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Abstract. The Einstein equations with a negative cosmological constant admit
black hole solutions which are asymptotic to anti-de Sitter space. Like black
holes in asymptotically flat space, these solutions have thermodynamic
properties including a characteristic temperature and an intrinsic entropy
equal to one quarter of the area of the event horizon in Planck units. There are
however some important differences from the asymptotically flat case. A black
hole in anti-de Sitter space has a minimum temperature which occurs when its
size is of the order of the characteristic radius of the anti-de Sitter space. For
larger black holes the red-shifted temperature measured at infinity is greater.
This means that such black holes have positive specific heat and can be in
stable equilibrium with thermal radiation at a fixed temperature. It also implies
that the canonical ensemble exists for asymptotically anti-de Sitter space,
unlike the case for asymptotically flat space. One can also consider the
microcanonical ensemble. One can avoid the problem that arises in asymptoti-
cally flat space of having to put the system in a box with unphysical perfectly
reflecting walls because the gravitational potential of anti-de Sitter space acts
as a box of finite volume.

1. Introduction

The first indication that black holes have thermodynamic properties came with the
discovery that in the classical theory of general relativity the area of the event
horizon [1] (or equivalently, the square of the irreducible mass [2]) never
decreases. There is an obvious analogy with the second law of thermodynamics
with the area of the event horizon playing the role of entropy. There were also
analogies to the zeroth aαd first laws of thermodynamics in which the role of
temperature was played by a quantity called the surface gravity K which measured
the strength of the gravita ional field at the event horizon [3]. These similarities
led Bekenstein [4] to suggest that some multiple of the area of the event horizon,
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measured in Planck units, should be identified as the physical entropy of the black
hole. This proposal would lead to inconsistencies and violations of the second law
if, as was thought at the time, black holes could absorb particles but could not emit
anything. In that case black holes could not be in equilibrium with thermal
radiation at any non-zero temperature. However this difficulty was removed when
it was discovered that, when quantum effects were taken into account, a black hole
would create and emit particles as if it were a hot body with a temperature of κ/2π
[5]. It then followed from the first law that the entropy of a black hole was \m2A,
where A is the area of the event horizon and mp = G~1/2 is the Planck mass in units
in which -h = c = k=l. A deeper understanding of these thermodynamic properties
and a direct derivation of the entropy came with the realization that they were a
consequence of the periodicity in the imaginary time coordinate needed to remove
the singularities in the Euclidean (i.e. positive-definite) versions of black hole
metrics [6-8].

The black holes described above tend asymptotically to flat space. However,
one can also have black hole solutions to the Einstein equations with a
cosmological constant A which are asymptotic to de Sitter space (if A > 0) or to
anti-de Sitter space (if A<0). The former case has been investigated in [9]. It was
found that a black hole in a de Sitter space would emit particles with a
temperature determined by the surface gravity of the black hole horizon. However,
there was also a cosmological event horizon which was present even in the case of
no black hole and which also emitted particles with a temperature determined by
its surface gravity. Thermal equilibrium was possible only if these two surface
gravities were equal which occurred only in the degenerate case of the Nariai
metric [10] which is the analytic continuation of S2 x S2.

Anti-de Sitter space has generally been regarded as of little physical interest for
two reasons. First, the negative value of Λ, if interpreted as a vacuum energy,
corresponds to negative energy density. Second, anti-de Sitter space has the
topology S1 x R3, where the S1 is timelike. It is therefore periodic in time and
contains closed timelike curves. These can be removed by passing to the universal
covering space, but this is not globally hyperbolic, that is to say that Cauchy data
on a spacelike surface determines the evolution of the system only in a region
which is bounded by a null hypersurface called a Cauchy horizon [11]. Thus to
specify physics in anti-de Sitter space one has to specify not only the initial
configuration but also boundary conditions which describe radiation which comes
in from infinity. Nevertheless, despite these difficulties, there have been indications
in recent years that anti-de Sitter space may have some physical significance. The
first of these was that extended theories of supergravity in which the O(N) group is
gauged have anti-de Sitter space as their ground or most symmetric state. The
second is that it has been possible to extend Witten's proof for the positive mass
theorem [12] to anti-de Sitter space [13, 14] and to supergravity [15, 16]. These
results show that asymptotically anti-de Sitter solutions are stable even though the
potentials that appear in the theories are unbounded below. We shall therefore
consider the quantum mechanical and thermodynamic oroperties of black holes in
anti-de Sitter space. The results we shall find are broadly similar to those for black
holes in asymptotically flat or de Sitter spaces but there are some important
differences.
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Like flat space but unlike de Sitter space, anti-de Sitter space has no natural
temperature associated with it. The most symmetric "vacuum state" is therefore
not periodic in the imaginary time coordinate though it is periodic in real time.
This is true even if one works in the covering space. As in flat space, one can
construct thermal states at any temperature T by imposing a periodicity β=T-1

