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Abstract. It is shown that the truncated Wightman functions of three or more
string-localized fields vanish if they are solutions of a Klein-Gordon equation
in each variable. As an application it is shown that a string field is a free field if
its two-point functions are those of a free field. Another application to
perturbation theory is pointed out.

1. Introduction, Results

Gauge theories confront us with, among others, the following two problems.
i) There exist very different looking but physically equivalent formulations,

called "gauges," of the theory. This makes the interpretation of the formalism, in
particular the search for the physical significance of the basic fields, difficult.

ii) In the physical gauges, i.e. formulations which work in a physical state
space with positive metric, the basic fields are neither covariant nor local. As a
consequence, many of the well-known methods and results of local field theory are
not immediately applicable. This holds especially for most of the rigorous results
of axiomatic field theory.

Mandelstam [1] proposed to solve the first of these problems, e.g. in QED, by
working only with the gauge independent fields Fμv{x) and

ψ(x) exp < — ίe j dξμΛμ{ξ) >. Since this device merely replaces gauge dependence by
I - oo J

path dependence the gain might look doubtful at first. However, recently Buchholz
and Fredenhagen [2] have shown that this strategy also goes a long way towards
solving problem ii): important axiomatic results can be derived for fields which are
localized on space-like strings or more generally in space-like cones. In particular
this is true for the construction of asymptotic scattering states, i.e. for the very non-
trivial problem of identifying states of the formalism with the states found in
nature. Further investigation of charged string-localized fields is thus indicated,
continuing both the rigorous approach of Buchholz and Fredenhagen as well as
the more down-to-earth dynamical studies of specific models as carried out by
Mandelstam and others [1, 3].
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In the present work we prove a theorem which is useful in both respects,
leading on the one hand to a generalization of the Jost-Schroer theorem of local
field theory, having on the other hand an important application in perturbation
theory.

Let ψiix), z=l,...,iV, be fields satisfying the Wightman axioms (see e.g. [4])
with the following modifications.

1) Invariance under the homogeneous Lorentz group is not assumed.
2) Locality holds only in a weakened form ("string locality"): let e be a space-

like unit vector, which we choose (without restriction of generality) as e = (0,0,0,1).
Let M be the four-dimensional Minkowski space and define, for xeM, the string

(1.1)
We assume

ίψi(χ\ψj(y)']±=o (1.2)

if Sx and Sy are totally space-like relative to each other. The commutator or
anticommutator occurs as usual according to the statistics of the fields involved.
Condition (1.2) will be called string-locality. Note that the string direction e is
assumed to be the same for all fields.

The Wightman functions W(xv ...,xn) = (Ω,ψiί(xί)...ψin(xn)Ω) have then the
well-known properties: temperedness, translational invariance, p-space support,
string locality, and the cluster property which we use in the following form. For W
we can write down the familiar cluster expansion

The Fourier transform Wτ(pv...,pn) of the truncated Wightman function
Wτ{xί,...,xn) is, after integration over test functions in p l 5...,Pα-i> Pa+i,---,pn,
oc<n, a measure in the variable Pa = p1+ ... + pa with no point contribution at
Pα = 0, so that Wτ is uniquely determined by its values on test functions which
vanish at Pα = 0 with all their derivatives.

The positivity property of the W will be used for the proof of the Jost-Schroer
theorem (Theorem 2) but not for the proof of Theorem 1, the main result of this
paper.

We now state this result:

Theorem 1. Let W{xv ...5xn) be Wightman functions with the modified properties as
stated above, positivity not being assumed. Assume

W r(x1,...,xn) = 0 (1.3)

for all i, with m^O. Then

WT(Xl,...,xn) = 0 (1.4)
for n^.3.

The proof of this theorem will be given in Sect. 2.

Remarks. 1) In QED the ψ. are the components of Fμv and of the Mandelstam
string fields ψ,ψ. The Fμv are local in the strict point-wise sense, and using this the
proof of Theorem 1 can be somewhat simplified. However, strict locality implies
string locality, and our proof is preferable because it applies also to non-abelian
gauge theories containing massless string fields.
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2) If string localization is replaced by the cone localization of Buchholz and
Fredenhagen, then Theorem 1 cannot be proved if the cones are the same for all
variables. It can be proved, however, if the cones are allowed to depend on ί, and
are chosen such that the set Ci—Ck is space-like for all iφfe. Here Ct is the cone
associated with x , with its apex lying at the origin.

