22)
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To show that dP(A)(x,x) is a positive measure, we note that for A>A' the
operator P(A4)— P(A!) is positive and so we may conclude that
P(A) (x,x)Z P(21)(x, x)

for any xeR>. Hence P(4)(x, x) is an increasing function of A and from (3.22) we see
that this function is continuous from above, so we may form the Borel measure

dP(4)(x,x) on (— o0, o0). The identity (3.17) now follows from the fact that for any
ueL?,

(S(tyu, u)= ? e Md(P(A)u,u), (3.23)
Ao

by choosing functions u which converge to the Dirac é function at x.

Lemma 3.4. Let 2 CR? be a bounded domain, and associate with 9 a measure pg on
R? defined by

(= 00, A1x(— oo,y = [ 2 (A)(xl’y)P SUZE P (3.24)
2 9 x—y

Then pg, is a positive Borel measure on IR?* with support in the set {(4, v):Az4,
vZ1,}, and for any t, 1>0, the following identity holds:

[ f S(t)(x y)S(r)(y,x) dxdy=| [ e %*"9du (i, v). (3.25)
2 D

l Ao 4o

Proof. We first show that the right side of (3.24) is positive. We consider P(4)
restricted to L3(2). Then P(4) has eigenvalues a, 2a, > ... 20 with corresponding
eigenfunctions y(x), i= 1. The functions y,(x) are continuous on the closure of @
and

@

PAY(x,»)= Y ap(x)w(y), x,ye2, (3.26)

i=1

where the series in (3.26) converges in L%(2 x 9). We have a similar expression for
P(v)(x, y), namely

PO)x,p)= Y b (x),(0), x,y€D. (3.27)
j=1

Let P(4)(x,y), P,(v)(x, y) denote the i and j*® partial sums in (3.26) and (3.27),
respectively. Then since |x| ™! is positive definite, the integral on the right in (3.24)
is positive if we replace P(4)(x,y) by P(4)(x,y) and P(v)(x,y) by P i(V)(x,y). Now,
using the fact that

9]

PO)(x,x)= Y alw(x)*, xe2, (3.28)

where the convergence in (3.28) is pointwise, we conclude from the dominated
convergence theorem that the right side of (3.24) is positive. It follows by a similar

argument that u, is a finitely additive positive measure on R2. From (3.18) we see
that u, is continuous from above and hence a Borel measure on R?.
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To prove (3.25) we observe that the function P(4)(x, y) of A generates a signed
measure dP(4)(x,y) on R with total variation measure |[dP()(x, y)| satisfying

[dP(4)(x, y)| =3 [dP(2)(x, x) +dP(2)(y, y)]. (3.29)
Hence by (3.17) the Laplace transform of dP(1)(x, y) exists, and one can easily see it

is given by .
St)(x,y)= [ e MdP(A)(x,y), t>0. (3.30)
Ao

The formula (3.25) now follows from (3.30) by using Fubini’s theorem and the fact
that dP(A)(x, y)dP(v)(y, x)dxdy is a signed measure on R? x R? x R3.

We introduce a parameter y>0 and define the operator T?=H +yW with
corresponding semi-group T°(t) and the operator §’=T"—L,, with semi-group

S(2).
Lemma 3.5. The following limits exist as y— o0 : for any m>0, xeR3,

yan; y~328Y(m/y)(x, x) = (2nm)~ 32 exp[ — mW(x)] . (3.31)

For any m, n>0, and bounded domain 2 CRR?,

S*(m/y)(x, y)S*(n/7)(y, x) dxdy

l -2
rilg ' ; ;, [x—
=(2m) " 2(mn)”*(m+n)"" [ exp[ — (m+n)W(x)]dx. (3.32)
2
Proof. By Lemma 3.2 we see that
IS7(m/7)(x, x) — S§(m/y)(x, x)| = O(y), (3.33)

as y— oo. Thus it is sufficient to prove (3.31) with §? replaced by S} = T”. From (3.2)
this is equivalent to showing that

m/y
lim (exp [ -7 W(ﬁs)ds} dpt,, o my=eXp[—mW(x)]. (3.34)
y—@© (4]

Let b(s), s =0, be Brownian motion in IR? starting at 0. Then we have [15] for the
B, of (3.34) the relation

B,—x=b(s)— %b(m/w, 0<s<m/y. (3.35)

For 6 >0, let
No={ﬁf sup [ﬂs—xlgé}, and ~ N, be the complement of N,. (3.36)

0sssm/y

Then from (3.35) and the reflection principle for Brownian motion we see that
there is a constant ¢>0 such that as y— oo,

[ duymySe. (3.37)

~Ns
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We write the integral on the left in (3.34) as a sum of integrals over N; and ~ N,
By (3.37) we have

m/y

.‘ exp{_y 5 W(ﬁs)ds]d#x,x,m/yéexp[m“W"ao_cy]’ (338)
~N 0

]

which converges to zero as y— 00. Hence by letting §—0 and using the continuity
of W at x, we obtain (3.34). We have therefore proved (3.31).