in imaginary time. The gravitational mass of such a thermal state in flat space
would be infinite if it has infinite volume and therefore the state would collapse.
Even if one restricted the volume to be finite by putting it in some sort of box, the
state would still be unstable to the formation of a black hole, no matter how low
the temperature [17,18]. Moreover, although a black hole can be in equilibrium
with thermal radiation at the same temperature, this equilibrium is unstable if the
temperature is held constant: if the black hole were to get a bit more mass, its
temperature would go down, the rate of absorption would be greater than the rate
of emission and the black hole would continue to grow. This instability means that
the canonical ensemble cannot be defined in asymptotically flat space if gravi-
tational effects are included. Instead, one has to use a microcanonical ensemble
[17] in which a certain amount of energy is placed in an insulated box though even
this is unphysical because one cannot construct a box that will prevent gravitons
from escaping. If one ignores this difficulty, one finds that one can have a black
hole in stable equilibrium with thermal radiation provided that the energy
E>(2'213~154rπ~2gms

pV)1/5, where V is the volume of the box and g is the
effective number of spin states.

In anti-de Sitter space the gravitational potential relative to any origin increases
at large spatial distances from the origin. This means that the locally measured
temperature of a thermal state decreases and that the total energy of the thermal
radiation is finite without any need to put it in a box. In fact the gravitational
potential causes "confinement" of nonzero rest mass particles and prevents them
from escaping to infinity. Zero rest mass particles can escape to infinity but in a
thermal state the incoming and outgoing fluxes at infinity are equal. We find that if

the temperature is less than T o = —-( — Λ.)1/2, thermal radiation is stable against
2π

collapse to form a black hole. At temperatures higher than To there are two values
of the mass of a black hole that can be in equilibrium with the thermal radiation.
The equilibrium at fixed temperature is unstable for the lower of these masses but

1 / A\112

if 1/11 <έv^
is locally stable for the higher one. At T> Tx = —I — γ l , if \Λ\<4m2 as we

assume, the configuration with a black hole and thermal radiation has a lower free
energy than the configuration with just thermal radiation. At a temperature T>T2

~( — m2Λ)114, there is no equilibrium configuration without a black hole.

One can also consider a microcanonical ensemble in which one puts a certain
amount of energy into asymptotically anti-de Sitter space. On does not need a box
with unphysical walls but one has to impose the boundary condition that the
incoming flux of zero rest mass particles at infinity is equal to the outgoing flux. If
the energy E < £ 0 ^ ( 2 " 2 1 3 ~ 1 5 4 ^ m p 1 / 5 ( - y l / 3 ) ~ 3 / 1 0 , the dominant configuration
will be that of thermal radiation. If £ 0 < E < £ 1 « 1.314£0, there will be a
configuration with a black hole and thermal radiation which is locally stable but is
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less probable than thermal radiation alone. If Ex < E < E2 ~ m2{ — A)~1/2, the black
hole configuration will be more probable but the pure radiation will still be locally
stable. If E>E2, the pure radiation configuration will always collapse.

There are also charged and rotating black hole solutions in anti-de Sitter space
which contribute to the grand canonical ensemble in which the electric potential
and rate of rotation act as chemical potentials for charge and angular momentum
respectively. These generalizations behave much as one would expect from the
asymptotically flat space case, but one difference is that in anti-de Sitter space one
can have a rotating black hole in equilibrium with rotating radiation provided that
the angular momentum of the black hole is sufficiently small, whereas in
asymptotically flat space such an equilibrium is never possible because the
rotational velocity of the radiation would have to exceed that of light at large
distances from the black hole.

The plan of this paper is as follows. In Sect. 2 we adopt the Euclidean
formulation of quantum theory in anti-de Sitter space. We calculate the Euclidean
action of a Schwarzschild-anti-de Sitter solution. We use these results in Sect. 3 to
study the canonical ensemble. We find that the black hole has an intrinsic entropy
equal to a quarter of the area of the event horizon, as in asymptotically flat space.
In Sect. 4 we investigate the microcanonical ensemble.

2. Euclidean Formulation

The metric of the covering space of anti-de Sitter space can be written in the static
form

ds2 = - Vdt2 + V- Hr2 + r\dθ2 + sin2 θdφ2), (2.1)

Anti-de Sitter space can be obtained from this metric by identifying t periodically
with period y = 2πb. A timelike geodesic through the origin returns to the origin
after a half period γ/2. A null geodesic does not return to the origin but escapes to
infinity. However one can impose the boundary condition that a zero rest mass
particle should also return to the origin after a half period y/2.

