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Interpolation Theory and the Wigner-Yanase-Dyson-Lieb
Concavity
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Abstract. The Wigner-Yanase-Dyson-Lieb concavity is naturally captured in
the frame of interpolation theory. Among other results, a certain generalization
(involving operator monotone functions) of this concavity in the context of
general von Neumann algebras is obtained. Also, a close relationship between
the above subjects and F. Hansen's inequality is clarified. All results are proved
by using simple variational expressions of involved quantities.

0. Introduction

Since the joint concavity of Trfα1 ~θx*/Λc), 0 ̂  θ ̂  1, in (α, b) was proved by Lieb,
[22], it is referred to as the Wigner-Yanase-Dyson-Lieb (WYDL) concavity. Here,
a and b (respectively x) are positive (respectively an arbitrary) matrices. Then, Araki,
[6], obtained the corresponding result for general von Neumann algebras. Due to
the fact that this concavity has important applications to theoretical physics and
information theory (subadditivity for entropy, etc., see Sect. 8, [28], for example),
several authors have been tryiηg to obtain various generalizations in many
directions, [11,24,25,30].

Proofs in [6,22] are based on the Phragmen-Lindelόf theorem (complex
interpolation). The purpose of the article is to capture the WYDL concavity in the
frame of general interpolation theory. Especially, we examine a certain real
interpolation method (the K-method of Peetre) in Sect. 1, and quadratic in-
terpolation methods in Sects. 2 and 3. Also, as applications of our arguments, in Sect.
4 we establish a close relation among this subject, F. Hansen's inequality [15], and
operator monotone functions [10], while in Sect. 5 we obtain a certain generali-
zation of Araki's version, [6], of the WYDL concavity in the context of general von
Neumann algebras.

We show that, in our frame, the WYDL concavity is a natural and common
phenomenon (Theorems 1.8,3.5) due to the fact that many involved quantities
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(interpolation norms) admit variational expressions. This key fact follows from our
main technical lemma (Lemma 2.1).

1. Real Interpolation Method (the k-Method of Peetre)

We recall the K-method of Peetre (one of real interpolation methods) as well as the
general interpolation theory. Our basic reference is [8].

Throughout the paper, let V be a vector space equipped with two norms || ||0,
|| || 1 which are compatible (see Remark 2.3) in the following sense: Any sequence in
V which converges to 0 in one norm and is Cauchy in the other norm must converge
to 0 in the other norm. Under these circumstances, the completions of V under the
norms || || 0, || || x are continuously imbedded into the completion of V under the
norm

N l = i n f { K l l o + K l l i ; ^ = 0̂ + ^1}. (i)

(See p. 35, [26], for example.) Hence, one obtains a compatible couple of Banach
spaces in the sense of [8]. (See [7] for more detailed study of compatibility.)
However, we do not consider these "redundant" completions usually (except in
Sect. 3), and will deal with a triple (V, || | | 0, || || x ).

To explain what an interpolation method is, we consider one more generic
Wll ll(w>ll \\i,w) a n c * a n arbitrary linear operator T from V into W
satisfying

^ ^ M J M U , υeV.) (2)

AmethodFofconstructinganewnorm || \\^ = F( | | | |0, II Hi) on V(hence also
1 II \\*,w = F(\\ llo.nr> II Wi,w) on W) satisfying

I I Γ ϋ H ^ ^ M J I i IU, υeV (3)

is the main concern of interpolation theory. If (2) always implies (3) for any (V, || || 0 ,
II II iX W II \\o,w> II \\ι,w)> a n c * T, then a method F is called an interpolation
method and the resulting norm || 11^= F( \\ || 0 , || || J is called the interpolation
norm (constructed from || | |0, || | | : by F). Many interpolation methods are
known. (The complex method, the K-method, the J-method, etc., see [8].)

The reader familiar with general interpolation theory may have noticed that our
definition above is quite restricted. However, for our purpose (WYDL concavity) the
above definition is more convenient.

