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Abstract. We consider models, with an abelian continuous group of symmetry,
of the type:

We generalize Brascamp-Lieb inequalities to get (A-independent) bounds on
the low momentum behaviour of general correlation functions when these are
truncated into two clusters. We then use this result to derive an asymptotic
expansion (up the second order in λ) of the dielectric constant of this system.

I. Introduction

In this paper we consider perturbations of the massless Gaussian lattice field
which preserve its abelian continuous group of symmetry. Our results mainly
concern the following model of an anharmonic crystal (defined on TLd)

The main particularity of this model is that its correlations, e.g. (VoφVxφ}, are
nonintegrable (d>ΐ). A lot of work is now being done in order to understand
critical properties of classical lattice systems [1-6]. This model, one of the simplest
nonexplicitly soluble critical models, has been investigated quite a lot. Two
approaches have been developed so far. One is based on a rigorous version of
renormalization group ideas and has been considered by [3]. The results produced
mainly concern weak coupling (λ small). Another approach based on nonper-
turbative methods, producing therefore results which are not sensitive to the
strength of λ, was proposed in [4-6]. In this note we want to develop further the
second approach to get more detailed information about the decay of correlations.
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University, where he was supported by NSF Grant No. PH 78-15920
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Before describing the results in detail, we start by defining precisely the system we
consider.

II. Definition and Properties of the Model

At each point ieΈd, is associated a random variable φj eIR- The finite volume
Hamiltonian HΛ (A is a parallelipiped) is given by:

HA=\ Σ (Φi-Φj)2+λ/4 Σ (Φt-Φf; (i)
<iJ>cΛ <ίJ)CΛ

Ojy means that i and j are nearest neighbor in Έd, or that i and j are at the
opposite ends of A (periodic boundary conditions).

We also consider

ι Σ
ieΛ

It is convenient to introduce difference variables: Let ea, α = 1,..., d, be a basis

of TLά given by ea~δia; Φi — φί+eΰι will be denoted by V*"φ; Σ will be
β«,α= 1, . . ,d

denoted by £ or J \ For mφO, expectation values of functions of the type \\ φ{

e ξ ίeA

are defined via:

ZΛ= ί
JRl^l ieΛ

Here A is a "subset" of /I in order to avoid exponents we allow repetitions of the
same element in A, which is why we used the word subset in quotation marks.

As in [4] we can use Brascamp-Lieb inequalities [7, 8] to take the limits
(possibly via subsequences):

limlim </> j l > m if d>3.

For d < 3 those limits can be obtained if / is of the type \\ Vfφ, where B is a
(i,ξ)eB

"subset" of Ax{ev...,ed}. All results we are going to describe are true for any
limiting state < > we choose.

If / is a real L2-function defined on 7Ld, its Fourier transform is defined by:

f(p)= Σ/(χ) e χp(φ< Λ ;)
X

The Fourier transform of the gradient-gradient two point function (Ve

oφVe

xφ},
See(p), obeys the following bounds:

gS e e(p)^(2-2cosp e)[2X(1 - c o s p j l " x . (2)

The lower bound results from a Mermin-Wagner argument [9, 10] and the upper
bound is the Brascamp-Lieb inequality. As remarked by [10, 11] these bounds
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imply that See(p) is not continuous at the origin and therefore that {Ve

oφVe

xφ}
cannot be absolutely integrable. This is the main interest of the model. The bound
(2) shows that the singularity for small p of the two point function
S(p) = (φoφxy

Λ(p) (d^3) is exactly the same as in the purely Gaussian case: it is
given by ε [2^(1 — cospjl" 1, where the dielectric constant ε obeys the bounds

β

This suggests that the decay of (φoφx} should be like — . For technical reasons,
|X|

we could only prove in [4, II] the bound Kφoφx}\ S const . In order to avoid
\x\

difficulties in translating momentum space bounds into "x-space" bounds, all the
results we are going to describe are expressed in p-space.

III. The Results

As suggested by renormalization group arguments, we expect the large distance
behaviour of general correlation functions to be Gaussian. We therefore expect
bounds of the type (2) to be true for general correlation functions. In other words,
given a correlation function, we expect that its Fourier transform is bounded from
above and from below by its value computed into two Gaussian theories with
different dielectric constants. Our first theorem goes in that direction: it gives
momentum space bounds on general correlation functions when these are
truncated into two clusters.

Our second result is valid for weak coupling only. We derive the first correction
in λ to the Gaussian singularity of S{p) at p = 0. This may be viewed as an
asymptotic expansion (up the second order in λ\ of the dielectric constant ε.

We now introduce the notations: if A is a "subset" of Λ, and B is a "subset" of
Λx{eί9...,ed}9

A} and B + x = {{i + x,ζ)\{i,ζ)eB}9

δ will denote an integral operator on L2(Rd) (d>3) of kernel:

(2πΓ3fexp(zp-x)μ(p)ddp,

(— Δ)~ 1(p)*(— Δ)~1(p\ * means convolution product,

In what follows c will denote a constant which can take different values at different
places.