We turn to (3.32). As for (3.31) we first show that it is sufficient to prove (3.32)
with S” replaced by S}. By Lemma 3.2 there is a constant C such that the following
inequalities hold as y— oo for any x, yeR? 2<r=<oo:

o
o5

[ |S7(m/) Cx, Y IS™(0/9) (v, ) = Sy s x) dy
2 9

<cyanz, (3.39)

r

SCyt 3, (3.40)

r

Hence we have

Jx— y|
<cp¥? j dyf IS”(n/y)(y, x)— SH(1/y)(y, x)| dx
2 9 |x—yl
dx V2
e ay|[ ] 10,0 Sy 0.l
2 2 |x—)l
dx V2
__CZ 7/4
SC% ;dnya lx—ylzl ; (3.41)

from (3.39), (3.40), and the Holder inequality. Since 7/4 <2, (3.41) shows that it is
sufficient for us to prove (3.32) for S},.
From (3.2) we have

m/y

S )= a0 =1 ) WS|G0
0

It easily follows from (3.42) that for any 6 >0, there is a ¢ >0 such that S}(m/y)(x, y)
tends to zero faster than exp(—cy) as y—>co in the set {(x,y):|x—y|>6/2}. It is
therefore sufficient to prove (3.32) with §” replaced by S} and the domain of

integration 2 x 9 replaced by {(x,y)e 2 X 2 :|x— y| <J/2}. The process B, in (3.42)
is related to the standard Brownian motion b(s) by

ﬁs—x=1:3(y—x)+b(s)—%b(%), 0<s=m/y. (3.43)

Hence we see just as in (3.37) that if [x — y| < /2, then there is a constant ¢ >0 such
that as y— oo,

§ dpgymySe™ . (3.44)

~Ns
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It follows that in evaluating (3.32) we may replace S})(m/y)(x, y) by

m/y

Halxo) | exp| =2 WUBS| (349

The asymptotic formula (3.32) now easily follows by letting 6—0 in (3.45) and
using the fact that W(x) is uniformly continuous in . This completes the proof.

We let P¥(4), — oo <A< 00, be the projection operators associated with S”. By
(2.5) we see that there is a A, <0 independent of y such that PY(1)=0if A<y4,. In
the following we denote by f, the positive part of a function f:R3>R.

Thus
J+(x)=max{f(x),0}. (3.46)

Theorem 3.6. The following asymptotic formula holds :

. _ 1
)!Lrg ¥~ 32PY0)(x, x)= W[— W(x)132, for any xeR3. (3.47)

Proof. Observe that the right side of (3.31) may be written as a Laplace transform,

1 ° _

e ;‘ e~ ™[u—W(x)]}*du, (3.48)
where 4, = —||W||,. The left side of (3.31) may also be written as a Laplace
transform

| e=™y™32dP(yu) (x, x). (3.49)
4o
The result (3.47) now follows from the Tauberian theorem of Karamata [15]
which we state in the form:

Lemma 3.7. Let m", 0<y=< o0, be a set of positive Borel measures on the interval
[, 00), such that for every a>0, 0<y < oo,

2]

[ e =dm’(u) < oo, (3.50)
Ao
and o ©
lim [ e *dm’(u)= [ e~ *dm*®(u). (3.51)
¥ do Ao

Then the following asymptotic formula holds :
lim m’[4,,0]=m>[4,,0]. (3.52)
y—* o

Next let p, be the measure (3.24) associated with P’(4). Then

Theorem 3.8. The following asymptotic formula holds :

lim 3245 {(— 0, 0)x(— 0,01} = 5 5 [ [~ Welidx. (.Y
7> 9
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Proof. Let f(u,v) be defined for u,v=0 by

1 1/2 + 1/2
flu,v)= ﬂglog [E'ufv;i‘ﬁ‘] ) (3.54)
and b(u,v) be defined for (u,v)eR? by
b(u,v)= | f([u— W(x)].,[v— W(x)],)dx. (3.55)
2

Then one can see [2] that the right side of (3.32) is a two dimensional Laplace
transform,

| § em ™ m™b(u, v)dudo. (3.56)

Ao Ao
From (3.25) we see that the left side of (3.32) is also a Laplace transform,
§ [ ey 2dp(yu, yo). (3.57)
Ao Ao
The theorem now follows from a two dimensional version of Lemma 3.7:

Lemma 3.9. Let m’, 0<y=< o0, be a set of positive Borel measures on the subset
[4g> 00)x[ 44, 0) of R2, such that for all &, >0, 0<y= o0,

| [ e ™*Pdmi(u,v)< o, (3.58)
Ao Ao
and © © © ©
lim | [ e ™*Pdm'(u,v)= [ [ e” ™" dm>(u,v). (3.59)
Y% 3o Ao 4o Ao