Definition 1.1. If (2) implies (3) with M^ = Ml~θM\, 0 < # < l , (respectively
M^ = Max (Mo, M J ) , then F is said exact of exponent θ (respectively exact).

We now recall the X-method of Peetre which is one of real interpolation
methods and is exact of exponent θ.

Definition 1.2. (K-functional) For each t > 0, we set

K(t, v) = inf { || ι>01| 0 + ί || ϋ! | | ! υ = υo + υί}9 ve V.
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More generally, for each t > 0 and p > 0, we set

Then all norms K(t, •), t > 0, on V are equivalent to the norm (1) ( = X(l, )). We
"superpose" these norms in the following way:

Definition 1.3. (The K-method of Peetre) For each 0 < θ < 1 and 1 ̂  q ^ oo, we set

Γoo -\l/q

\\v\\Θ,q = \ ${ΓθK(t,vψdt/t\ , veV.

(It is easily shown that | | v | | M < oo, see p. 40, [8].) This method of constructing
|| \\θq from a generic (V, || | | 0, | | HJ is called the K-method (determined
by θ,q).

The above described (usual) X-method is useful to deal with //-spaces and
Lorentz spaces. However, we will need its variant, which will be described below.

Definition 1.4. For each p > 0, we set

[ oo Πl/<?

l{ΓβKp(t,v)}*dt/t\ , veV.
0

Holmstedt and Peetre, [17], showed:

Proposition 1.5. For each p > 0 (and 0 < θ < 1,1 ^ q g oo), the norm \\ x\\θ>q.p is
equivalent to the norm || | | M ( = | | WΘ^ Λ)- (In particular, \\ \\θtq:p is also an
interpolation norm.)

The next result is well-known. However, we present its proof because it is
intuitive to understand the nature of "real" interpolation theory.

Proposition 1.6. The interpolation norm || \\θfq;p {or rather, the method of
constructing it) is exact of exponent θ.

Proof L e t T be a l inear o p e r a t o r f rom V t o W w i t h || \\OtW a n d || \\ltW satisfying
(2). W e e s t i m a t e

K J ,( ί ,Tι ? ) = i n f { ( | | w 0 | | δ ^ + ί p | | w 1 | | ? f l l , ) 1 / p ; Ti; = w o + W l }

^ i n f {(|| Tv0 \\p

0,w + || Tvx ||ξ, w ) 1 / p : v = vo + v,}

= M0Kp(tMJM0,υ).

W e d e n o t e t h e c o r r e s p o n d i n g || ||θ ^.^-norm o n W (ar is ing f rom || | | 0 ? w , \\ \ \ 1 > w )

\\θ,q;p,W

\{ΓeKp{t,Tv)Ydtlt[ oo

\{ΓeKp{t,Tv)Y
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[ Ίl/g

\{rsKp(tMJMo,ϋ)}"dtlt\
o -1

o

= M0(M0/MιΓ
θ

Here, in the third line we changed variables from tM1/M0 to ί.

(Q.E.D.)

In what follows, we will mainly consider K2(t,'), which is suitable to describe

quadratic norms.

Definition 1.7. For each 0 < θ < 1, we set

II llβ,2,2 = ̂ ( l l Ho, II 111)

so that Fθ is an exact interpolation method of exponent θ.

Theorem 1.8. (WYDL concavity for Fθ). Let || || , i = 1,2, 3,4, 5,6, be sue norms

o n V a n d o i , β ^ O , 0 < θ < l . I f < x \ \ \\l + β\\ \ \ 2

2 S \ \ \ \ U \ \ \\l + β\\ ' ί l ^ W I I I ,

ίfeen we ̂ αue α || ||7 + )S|| Us = 11 III- Here, the three norms \\ | | 7 , || | | 8 , | | \\9on

VareFθ(\\ | | 1 ; || | | 4 ) , F β ( | | | | 2, || | | 5 ) , F β ( | | | | 3, II II6) respectively.