Theorem 1. For any f in L2(7Ld) we have:

Π Φtl Π Φj
ieA + x jsA + y
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where D = ( — Δ)~ι if \A\ (the cardinality of A) is odd and Ό — δ if \A\ is even; d^3.

Π WΦ)\ Π (?ί
(i,ξ)eB + x ii,ξ)eB + y

Theorem 2. In any dimension d,

where

W = <(FS0) 2 >Λ=O and c{p,λ)ύc
uniformly in λ and p.

Remarks. 1. Theorem 1 implies the bound

On the other hand, a Mermin-Wagner argument (see [11, 4, II]) gives

We therefore know exactly the low momentum behavior of those correlations. A
Mermin-Wagner argument should also give

but we have not checked this in detail.
2. All our results are also true in the case where λ/4(Vφ)4' is replaced by an

even polynomial in (Vφ) with positive coefficients. In that case, w in Theorem 2
equals (P"(Vφ)}λ = 0.

3. For d ϊ ; 3 Theorem 2 implies

IV. The Proofs

The proof of Theorem 1 is by induction on \A\ or \B\. The only ingredients of the
induction step are Brascamp-Lieb inequalities and Schwartz' inequality. We also
make use of duplicate variables, so let us introduce some notations.

Consider the unnormalized density

exp Σ [l/2(ί7fφ)2 - λ/4(Ffφf - l/2(Vfφ')2 - λ/4(Pfφ')4] , (3)

where φ' is a duplication of φ. Using the variables:
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(3) becomes:

-n (4)
Now < > will also denote the normalized measure associated with (4). We also use
the notations:

ieA (i,ξ)eB

ieA (i,ξ)eB

We now start by proving Theorem lb). The proof will follow from three lemmas.

Lemma 1.

=§ Σf(χ)f(y)Kr;c(x,y)(vxψ
+BvyΨ

+B>, (5)

where x'y

Proof. The positivity is immediate because the left hand side of (5) equals

The left hand side of (5) can be written as:

Σ f(χ)f(y)idΨ

+vxΨ+BvyB{\dψ- v°j+xΨ-

+ψ-)Z^1. (6)

We used the notation \d\p±= \\ dψf-, and ZΛ = \dψ~dψ+ G(ψ + , tyO Now for any
configuration of ψ +, ίeΛ

is convex. Therefore, using Brascamp-Lieb inequalities [7, 8], we have:

(6) ^ Σf

and this is the right hand side of (5). •

Lemma 2.

<vxΨ

+Bvyψ
+Bve

j+xψ-ve

j+yΨ-y (7)
can be written as a sum of truncated correlation functions of the type:
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or

<Vxφ
B°;Vyφ

Bi>(Voφ
B>)(VQφB>).

Proof. Going back to the φ, φ1 variables, (7) will be a sum of terms of the type:

<Vxφ
cVxφ'DVyφ

EVyφ'F>, (8)

where C + D = B + (j,ξ) = E + F. Exchanging Vn

i+Xφ and Vn

i + Xφ
f in (7) for each

(z, η)eB + (/, ξ) will produce, up to a minus sign, the same expansion in terms of the
φ' and φ variables. Therefore if (8) belongs to the expansion of (7), then that
expansion also contains:

-(Vxφ'cVxφ
DVyφ

EVyφ'F>. (9)

Using the factorization of the measure (3), (8), and (9) equals:

(vxΦ%ΦEy <vxφ
Dvyφ

F> -<vxφ
Dvyφ

E) (vxφ
cvyφ

Fy,

and this can be rewritten as

< v
x
φ
c
 v

y
φ
E
y < v

x
φ
D

;
 v

y
φ
F
y + < v

x
ψ
D
y < v

y
φ
F
y < v

x
φ
c

;
 v

y
φ
E
y

- < v
x
φ
D
y < v

y
φ
E
y (v

x
φ
c
; v

y
φ
F
y - < v

x
φ
c
v
y
ψ
F
y < v

x
φ
D
 v

y
φ
E
y.

Finally if we write

< KΦcvyΦ
Ey = <vxφ

c; vyφ
Ey + < vxφ

cy < vyφ
Ey

and

the lemma is proven. Π

Lemma 3. The Induction Step. Assume the validity of Theorem ίb) for all B with
\^n, then Theorem ίb) is true for all B with \B\^n+l.