Then the following asymptotic formula holds :

‘li“m m'{[4q,0]x[ 44,01} =m™{[ 44, 0]x[1,4,0]}. (3.60)

Remark. The techniques of this section are limited to potentials We L®. One would
clearly like to extend the results to potentials Win L?+ L® for p>3/2. We can
show, using a bound of Carmona [1], that (3.34) holds for such potentials if p> 3.
By considering the Coulomb potential, one can see that (3.34) does not necessarily
hold if p<3. Thus to prove (3.47) and (3.53) for potentials in I”+ L™ with p>3/2
one requires a technique entirely different from the one presented here.

4. Hartree-Fock Theory

We use the notation of Sect. 1. With 4 satisfying (1.19) and « >0 such that a4 is an
integer, let ,y,, ...,,,; be the orthonormal set of wave functions representing a
Hartree-Fock ground state for the Hamiltonian H,,(V,). Then v, ...,,¥,, are the
first a4 eigenfunctions of the operator S(,y,, ..., ,¥,;) in (1.14), where we replace V'
in the expression for ¢, by V,. Let L* be the nonlocal potential defined by

Laza‘4/3L(awl(a— 1/3 _)’ “.’awu(a— 1/3 ))’ (41)
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where the ,p,(a™ ') denote the functions ,p (@~ '/3x) and L is given by (1.13). We

put _ _ _
S*=—h*8n*m) '4—a 2/3(,1)9“(05 Bx)—r°. 4.2)

Then it is clear that ,y o~ '3x), 1 <i<ad, are the first aA eigenfunctions of S*
We need to strengthen (1.29). Let @ ,(x) be given by
D, (x)=a"*3¢, (™ 3x)— V(x). 4.3)

Lemma 4.1. For a>0 the function ®,(x) is in L*(R*) and |®,|, is bounded as
o—> 0. The functions @, converge uniformly on compact sets as o.— oo to the function

STF(0)— V().

" We h _ ]
Proof. We have 0= [y @9

We can write the integral in (4.4) as a sum

D (x)=a"43 } 4o 43 [} . 4.5)

ly—a=1/3x|>a-1/3 ly—a-1/3x|ga-1/3
The first term in (4.5) may be estimated as
a 4?3 | Sa ! o (ydy=4. (4.6)
Q

ly—a=1/3x|>a~1/3
To estimate the second term we apply Holder’s inequality. Thus
am*? ; =(81)* %" ”5[ [ ea(y)“dy] . (4.7)
(2]

ly—a-1/3x|<a-1/3
Now we use Lieb’s lower bound on the kinetic energy of fermions [6]. Thus there
is a universal constant C such that

an(Y)Slsd)’§ CK(tzlph eoey awal)' (4'8)
Q

Hence from (1.23) we see that the right side of (4.7) is bounded as a— co. It follows
that ||®,|, is bounded as a— co.
For 0<o<1 and x+z we consider

1200= @@ _ apspl L 1 Je0)dy 49
T | P e | oy

We estimate the integral in (4.9) to obtain

10,0 = 2 _ 5 x—z'"° ; 10
Ix__zla j. —1/3x__y||a—1/3z_yl Qa(.V) Y. ( . )
We write the right side of (4.10) as a sum of three integrals I, +1,+ I,, where

I,=a™%3 | , 4.11)
la=1/3x—y|<2-la=1/3|x—z|

I,=a7%7 , 4.12)
la=1/3z—y|<2-1a=1/3|x—z|

Iy=a"%3 | . (4.13)

inf(la=1/3x—y|, la~1/3z=y[}> 2~ 1a=1/3|x -z
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Evidently we have

o —4)3—0 2,(y)
Il§2‘ o 43 Biwd_y. (414)

The integral in (4.14) may be estimated just the way we estimated (4.4). We
conclude that if 6 <1/5, then I, is bounded as a—o0. To estimate I, we observe
that for y in the set {y:inf[ja™3x—y|,Ja"V3z—y[]>27ta" 3|x— 2|},

lo™3x—y| L 3la” 32—y, (4.15)

and so we have

—o~4/3—0 2.(y)
13§3.21 o~ 4/3 /Simd,\’, (4.16)

which shows that I, is bounded as a— oo.

Thus the left side of (4.11) is uniformly bounded in x and z as a— oo provided
a<1/5. Hence the functions @, are equicontinuous on any compact set. From
(1.29) we know that the ®, converge pointwise to the function ¢I¥(x)— V(x) as

a—00. Hence by the Arzela-Ascoli theorem we deduce that the @, converge

uniformly on compact sets to this same function. This completes the proof of the
lemma.