Proof. W e c o m p u t e \\v\\η as fol lows:

| | ϋ | | f = ] {ΓθK2(t,v)}2dt/t
0
00

= j in fd l^ l l j + i 2 ! ! ^ ^ ; υ = vo + υ1}Γ2θ-1dt,
o

and similar expressions hold for \\v\\l and || υ\\l. Thus, it is sufficient to show:

α i n f { | | ι ; 0 | | i + ί 2 | | ι ; 1 | | 4 ; v = v0 ^v^j

S inf{ | | ι; 01| 2 + ί 2 K | | 2 ; ^ ϋ o + ϋi}. (4)

However, this follows immediately from α|| || \ + j8|| 111 = II II3 a n ( ^ αll II4 +

jSI! Wlύ II IU2 (Q E.D.)

Remark 1.9. The reader might observe that the above proof is so simple because:

(i) (4) is obvious due to variational expressions of the three involved quantities, (ii)

each norm is just an integral of the corresponding term in (4). The above simple

arguments based on (i) and (ii) will be repeatedly used.
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Remark 1.10. In [30], Uhlmann proved a similar result for his interpolation
method QIΘ. His QI has just a uniqueness theorem (not an existence result except
when norms are quadratic), while our Fθ is constructive. Later we will show that Fθ

and QIΘ are the same (up to a scalar multiple) for quadratic norms so that QIΘ is exact
of exponent θ.

2. Quadratic Interpolation, Unbounded Operator Approach

In this section and Sect. 3, we consider a quadratic interpolation method, that is, an
interpolation method giving rise to a new quadratic norm from a pair of such norms.
As a principle, the approach in Sect. 3 (bounded operator approach) is enough. We
however deal with a certain unbounded operator here, which will prove more
suitable for applications in Sects. 4 and 5.

We begin with the following main technical tool:

Lemma 2.1. Let h be a positive self-adjoint operator on a Hubert space K with a
form core D. Then, for each ξeD and t > 0, we have

Here, (hζ\ζ) should be understood as a form ([18]).

Proof Due to (h/t) (1 -f (h/t))~ι = h(t + h)~ \ we may and do assume that t = 1 in
what follows. Also, by making use of the spectral decomposition theorem, it is easy
to check:

+/ι)1 / 2C||, ζeK.

Thus, the graph norms of hί/2 and (1 + h)112 are equivalent so that D is an (operator)
core for ( l+/ i ) 1 / 2 .

When ξ = ζ + η (ζ,ηeD), it is straightforward to show:

(hζ\ζ) + (η\η) = (ft(l + h)~ ιξ\ξ) + || (1 + h)ι'\h{\ +h)-ιξ-η)\\

We now note that (although h(\ + h)~ 1ξ may or may not belong to D) h(\ + h)~ 1ξ
belongs to the domain of hί/2, or equivalently, that of (1 + h)112. Since D is a core for
(1 4- /ι)1/2, the second term of the above right hand side can be arbitrarily small by an
appropriate choice of ηeD. This completes the proof. (Q.E.D.)

In the rest of the section, we will consider a vector space V equipped with
compatible (see Remark 2.3) quadratic norms || ||α and || ||^, and quadratic
interpolation methods. Namely, || ||α and || ||^ arise from sesquilinear forms α, β
on V:

H | β

2 = φ,ι;), \\v\\2=β(v,υ\ υeV.

Let K be the completion of V under || ||α and we regard V as a (dense) subspace of

the Hubert space K whose inner product is denoted by ( | •) ( = α( , •)) o n ̂ ) Hence β
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is a sesquilinear form on K whose domain is dense. The compatibility between || || α
and || 1̂  forces that β is closable (as a form, see [18]). Let h be the positive self-
adjoint operator on K corresponding to the closure of β ([18]) so that we have

χ vteV

( = (hυ11v2) in a form sense).

From the construction, V is automatically an (operator) core for h1/2.