We conclude this section with two applications of Theorem 1. The first one is a
generalization of the Jost-Schroer theorem [5] to string-localized fields.

Theorem 2. Let ψ(x) be afield satisfying the modified Wightman axioms including
positivity. Assume its two-point functions to be the two-point functions of a local free
field of mass m ̂  0, so that

2 O. (1.5)

Then ψ is a local free field.

The word "local" is here used in the strict sense of point locality.

Proof of Theorem 2. Using positivity we obtain from (1.5):

ψ*{x)Ω = 0. (1.6)

Since the usual spectral properties are assumed, Wτ(xv ..., xn) is boundary value of
an analytic function in the forward tube {lm(xi+1 — xi)eV+ for z = l, ...,n—1}.
(Here xt is a ψ- or a φ*-variable, as the case may be.) The same analyticity property
holds then for 2 τ

F ( ) (\J + 2)Wτ(x1,...,xn). (1.7)

Let B be the unit ball in M with centre at the origin, Ba the unit ball with centre at
(0,0,a,0), a sufficiently large. Iϊχ.eBa, xi+v ...,xneB, then SXι is totally space-like
relative to all Sx. with j > i, hence by string locality:

by (1.6). This is true in an open set in M", and thus F ^ Ξ O by analytic continuation.
This means that the assumptions of Theorem 1 are satisfied, hence Wτ = 0 for
n^3. This cluster expansion of W(xv...,xn) contains then only two-point
functions, and these are free by assumption: the W are the Wightman functions of
a free field, hence ψ is free.

The second application of Theorem 1 is to perturbation theory formulated in
terms of Wightman functions. Such a formulation has certain advantages over the
more familiar one using Green's functions: firstly it avoids the problems connected
with the ambiguity of the T-product at coinciding times and, secondly, no equal-
time commutation relations are needed. The formalism will be described elsewhere
for the case of QED. Here we only mention the point at which Theorem 1 comes
in.

In a field theory amenable to perturbation methods the σth order term Wσ in
the perturbative expansion of W is determined recursively as solution of a system
of differential equations

DiWσ(...,xi9...) = I σ i { . . . 9 x i 9 . . . ) 9 (1.8)

where Dt is a differential operator, e.g. ( • +m 2), ($ + m\ or simply δv, and where
the right-hand side Iσi is known if the Wτ with τ < σ are known. In all the familiar
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models Eq. (1.8) imply equations of the form

where again Γσi is completely determined by the lower orders of perturbation
theory. Hence WΎ

a is determined uniquely up to a solution of the homogeneous
equations (•j + m f ) / ! ^ ^ ...,xn) = 0. But according to Theorem 1 these equations
have for π ^ 3 no non-trivial solutions satisfying the modified Wightman con-
ditions. Hence Wτ(xv ...,xπ), n>2, is determined uniquely if we demand that it
satisfy these conditions, with the exception of positίvity which is beyond the
powers of perturbation theory. The ambiguities of the two-point functions are
removed by imposing suitable renormalization conditions.

2. Proof of Theorem 1

The Fourier transform of any function or distribution F will be denoted by F.
Equation (1.3) implies

(pf-mf)WT(pv...,pn) = 0, (2.1)
hence

snppWτ(Pl,...,pn)c{pf=mf, Vi}. (2.2)

Due to the spectral condition the pj-support lies on the positive mass shell p\

Define

X — x1+x2, ξ = x1 — x2, P — kiPi^Vi)^ Q = 2(Pi~P2) > (2-3)

V12(X,ξ,x,,...,xn)=Wτ(x1,...,xn),

V21(X,ξ,x3,...,xn)=±Wτ(x2,x1,x3,...,xn).

Here the negative sign applies if both xpit and \pί2 are Fermi fields, the positive sign
in all other cases. By the spectral condition both V.j{P,Q,p3,...,pn) have their
support in PE V+, and by the cluster property it suffices to consider the points with
PΦO.

Consider the Q-support of V12 for fixed p3,...,pn and fixed PeV+, PφO. Its
restriction to p 2 0 ^ 0 is compact. In p 2 0 ^ 0 we have the support conditions
(P + Q)2 = m2, P o + Qo ^ 0, (P - Q)2 = m2, P o - Qo <L 0. This part of the β-support is
also compact if P 2 > 0 , or if P 2 = 0 and at least one of the masses m1? m2, is non-
zero. If P 2 = 0 and m 1 = m 2 = 0, then the support is contained in the half-line
<2 = AP, λ^O. Similar considerations apply to V2ί.