Next let ¢* be the aA'™ eigenvalue of the operator S* in (4.2).

Lemma 4.2. lim o~ 3¢*= — ¢,, where ¢, is defined by (1.20).

a—* oo

Proof. We bound §* above and below by simpler operators. Let §§=S*+ L% so S
does not contain a nonlocal potential. Since L? is positive definite, it follows that
§*<S5. To bound S* from below we observe from Lemma 2.2 that

(u, L'u) < CA 20 ®ull, | Pull, . (4.17)
Hence if we define S} by
S* = — [hz(STCZM)— 1_ Cll/za— 1/62— I]A —a 2/3¢Qa(a_ 1/3x)_ Cll/2a1/22— 1 , (418)

it is clear from (4.17) that S <S°

For §>0, let N4(S”) be the number of bound states of $* with eigenvalues less
than —a?36. From the above we have

Ny(SHZ NS S Ny(ST), (4.19)

provided o is sufficiently large. Now we use the fact that V(x) falls off at oo and
Lemma 4.1 to conclude that

lim o™ 'Ny(S})=c"32 [ [¢rp(x)—61¥%dx, i=0,1, (4.20)
a—* o R3

where c is given by (1.17). This follows from the method of Dirichlet-Neumann
bracketing [14]. From (4.19) we see that (4.20) also holds for the operator S%

Suppose 0 <A<z Then from (1.20) we see that if 5>¢,, then 11m a” INJ(SH <A
Consequently we conclude that

liminfa~23e*> —§. 4.21)

a— oo
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If A<z and 6<¢,, then lim a™'N,S%)> 1. Hence

limsupa~23eg*< —§. 4.22)

a—* o

Letting —¢, in (4.21) and (4.22) we obtain the result of the lemma in the case
A<z For A=z we may take =0 in (4.22), since ¢* <0 for all a. Then (4.21) implies

the result.
Theorem 4.3. The asymptotic formula (1.28) holds for xe R>.

Proof. We proceed in exactly the same way we obtained (3.47). First we prove the
analogue of (3.31) for S?, taking y=a?3. By Lemma 4.1 the analogue of (3.34) holds
for S* From Lemma 2.2 we have

(v, L*u)| = C, A" 2/ [lull 0]l (4.23)

Thus for 2=<r= oo there is a constant C such that
SCo¥eUr . a—o0. (4.24)

5[ 7s) x5 (S )

It follows from (4.24) that (3.31) holds for S*. Let P*(&) be the projection of the
operator §* on (— o0, ] for — oo <{ < co. Then we may obtain a version of (3.47)
for P* from the version of'(3.31) for $*. We conclude that

Jim o~ P (x, 0) =301 (x), xeQ, (4.25)

by virtue of (1.20) and Lemma 4.2. The conclusion of the theorem follows
immediately from (4.25).

Lemma 4.4. Let 2 CR? be a bounded domain and 9, =2 x {—1,1} CQ. Then

1 P «
lima=*3 [ = (8)(x’y)Pa(s)(y’x)dxdy=34/37t_”34‘ljg}'F(x)“”dx.
2

a—oo @, 9,2 [x—yl
(4.26)

Proof. First we observe that (3.32) holds with S} in the place of S” and y =a*/. This
follows from Lemma 4.1. Then (3.32) with $* in place of S” is obtained from this by
using (4.24). Finally we get (4.26) from Lemma 4.2 and (3.53).

Theorem 4.5. The asymptotic formula (1.27) holds.

Proof. Evidently (1.27) is (4.26) with 2, =Q. Since we have proved (4.26) only for
bounded domains 2, we need Lemma 2.3. Let o/ C2 be the set of xe 2 whose
distance to the complement of 9, ~ 2, is at least 1. Then we have

ta-5/3Ex(aw1"“’uwaA)— I .” é j I +2 f §9 (427)
D1 D ~ofy ~d ~Dy oA,

where the integrands in (4.27) are the same as in the left side of (4.26). Now by
Lemma 2.3 we have
[ | SCa™*3 [ [a'g(a™ 3x)]*3dx. (4.28)
£

~y ~ s
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By Holder’s inequality we have

(WXCH 1/3x)"'/3dx§[ | o™ ”3x)dx]”2[j 0.(07 13x)33dx]| /2. (4.29)
o o o
Thus, using Lieb’s lower bound on the kinetic energy of fermions, we obtain
{1 éC[I a2, (a” “3x)dx}”2, a0, (4.30)
~ofy ~A1 o

for some constant C'. The second integral on the right in (4.27) may be bounded as

2 | Sa7*B [ [ P (x, y)PHe™) (y, x)dx dy
QQ

~Py A1
=q 13}, 4.31)

Finally we let 27R3. By the Lieb-Simon weak version of (1.28) the right side of
(4.30) converges to zero. Letting a— co we obtain the result of the theorem.
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