We can express || \\θ,2;2 ( = ^Θ(\\ llα> II 11/?)' Definition 1.7) in terms of the
operator h. For the sake of completeness, we give the proof of the following result
(see p. 98, [23]):

Theorem 2.2. For each ve V and 0 < θ < 1, we have

\\v\\θa;2=(π/2sm(πθ))ll2\\hθ^2vl veV.

Proof. Since || v\\j = (hv\υ), we have

K2{t9υ)2=inϊ{(v0\v0) + t2(hvί\vί); υ = υΌ+vl9 vteV}

= (h(Γ2 + h)~ ιv\v). (Lemma 2J)

oo

Let h = J λdeλ be the spectral decomposition of h. Fubini's theorem (for positive
o

functions) yields:

\\v\\t 2.2 = (
o V o
oo / oo

((
o \ o

By direct computations (or see the table of Mellin transforms), we have

00

Hle

2,2;2 = ί A(πAβ-V2sin(πθ))d||eAt;||
2

0

oo

= (nl2ύn{πθ))\λθd\\e)ίv\\2

0

| 2 . (Q.E.D.)

Remark 2.3. So far, we have been assuming compatibility of two norms. From
now on, this is not necessary except in Theorem 3.4. Indeed, all results will be proved
as just consequences of variational expressions, and compatibility plays no role.
(This is also the case in Theorem 1.8.)

3. Quadratic Interpolation, Bounded Operator Approach

In this section, we still restrict ourselves to quadratic norms. We will not use
unbounded operators in this section.

As before, we consider a vector space V equipped with two quadratic (semi-)
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norms || ||α,|| ||^. The following definition is inspired by Pusz-Woronowicz,
[24]:

Definition 3.L We say that (F, || ||α, || 1̂ ) is represented by a quadruple
(K, i, a, b) if i is a linear mapping from V onto a dense subspace in a Hubert space K,
and commuting positive operators a and b on K satisfy

φ 1 , Γ 2 ) = Mϋi)|i(y2))» β(vuv2) = {bi(υ1)\i(v2))9 υ{eV.

There exists the canonical construction of a representation from a given
(Kll U l \\β)

 a s follows: Let K be the completion of V{V/{υeV;\\v\\ =0} if α,j8
are seminorms) under the quadratic norm ||t;|| = (|Mlα + IMIβ)1/2

? and i: F->X
be the natural inclusion. Since || ||α fg || ||, Riesz' theorem guarantees that there
is a bounded positive operator k on K satisfying <x.(υ1,v2) = (ki(v1)\i(v2)\ vteV.
Clearly, {K, i, k9l-k) represents (F, || ||α, || H,).

Although we will deal with a representation, the notation (K, i, /c, 1 — /c) will be
reserved for £/ϊe canonical representation in what follows.

(The first part of) the next result is closely related to our Lemma 2.1, and was
independently obtained by several authors, [1-4,24].

Lemma 3.2. Let a, b be commuting positive operators on a Hilbert space K, and D
be a dense subspace in K. For each ξeK, we have

Thus, when (F, || ||α, || \\β) is represented by (K, ι, a, b), we have

(ab(a + by H(v)\i(v)) = inf{ || υx ||α
2 + || υ2 \\2

β; v = υx + υ2}.

Actually, if one replaces (h, 1) by (α, b) in the proof of Lemma 2.1, almost same
arguments there yield this lemma. Furthermore, the result remains valid for any
a,b ^0([α,6] ^0) under a certain interpretation of abia + b)'1 (for example,
(a'1 +b~ίy1 if all inverses make sense). Or rather some authors consider the
expression in the above lemma as the definition of the operator in the left hand side.
In the literature, this is called either the parallel sum or the (half of the) harmonic
mean (of a and b). An interesting interpretation of a parallel sum (in terms of theory
of electric circuits) can be found in [1].