Let φ(P,p3,...,pn)e@, the space of C^-functions with compact support.
Assume that the P-support of φ is contained either in the set {P 2 >0} or in a
sufficiently small neighbourhood, not containing the origin, of a light-like point.
These φ are total in the space of relevant test functions. The support of

H + (Q) = f d4P Π d%Vγ2(P, β,...)φ(P,...) (2.5)

lies in the union of a compact set and a narrow cone C + with apex at 0 around a
positive light-like direction. In the same way the support of

n

HΛQ)= UAP Π d4

PiV21(P,Q,...)φ(P,-) (2-6)
i = 3
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is contained in the union of a compact set and the narrow cone C_ = —C+ around
a negative light-like direction. The Fourier transforms

are then boundary values of functions H±(ζ) analytic in the tubes [6]

for all Qe(C+\0)}.

It is important to note that the basis $ ± contain space-like points. It will be
convenient to assume that C + \0 lies fully in one of the open half spaces Q2 ίjO. For
sufficiently narrow C + , i.e. for sufficiently small support of φ, this can always be
achieved by a Lorentz transformation in the 0 — 2-plane which does not change the
direction e of the strings. Then (% + contains either the positive or the negative
2-axis.

By string locality H + and H _ coincide in the real domain

m = {ξ:ξl-ξ\-ξ\<Q). (2.8)

The edge-of-the-wedge theorem [7] tells us that H±(ζ) are analytic continations of
each other and that the function H(ζ) which they define is analytic in

^ = ̂ (H+)u^(H_)uJ^), (2.9)

where N{0ΐ) is an open complex neighbourhood of 01.
Hold ξ0, ξv ξ3, fixed at some real values, and let ξ2 be a complex variable.

Then, if Imξ 2 Φθ, ξ lies either in &~(H + ) or in &~(H_\ hence in s/. \iξ2 is real, then
the straight line in the 2-direction through (ξ0, ξ 1 ? θ, ξ3) meets ZM in a compact set
(if ξ2

0 -ξj^O) or not at all (if ξ\-ξ\< 0)Hn the latter case ξ is in rf for all ξ2. If we
start from this region and change ξ£pξ1, until our line meets the boundary of 01,
and thus of J / , it will do so in a compact real set in the complex ξ2-plane. This is
the situation dealt with in the continuity theorem [8], and this theorem tells us
that H(ζ) can be continued analytically into an open neighbourhood of the said
compact set. In this way it can be shown that the envelope of holomorphy of si
contains the full real Minkowski space, so that H+(ξ) = H_(ξ) for all ξeM. But this
means

Wτ{xl9x29...)=±Wτ(x29xl9...). (2.10)

Starting from this result we prove by induction that Wτ is invariant, up to a
fermion sign, under all permutations of its arguments. Let Wτ be invariant under
permutations of x1?...,xα, α ^ 2 . Define Y=^(xa + xoc+1), y = xa+1 — xa, and

K + {xv...,xa_vXy,xa + 2,...)=Wτ(xv...,xn),

K_(xv...,x0[_vXy,xa + 2,...)=±Wτ(xv...,xa+vxa,...,xn),

the sign alternative as in (2.4). After integration over a test function φ{y)£<3 both
K+ and K_ are in the remaining variables boundary values of functions analytic

1 At this point the proof breaks down in fewer than four dimensions
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+,
in the forward tube ,f+ = {Im(x2-x1)εF+ Im(Y-xa_ι)eV
Im (xα + 2 — Y) e V+, Im (xa + 3 — x α + 2 ) e F+,...}. This follows as usual from the spec-
tral condition, treating e.g. \dA'yφ{y)\pijY—^y) ψiχ+i(Y + \y) like a single field. The
same is then true for the difference Δ = K+— K_. But there exist real points
Y,xa_v such that SXa_l is space-like to SXΰcuSXχ+l for all yesuppφ, and these
points form a non-empty open set.

In this set we have

= ±Δ(...,Y,y9xa_vxa+2,...)

= 0

by the inductive assumption. By analytic continuation this relation holds every-
where : Wτ is invariant, up to a sign, under exchange of xa and xΛ+1, hence under
all permutations of xl9 ...,xα + 1.

As a consequence of this result we have

Wτ(pv...,Pn)=±Wτ(p2,...,pn,p1). (2.12)

But the left-hand side has its support contained in pίeV+9 the right-hand side in
F_, and a point support at px = 0 is forbidden by the cluster property. Hence
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