The substitution τ = it makes the metric (2.1) Euclidean, i.e. positive definite.
The most natural and symmetric vacuum state for quantum fields on the anti-de
Sitter background is defined by a path integral over field configurations which go
to zero at large distances in the Euclidean anti-de Sitter metric. This means that
the Green functions will be solutions of elliptic equations in the Euclidean space
which vanish at large distances. When analytically continued to the Lorentzian
section of anti-de Sitter space, these Green functions will be periodic in t with
period y. One can also embed anti-de Sitter space conformally into half of the
static Einstein universe, that is, into the product of half of the spatial three-sphere
sections times the time axis. The anti-de Sitter vacuum state for conformally
invariant fields is then the state induced from the natural vacuum state in the
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Einstein universe. The reason that the Green functions are periodic is that particles
pass right around the Einstein cylinder and return to their original positions in
space after a time y.

One can construct thermal states in anti-de Sitter space by periodically
identifying the imaginary time coordinate τ with period β = T-1. These states will
be in thermal equilibrium in the static coordinate system (2.1) with a locally
measured temperature

rn D— I T / - 1/2 (Ί Λ\

The local temperature is red-shifted by the gravitational potential and decreases
like r " 1 for rpb. One would therefore expect the thermal energy density to go
down like r~4 for zero rest mass particles and faster for particles with rest mass. In
the case of conformally invariant particles, one can verify this by taking a thermal
state on the Einstein universe and conformally transforming. The resultant energy-
momentum tensor is

Tζ = Aδ» + f(T)V~ 2(δ» - 4δ»δ°v), (2.5)

where f(T)= —gT4 + O(b~2T2). The first constant term arises from the confor-

mal anomaly and may be regarded as a renormalization of the cosmological
constant A The second term has the form of a perfect fluid with P = ̂ μ and μocr" 4

for r |> b. Thus the total energy will be finite.
The Schwarzschild-anti-de Sitter metric has the form (2.1), where now

F=1-^ + S (16)

This has a horizon at r = r+, where V(r+) = 0. The substitution τ = it makes the
metric positive definite for r>r+. The apparent singularity at r = r+ is just like the
singularity at the origin of polar coordinates and can be removed if τ is regarded as
an angular coordinate with period

(2.7)

Thus, as in asymptotically flat space, a black hole has a natural temperature
associated with it although in this case the locally measured temperature decreases
indefinitely the further one is from the black hole. From the formula (2.7) one can
see that β has a maximum value of 2π3 ~ 1/2b and therefore T has a minimum value
of T0 = (2π)~ 13 1 / 2b~ 1 when r + =ro = 3"ll2b. For r+>r0, the temperature T
increases with the mass

(2.8)

One can compute the difference between the Euclidean action of the black hole
metric and that of anti-de Sitter space identified with the same physical period in
imaginary time. The calculation is similar to that in asymptotically flat space [8],
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but in this case the contribution of the surface term is zero. The action comes from
the difference in four-volumes of the two metrics and is

π m y + { b

2 - r 2

+ )

For small values of r+ or M, this is the same as the flat space result but the action
has a maximum when r+=r0 and becomes negative when r+>b. We shall
investigate the physical implications of this formula for the action in the following
sections.

3. The Canonical Ensemble

The canonical ensemble is defined by a path integral over all matter fields and
metrics which tend asymptotically respectively to zero and to anti-de Sitter space
identified periodically in τ with period β. The dominant contribution to the path
integral is expected to come from metrics which are near classical solutions to the
Einstein equations. Periodically identified anti-de Sitter space is one of these and
we take it to be the zero of action and energy. The path integral over the matter
fields and metric fluctuations on the anti-de Sitter background can be regarded as
giving the contribution of thermal radiation in anti-de Sitter space to the partition
function Z. For a conformally invariant field this will be

\ogZ = 3π2b3]τ-2f(T)dT=~g(b/β)3 + O(b/β). (3.1)
0 " U

The energy of the thermal radiation will be

\ogZ 3nbf(T)^^gT^. (3.2)

So far the gravitational effect of thermal radiation has been neglected. One can
estimate this by solving the Einstein equations with a A term for a perfect fluid
with P = ̂ μ One finds that solutions exist if the mass of the fluid is less than some
critical value M 2 which can be estimated to be of order m2b. This would
correspond to a temperature

T 2 ~<Γ 1 / 4 mi / 2 fc- 1 / 2 . (3.3)

Thermal radiation at a temperature greater than T2 would not be able to support
itself against its self gravity and would collapse to form a black hole.