We may interpret Lemma 2.1 as follows: If (F,|| ||α,|| \\β) is "unboundedly"
represented by (the completion of V under || ||α, the natural inclusion map, 1, h) as
in Sect. 2 with the "correct" core condition (as stated in Lemma 2.1), then Lemma 3.2
remains valid. However, existence of such an unbounded representation is
guaranteed only when two norms in question are compatible, (see Remark 2.3.)

If(K, i, k, 1 — k) is the canonical representation of (F, || ||α, || 1̂ ), then, for 0 < s
< 1, a = sk and b = (1 — s)(l — k) commute. Thus, Lemma 3.2 implies:

Corollary 3.3. For each 0 < 5 < 1, veV, we have

k){sk + (1 - s ) ( l -k)}-H{υ)\i(v)) = s-\\ -s)-Mnf{s||υ,\\2

X

+ (l-s)\\v2\\2

β;v = υ1+υ2}.
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We now try to improve Theorem 1.8 (by restricting ourselves to quadratic
interpolation methods). We will use the complete characterization of all exact
quadratic interpolation methods obtained by Donoghue Jr., [9], and Lions-Foias,
[12]. It is worth pointing out that in both [9] and [12] Lόwner's theory on operator
monotone functions, [10], is crucially used.

With the canonical representation (&, i, /c, 1 — k) of a generic (V, || || α, || || β),
the main result in [9] states:

Theorem 3.4. The exact quadratic interpolation methods F are in one-to-one
correspondence with the set of all functions f(λ) of the form:

f(λ)= $λ(l -λ){sλ + (l-s)(l -λ^-^vis),
0

dv(s) being a positive Radon measure on the closed unit interval [0,1]. Here,

II I U = F ( I I II..II \\β) is determined by

\\v\\i,=(f(k)i(vMv))il2,vEV.

Before proceeding further, we remark that this theorem remains valid even for
quadratic semi-norms under a certain modification, (see Theorem Γ and 2! in [9].).
The next result shows that all exact quadratic interpolation methods enjoy the
WYDL concavity.

Theorem 3.5. (WYDL concavity for an exact quadratic interpolation method).
Let F be an exact quadratic interpolation method arising from f(λ) as in the
previous theorem, and || || u i = 1,2,3,4,5,6, be quadratic (semi-)norms on a vector
spaceF.Ifαll ||J + j8|| \\2

2£\\ || | and α || ||2 + j8|| | | | g | | || I then we have

all II ? + 011 H s ^ l l III. where || | |7, | | | |8,| | | | 9 a r e F ( | | || l9 \\ | | 4 ) , F ( | | ||2,
II II5X F(\\ II3. II IIβ) respectively.

Proof. T h e def init ion of || ||7 a n d C o r o l l a r y 3.3 imp ly :

[0,1]

(0,1)

(0,1)

with y =^v({0}) and δ =dv({l}). We also have the corresponding expressions for

IIυ II 8> IIv II9 w i t n t n e same dv, y, δ.
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By the assumption, we have

jSinf {s\\ v 0 1 | I + (1 - s ) | | υ x \\ 2

5;

s ) | | t > 1 | | 2 ; Ό = Ό O + Ό 1 } .

Thus, the result is obvious from the integral expressions in the first half of the proof.
(Q.E.D.)

Remark 3.6. One can prove (an easier) half of Theorem 3.4 using the above
arguments. Consider the quadratic interpolation method of giving

|| v || ̂  = (k(l - k){sk + (1 - s)(ί -k)}'1 i(υ)\ί(v))

(from ||ι>||α = (ki{v)\i{v))112 and \\v\\β = ((1 - k)i(v)\i(v))112). As in the first part of the
proof of Proposition 1.6, (2) and Corollary 3.3 imply || Tυ\\^tS ^ Max ( M ^ M J x
|| v || ̂  ;S. Thus, passing to the integral in the proof of the preceding theorem, we obtain
the desired exactness.