Proof We shall use the rotation B(l) for a "subset" of A x {ev ...,ed} of cardinality
/. If we rewrite (5) using the φ and φ' variables, the factorization of the measure
associated with (3) and Lemma 2 imply:

n

1=1 B ( Ϊ ) C B ( H + 1 )

Σ Σ b(B(HB(m)){Vxφ
B^;Vyφ

B^y
l,m=ί B(l),B(m)cB(n+ 1)

Σ Σ b(B(l),B(m),B(s),B(t))
l,m,s,t= 1 B(l),B(m),B(s),B(t)cB(n+ 1)

\ Σ Σ
U , m = l B(l),B(m)cB(n)

•(Vxφ
m;Vyφ

B™)+ "X £ c(B(l),B(m),B(s),B(ή)
l,m,s,t= 1 B{l),B(m),B(s),B(t)cB{n)

(10)
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where the coefficients b{) and c() are numerical factors multiplied by x and y
independent quantities of the type: (Vφc} (VφD} (VφE} (VφF}, with

The right hand side of (10) is a trivial rewriting of the right hand side of (5). We
used:

< vφcvφDy = (vφc; vψDy + < vφcy < vφDy.
By Brascamp-Lieb inequalities, 3 a A-independent constant c{n+l) such that all
the coefficients b() and c() are bounded by c(n+ί). Before going further we
make three remarks.

R.ί. By Schwartz inequality,

£ [Σ / W / ω <vxφ
D vyφ

D)V'2 \Σf(χ)f(y)<vxφ
E • vyφ

R.Ί.

Σf(χ)f(y)h(χ-y)g(χ-y)=$\f(k)\2(h*g)(k)ddk

χ,y

R.3.

0^(Voφ
D; Vxφ

D}\p)^const if |D| ^ n

by the induction hypothesis.
Using the induction hypothesis and R.I, R.2, and R.3, (10) becomes:

^c2\\f\\l2, (11)

where cλ and c2 are two ^-independent positive constants. Writing

*2=Σf(>

This implies that αll/Hϊ/ ^const, and this is the induction hypothesis for
B(n+l). Π

Since the induction hypothesis is true for B(l) (because it is Brascamp-Lieb
inequality) Theorem lb) is proven.

Proof of Theorem la). The proof of Theorem la) follows the lines of the proof of
Theorem lb). Lemmas 1 and 2 remain unchanged up to the fact that everywhere
Vφ is replaced by φ and that Ve

xV
e

yC{x, y) is replaced by C(x, y) in (5). In R.I, Vφ is
replaced by φ everywhere and R.3 becomes:

0S<ΦOΦX>\P)^const[2X(1 -cosp e ) " 1 if |D| is odd,
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and
SiΦolΦχT(p)Sconst μ{p) if |D| is even.

Now to prove Lemma 3 in this case, that is to prove the validity of the induction
hypothesis for \A\ t^n+1 assuming it for all A with \A\ ̂ n, we have to distinguish
between n + 1 even or odd.

a) Assume n+1 odd. Using Lemmas 1 and 2 and Remarks R.I, R.2, and R.3',
we have

Σ / w / ω < Φ f + 1 ) Φ f + υ > - Σ/w/ω<Φf n + 1 )Φ?Λ +^y] 1 1 2c.u Λ-Δ)-7)1/2

x,y x,y J

Sc.ifΛ-Λ)-1/).
As in the proof of Lemma 3, this implies

which is the induction hypothesis for |,4| = n + 1.
b) Assume n + 1 even. Since n+1 is even, using < φ 2 ί + 1 > = 0, b(B(l)) = 0 for /

odd, b(B(0, B(m)) = 0 for / or m odd, e = 0 in (10). Therefore using this and R.I, R.2,
and R.3', (10) becomes:

Σ / w / ω <Φί{n+1) Φf"+υ> - [Σ / w / ω <^ ( " + 1 } Φfn+υ>
χ,y [χ,y

Again this implies:

Σ /W/ω <Φt("+ υ Φf+1}> ^ const if, δf),

which is the induction hypothesis for A (n+1). Π

Proof of Theorem 2. It combines the integration by parts formula [12, 4] with
Theorem lb). The integration by parts formula gives:

+λ2 Σ Σ v^c(oj)ve

xv]c(xj) <{vfφnv]φ)3y. (12)

By integration by parts,

(13a)
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Using (13) and taking the Fourier transform of both sides of (12) we get:

ιBξ>η(p,λ), (13b)

where Bξ'\p,λ) is the Fourier transform of ζ(Vξ

oφ)3(Vη

xφ)3}, which is well defined
by Theorem lb).

Now

and by Theorem lb) and Schwartz' inequality,

B(Pξ> Pη > ^) ύ const uniformly in λ and p.

Finally (XVφ)2y can be replaced by <(Pφ)2>; = 0 because perturbation theory is
asymptotic [4]. •

Remark. It is easy to generalize Theorems 1 and 2 to the case where {Vφ)4 is
replaced by an even polynomial in Vφ with positive coefficients. The only change
in the proof of Theorem 1 arises in the proof of Lemma 1. Assume

λP(Vφ) = λ X ap(Vφ)2pap^0 \fp.
p=\

Then H(ψ + ,ψ ) will be defined by

and

K = {Vξ

iψ-)2 + 2ΣaP Σ (2p)(VψΎp~q(Vψlq. (14)

By symmetry it is easy to check that only q even enters in (14). Therefore for any

configuration of ψ + , ^ [K — (V\\p~)2~] is convex, and the rest of the proof of
i,ξ

Lemma 3 is unchanged.
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