The Schwarzschild-anti-de Sitter solution is probably the only other non-
singular positive-definite solution of the classical equations that satisfies the
periodic boundary conditions. The solution exists only if β^βo = 2π3~1/2b, i.e.
only for temperatures T ^ T 0 = (2π)~ 1 3 1 / 2 b" 1 .

The Euclidean action for a black hole solution gives a contribution to log Z of
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The expectation value of the energy is

logZ

= ̂ + ( l + p - ) = M . (3.5)

The entropy is

S = β(E} + logZ = m2

pπr2

+

= WPA> ( 3 6 )
where A is the area of the event horizon. Thus the relation between entropy and
area is the same as in asymptotically flat space. For large M,

Λ^4π{2m;2b2M)2ί3. (3.7)

This means that the density of states N(M) for the black hole grows like
exp[π(2mp6

2M)2/3]. This is sufficiently slow that the integral defining the partition
function

Z=\N{M)e~MlτdM (3.8)

converges. This shows that the canonical ensemble in asymptotically anti-de Sitter
space is well behaved. In asymptotically flat space the density of black hole states
goes as exp(4πm~2M2) and so the canonical ensemble is pathological.

For temperatures T<Γ 0 , the only possible equilibrium is thermal radiation
without a black hole. The free energy is negative and is given by

gbT + 0(bT) (3.9)

for conformally invariant fields.
If T> To, there are two possible black hole masses that can be in equilibrium

with thermal radiation. The lower of these has negative specific heat δM/dT. It is
therefore unstable to decay either into pure thermal radiation or to the larger
value of the black hole mass. The lower value of the mass also has positive free
energy which means that it is less probable than pure thermal radiation. The
higher value of the mass has positive specific heat and is therefore at least locally
stable. If

T 0<T<T 1=(πfc)~ 1, (3.10)

the free energy of the black hole is positive so this configuration would reduce its
free energy if the black hole evaporated completely. The tunneling probability for
this to occur will be of the form

Γ = Ae~B, (3.11)

where A is some determinant and B is the difference between the actions of the
lower and higher mass solutions at the same temperature. If T> Tv the free energy
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of the higher mass black hole solution will be less than that of pure radiation. The
pure radiation will then tend to tunnel to the black hole configuration at the rate
given by (3.11), where now B is the action of lower mass solution. Finally, if T > T2,
the radiation will collapse in a time-scale of order b to the higher mass black hole
solution in equilibrium with thermal radiation.

The fluctuations of the metric about the black hole solution can be divided into
conformal equivalence classes. In each equivalence class one can pick the metric
with constant negative scalar curvature R = 4Λ. One can then decompose the
fluctuations into fluctuations in the conformal factor relative to the metric with
R = 4Λ (conformal fluctuations) and fluctuations which change the conformal
geometry (nonconformal fluctuations) [19, 20]. As in flat space, the conformal
fluctuations reduce the action. One therefore has to rotate the contour of
integration for them to the imaginary axis. The nonconformal fluctuations modulo
gauge transformations are positive definite for flat space and for anti-de Sitter
space. However there is one and only one negative mode for a black hole in
asymptotically flat space [21,22]. This negative mode makes the one-loop
determinant negative and makes the partition function of the black hole purely
imaginary. One can interpret this in two ways. First, it implies that the canonical
ensemble in asymptotically flat space is unstable to the formation of black holes
with a tunneling probability given by (3.11), where B is the action of a black hole
with that temperature [18]. Alternatively, if one uses the micro-canonical
ensemble, one has to rotate the contour in the relation between the density of
states and the partition function in order to obtain convergence. An imaginary
partition function is then necessary to give a real density of states [23].

The Schwarzschild-anti-de Sitter solution has a negative nonconformal mode
for small values of M as in the asymptotically flat case. This mode is time
independent, spherically symmetric, transverse and traceless [22]. It is non-zero
on the horizon and vanishes rapidly at infinity without any nodes. As one
increases M, a zero mode appears at the value M o that corresponds to the
maximum of the action. This zero mode is also time independent, spherically
symmetric, transverse and traceless and has no nodes. It must therefore be the
negative mode passing through zero. For M>M0, there will be no negative
nonconformal modes.

The implication of these results for the canonical ensemble is that the lower
mass black hole at a given temperature, which has a mass M<M0, is unstable but
contributes to the tunneling amplitude for the formation or disappearance of
black holes. The higher mass black hole, for which M>M0, is stable. We shall
discuss the implications for the microcanonical ensemble in the next section.