Finally in this section, we identify Uhlmann's quadratic interpolation method
QIΘ with Fθ in Definition 1.7. (See Remark 1.10.) His construction is based on
geometric means in [24], and some complex analysis. In our terminology,
QIΘ(\\ ||α, || \\β), denoted by || \\θ for simplicity in the proof below, is given by

tfψ112, veV,

if (F, || ||α, || \\β) is represented by (X, i, a,b). (See Proposition 10, [30].)

Theorem 3.7. For quadratic norms || ||α, || 1^, we have

QIΘ(\\ Hoc, iί IU) = (2sin(πθ)/π) 1 / 2 F θ ( | | ||α, || | | , ) , O < 0 < 1 .

Proof. Using the joint spectral measure deλμ for commuting α, b, we directly
compute

00

\{t2ab{aΛ-t2b}-H(υ)\i(υ))r2θ~1dt
o

{λ + t2μ) Hι 2θdt)d\\eλμi(v)\\
0 0 \ 0

2

oo oo

0 0

= (π/2sin(πθ))(a1"θbθί(v)\i(υ))

= (π/2sin(πθ))\\v\\2.

Thus, Lemma 3.1 shows:

(π/2sin(πθ))\\v\\2

θ = $M{\\vJ2

a +t2\\V l \ \ j ;
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But the right hand side is the square of Fθ{\\ ||β, || 1̂ ). (Q.E.D.)
In particular, this result and Proposition 1.6 guarantee that the quadratic

interpolation method QIΘ is exact of exponent θ. However, this result is implicit in
[30] (although just exactness is explicitly mentioned, see Proposition 9, [30].). And
there is only one exact quadratic interpolation method of exponent θ up to a scalar
multiple. The proof of the uniqueness will be published elsewhere.

4. F. Hansen's Inequality

We will give an alternative proof of F. Hansen's inequality, [15]. (see Theorem 4.2)
More importantly, we will point out and clarify a close relation between this
inequality and quadratic interpolation theory.

The following result is an easy consequence of Lόwner's theory ([10]) so that we
leave full details to the reader. (Actually, it is proved in p.216, [31].)

Lemma 4.1. Let g(λ) be a non-negative operator monotone function on [0, oo). Then
there exist unique non-negative numbers ε l5 ε2 and a unique positive finite measure dμ
on (0, oo) such that

CO

g(λ) = ε1 + ε2λ + \λ(t + λ)~ιdμ{t\λ ^ 0.
o

We remark that conversely a function g(λ) given by the above integral expression
is operator monotone on [0, oo) due to Lemma 2.1.

Theorem 4.2. (F. Hansen's inequality, [15]). Let x, y be positive {bounded)
operators on a Hubert space K, and a be a contraction. For any non-negative operator
monotone function g(λ) on [0, oo), x g y implies α* g(x)a ^ g(a* ya). In particular (and
equivalently), we always have a* g(x)a ^ g(a* xά).

First Proof. We simply compute (ξeK):

(a*g{x)aξ\ξ) = (g(x)aξ\aξ) = e i(αξ|αξ) + ε2(xaξ\aξ)

00

+ ί inf{(xdlζj/ί + (ζ2 |ζ2); aξ = ζ, + ζ2}dμ(t)
0

(Lemma 2.1 and Lemma 4.1)

]inϊ{(xaξ1\aξι)/t + {aξ2\aξ2y9 ξ = ξ, + ξ2}dμ(t)

+ ]wϊ{{a*yaξ1\ξ1)/t + (ζ2\ξ2) ξ = ξ, + ξ2}dμ(t)
0

(since x rg y and | |α|| ^ 1)

= {g(a*ya)ξ\ξ). (Q.E.D.
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One can also find another proof in [13]. This inequality obviously remains valid
for a positive measurable operator in the sense of Segal, [27]. As an application of
this fact, a certain dominated convergence theorem for probability gages ([27]) is
obtained in [21].

A half of the proof of Theorem 3.4 (see Remark 3.6.) and the above proof of F.
Hansen's inequality are based on the same principle (variational expressions).
Actually, not only their proofs but also their statements themselves are "identical."
The rest of the section will be devoted to explaining this fact.

Remark 4.3. For any non-negative operator monotone function g(λ) on [0, oo), we
define an exact quadratic interpolation method Fg by

with (K,h) constructed in Sect. 2 from compatible || ||α, || 1 .̂ Indeed, the
exactness of Fg can be immediately observed if one repeats the arguments in Remark
3.6 together with Lemma 2.1 and Lemma 4.1. (Also, || Ĥ  does not depend on a
choice of (K,h) as long as V is a form core for h due to the variational expression,
Lemma 2.1.) Actually, all FJs{gψO) exhaust all exact quadratic interpolation
methods described in Theorem 3.4. Since we do not need this fact, we will postpone a
proof elsewhere.

We now "reprove" Theorem 4.2 to explain the fact that F. Hansen's inequality
follows from quadratic interpolation theory.

Second Proof of Theorem 4.2. Let || || = ( | ) 1 / 2 be the Hubert space norm of X, and
we set hί = a* ya,h2 = x. We now consider the two pairs of quadratic semi-norms..
(II L ( V I )1/2) and (|| | | , ( M 0 1 / 2 ) o n κ (which are represented by hx and h2 respec-
tively in the sense of sect. 2). A given contraction a\K-*K satisfies

Since Fg is exact (Remark 4.3), we must have

which is same as α* g(x)a ^ g(a* yd). (Q.E.D.)
On the other hand, fl* g(x)a rg g(a* xa) for any x ^ 0, || a || ^ 1, if and only if g(λ) is

operator monotone as shown in [16]. Thus, the validity of F. Hansen's inequality
implies the exactness of Fg (Remark 4.3).

5. WYDL Concavity in the Context of von Neumann Algebras

We will obtain a certain generalization of Araki's version, [6], of WYDL concavity
(in the context of von Neumann algebras). As one can easily imagine, all results in
this section can be regarded as consequences of our most general result Theorem 3.5
(see Remark 5.5). However, we will provide direct proofs because they are equally
simple as reductions from Theorem 3.5.

To express the WYDL concavity for a von Neumann algebra, which does not
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admit a trace, ŵ e need the notion of a standard form. In the rest of the section, let M
be a (σ-fϊnite) von Neumann algebra with a standard form (M, H, J, P^) in the sense
of [6,14]. Hence, M is standardly acting on a Hubert space H, and a natural cone P^
is a self-dual cone in H such that the map; ξePN-»ω ξeM+ is bijective. A unitary
involution J on H satisfies JMJ = M\ and Jξ = ξ for each ξePk. For each φeM^,
we denote its unique implementing vector in ptq by ξφ. For φ,φinM^ (φ is faithful
for simplicity), a (unique) positive self-adjoint operator Δψφ on H such that
JAψtφXξφ = x*ξψ,xeM, and Mξφ is a form core is known as the relative modular
operator (of φ relative to φ). (See [6] or [19] for example.)

The following example might be intuitive for non-specialists, and will be used
later.

Example 5.1. Let K be a (finite or infinite dimensional) Hubert space, and C2(K)
(respectively C2(K)) is the Hubert space of all Hilbert-Schmidt class operators on
K (respectively the cone consisting of all positive Hilbert-Schmidt class operators on
K). Then (B(K\ C2(K), J = *, C2 (K)) is a standard form, where the von Neumann
algebra B(K) should be understood to act on C2(K) as left multiplications. The
predual B(K)^ is identified with C^K), the set of all trace class operators, via
φeB{K)* -+hφeCΪ{K) with φ = Tr(hφ-). Then the unique implementing "vector" ξφ

in C2

+ (K) is hψ due to φ(x) = Ίτ{hφx) = Tr(xΛ^2/z^/2) = {xh]J21 h^2). We also remark
that, in the present context, the relative modular operator Δφφ on C2(K) is given by

Thus, we obtain

which is a typical quantity appearing in the WYDL concavity in the context of the
matrix algebra (see the very first part of Sect. 0).