4. Microcanonical Ensemble

In the microcanonical ensemble one considers all the states that are possible for a
system with energy in the interval E to E + dE. One assumes that a system changes
from configuration to configuration in an ergodic manner so that the probability
of being in a particular configuration is proportional to the number of states that it
represents. In the case of asymptotically flat space one has to imagine that the
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system is contained in a box with unphysical walls that will reflect everything
including gravitons. However in anti-de Sitter space the gravitational potential has
the effect of reflecting back all particles of non-zero rest mass. Zero rest mass
particles can escape to infinity though they get infinitely red-shifted. One can
impose reflecting boundary conditions at spatial infinity which imply that the
incoming and outgoing fluxes are equal [24]. It is therefore possible to consider
the microcanonical ensemble in asymptotically anti-de Sitter space without having
to invoke unphysical boxes.

One is interested in the density of states N(E). The partition function Z(β) is the
Laplace transform of N(E\

Z(β)=\N{E)e~βEdE. (4.1)
o

Thus N(E) is the inverse Laplace transform

1 + ίOO

N(E)=— j Z{βyEdβ. (4.2)
^ π ^ -ΐoo

The contour of integration is taken parallel to the imaginary β axis and to the right
of any singularities in Z(β). Provided that Z(β) grows less rapidly than exponen-
tially in β for large /?, this ensures that N(E) = 0 if E < 0. The positive mass theorem
for anti-de Sitter space [13, 14] indicates that there should not be any states for
negative energies.

Pure thermal radiation will give a contribution to Z of the order of

Ύ~\ (4.3)

If β< β2 pure thermal radiation would collapse. The integral for N(E) in Eq. (4.2)
will have a saddle point at

π 4 \ 1 / 4

b3E~ ( 4 4 )

The second derivative of the logarithm of the integrand in (4.2) is gb2β~5. Thus

the path of steepest descent is parallel to the imaginary axis. This means that N(E)
is real and is given approximately by

ί(ί)V] (4.5)

This equation will hold for E<E2~m2

pb which corresponds to the saddle point at

β=β2-
The Euclidean action of a black hole of period β is

(4.6)
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The + sign corresponds to the higher mass solution and the — sign to the lower
mass solution. They will thus make a contribution of order e~ I + o r e " 1 " to Z(β).
The one-loop term about the black hole metrics will contribute a factor of order

( 4 \

—-gb3β~3\ respectively. The factor of i arises in the lower mass case
from the negative nonconformal mode. In the higher mass case, if E>M0, the
stationary phase point in Eq. (4.2) will be at

where r ± is the solution of

(4.8)

r+

The second derivative of the logarithm of the integrand is T2dM/dT>0. Thus the
path of steepest descent will be parallel to the imaginary axis and N(E) will be real
and given by

for F^M — 1>~3l22mh (A 9s!

In the lower mass case the stationary phase point will be also given by (4.7) and
(4.8) if E^>E0~(gnipb3)1/5 so that thermal radiation makes a negligible contri-
bution. If £ 0 < £ < ^ M 0 , the stationary phase point will be at the larger root of

(4.10)
1 8π 30* r '

where a black hole of energy M is in equilibrium with thermal radiation of energy

The second derivative of the logarithm of the integrand of (4.2) will be negative
at each of these saddle points. Thus the path of steepest decent will be parallel to
the real axis. This will introduce a factor of ί which will cancel the factor of i arising
from the negative nonconformal mode. Thus N(E) will be real and will be given by

I
1/4

4πm-2M2+— Ά £ (4.11)

where M and £ r a d are the two terms of (4.10) that add up to E. If E<E0, Eq. (4.10)
has no solution for a black hole in equilibrium with radiation, so one obtains only
the contribution (4.5) of pure thermal radiation.

We can now estimate the probable configurations for the microcanonical
ensemble in different ranges of the energy E. If

^ ) 1 / 5 , (4.12)

the only locally stable configuration is thermal radiation without a black hole. If

(4.13)
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there is also a locally stable configuration with a low mass black hole in
equilibrium with thermal radiation. However the pure radiation state is more
probable so that although black holes may form from time to time as a result of
fluctuations, they will tend to evaporate away by further fluctuations. If

Eί<E<E2^m2

pb, (4.14)

the pure radiation and the black hole states will be locally stable but the black hole
state will be more probable. Finally, if E2<E, the only locally stable state will
contain a black hole because thermal radiation will collapse. These results are very
similar to those for the microcanonical ensemble in a box of volume π 2 b 3 in
asymptotically flat space [17, 25, 7, 26].
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