Returning to a general von Neumann algebra, we state our main result in the
section.

Theorem 5.2. (WYDL concavity). Let g(λ) be a non-negative operator monotone

function on [0, oo), and φl9 φ29 φ, ψι, Ψ2> Ψ ^e elements in M * . If we have

ίij/^ βφ2^φ; α , β ^ 0 , (5)

then, for each xeM, we have

+ β(g(Aψ2φ2)xξφ2\xξφ2) (6)

Before going to its proof, we remark that all terms in (6) make sense as forms.
Indeed, the function g(λ) being concave in the usual sense (due to Lemma 4.1), we
have g(λ) ^ cA + d, λ ^ 0, for some c, d ^ 0.
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Proof, Due to Lemma 4.1, we have

ξφ) + ε2{Δψφxξφ\xξφ)

+ ](Δψφ(t + Δψφ)-1xξφ\xξφ)dμ(t). (7)
0

We note that

Since Mξφ is an (operator) core for Δ^φ, Lemma 2.1 (applied to (7)) yields:

(g{Δφφ)xξφ\xξφ) = £^{x*x) + ε2φ{xx*)

+ J inf {ψ{yy*)/t + φ(z*z);x=y + z]φ(ί),
0

for generic φ, ψ, x. Thus, as before, (6) follows from the following obvious
consequence of (5):

yy*)/* + φί(z*z);x = y + z}

+ βmS{φ2(yy*)/t + φ2(z*z); x = y + z}

^ inf {ιA(yy*)/ί + Φ(2*z) x = )/ + z}. (Q.E.D.)

The function g(λ) = A θ ^0, 0 ^ θ ^ 1, being operator monotone on [0, oo), we
have:

Corollary 5.3. ( [ 6 ] ) . For each O ^ θ ^ l and xeM, (5) in Theorem 5.2 implies

What is involved here is the following well-known identity (used in theory of
semi-groups):

λθ = {ήn(πθ)/π) ] λ(t + λ)~ HQ~Ht.
o

This identity was also used in [11] (in a different way) to obtain an alternative proof
of:

Corollary 5.4. ([22]). Let x be a (bounded) operator of a Hubert space K, and
Cγ(K) be the set of all positive trace class operators on K. If α/z1 +βh2^h and
ak1 + βk2^k{hί9h2,h9kl9k29keC^(K); a, β^O), then we have

for each O g θ ^ l .
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Proof. When M = B(K) as in Example 5.1, Corollary 5.3 reduces to this result.
(Q.E.D)

Remark 5.5. A pair (φ, φ) of generic elements in M* induces a pair of quadratic

forms (hence, semi-norms) on M as follows:

(x, y) -* φ(y*x), (x9 y) -> ψ(xy*).

(See Sect. 3, [24].) In terms of a standard Hubert space and relative modular
operators, they are computed as:

Φ(y*χ) = {χξφ\yξΦ),
ψ(χy*) = (y*ξψ\x*ξψ) =

so that the two semi-norms are "unboundedly represented" by {H, iφ, l,Δψφ) with
iφ{x) = xξφί xeM. (And, actually, these two semi-norms are compatible due to the
closedness of relative modular operators.) Thus, the quadratic interpolation method
Fg described in Remark 4.3 produces the new quadratic semi-norm:

xeM ^(g(Δψφ)iφ(x)\iφ(x))112 =(g(Δψφ)xξφ\xξφ)
112,

so that all results in this section are special cases of Theorem 3.5.
Some analysis on the two forms in the above remark (called the right and left

forms in the literature, [24,25,30]) and more applications of the general in-
terpolation theory to von Neumann algebras are found in [19, 20, 29]. Also, more
systematic analysis on relations among the subjects appearing in the present article
will be carried out in a subsequent paper.
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