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Abstract. In this note we study lattice Φ4-models with Hamiltonian

2Vm

and Gaussian boundary conditions. Using the polymer expansion we obtain
analyticity of the pressure and the correlation functions in the infinite volume
limit in a region

h\ μ | < β , | a r g A | < | - δ

for every δ > 0.

1. Introduction

Let us consider the P(φ)-theory on the v-dimensional lattice Zv with partition
function in the finite volume A given by

ZA{λ,m) =

' φi-~^=) )T\dφi9 (1.1)

where

and

A =

We study the case
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which is a polynomial with two minima + ξ, ξ = mj ^J%λ. ΔΛ is the lattice Laplace
operator with zero Dirichlet boundary conditions on d + A which decouples A from
its exterior. The third term in the exponent defines positive Gaussian boundary
conditions.

Equation (1.1) can be interpreted as a continuous-spin Ising model with two
phases, which are well separated if λ is sufficiently small and m large. For real λ, it was
shown by Constantinescu and Stroter [3], that the infinite volume limits of pressure
and correlation functions exist for such λ and that a modified model with interaction
v- 1(/lg4 — (m2/4)q2) converges to the Ising-model for v ->0.

It has long been an open question whether this model is Borel summable in
the coupling constant λ for λ -> 0. In order to prove or disprove this it is necessary to
study analyticity properties. For P(φ)-moάds with one minimum this has been done
by Constantinescu and Klδckner [2].

2. Discussion of the Main Results

In order to show Borel summability, one has to prove analyticity in a domain
{λ,\λ\<R and |arg/l| <π/2} with uniform factorial bounds on the asymptotic
expansion, see Nevanlinna [6], or alternatively in a domain {λ, Reλ1 > R'1}, see
Sokal [9]. We do not quite obtain these results. In fact, if we study a sector with
opening angle θ, the radius of analyticity seems to shrink with cos#. This could be an
indication that Borel summability does not hold.

We now state our main result:

Theorem 1. Consider the P(φ)-model on Zv with finite volume partition function given

by (1.1). Let A be an arbitrary multi-index on Z v with A(φ)= f | φf{i) and
iesuppΛ

<A>Λ(λ,m)

ied + Λ

Let

Then for every δ > 0 there exists an ε > 0, such that for m large and AE{/||arg/| rg
π/2 — δ,\λ\ <ε} the infinite volume limits of(A}Λ and PΛ exist and are analytic.

The proof of this theorem closely follows the spirit of mean field theory deve-
loped by Glimm, Jaffe and Spencer [5], see also Constantinescu and Stroter [3].
The well-known contour-cluster expansion is rewritten in terms of polymers (cf.
Bricmont, Lebowitz and Pfister [1]), which is probably the most sophisticated
algebraic formalism for studying the infinite volume limit of the pressure. Adapting
a trick by E. Seiler [8], we then obtain the result for correlation functions.
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Applying the algebraic formalism the proof reduces to showing the exponential
decay of the Boltzmann factors of the polymers. We have to estimate the behaviour
of certain one-dimensional integrals using the complex Laplace method. Here we fail
to extend our results to a larger domain of analyticity. Our estimates are uniform in
A. Combining this with pointwise convergence for real A[3] we can apply Vitali's
theorem to obtain Theorem 1.

3. The Expansion

In this part we give the expansion in polymers which yields our results. It has two
main ingredients: an expansion in phase boundaries and a cluster expansion in the
regions of pure phase.

First we map our field variable φi onto Ising spin variables σt. Let <jfe{ -f 1, — 1}.
Here Σ = {σi}ieΛe{ + 1, — \}A is called a (spin) configuration. Setting

00

χ + (φ) = π'112 j e x p ( - (φ - z)2)dz = χ _ ( - φ)
o

we have a partition of unity with χ + (φ) + X-(φ)= 1. To each configuration Σ we
attribute

XΣ(Ψ) = Π Xafod-
ieΛ

Thus we have

ZΛ(λ,m)= X ZΛJλ,m\ (3.1a)
I e { ± 1}Λ

where

ZΛtΣ(λ,m)= J χΣ(φ)exp< —j(φ, —AΛφ) — ^ Picpi)
U \Λ\ I ieΛ

ZJ (Φΐ ~ ζ) r 11 "Φi (3.1b)
^ ied + Λ J leλ

Seeing that the partition function has positive Gaussian boundary conditions we
can set σ. = 1 for ied + Λ and extend the configuration to A (without changing χΣ).

If Σ is a configuration, let

Σ* = {ieΛβjeλ G{OJ = — 1 and \i — j \ — 1}

denote the set of phase boundaries. We can identify Σ with the set of bonds (ij) with
GtGj = — 1 (or with the bonds in the dual lattice perpendicular to (ij)). Here Σc is its
complement in A, i.e. the set of bonds (ij) with G{G } = 1 and | Σ | and |ΓC | are the
cardinalities of Σ, Σc respectively.

For each ieΛ we set

We have b; ^ 2v and bt = 0 unless ieΣ*. Furthermore set

α( = |{7eZMi-;Ί = l ,7e^} | J e ί = ί(2v

We find αf < 2v for ieδ + Λ.
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For each configuration Σ = {σj i e λ we can now translate the coordinates φi into
the corresponding minima ht = σfξ. Let the translated field be denoted by

We now express the Hamiltonian in terms of the translated variables. Some
straightforward calculations yield

+ 2ξΣciσiψi, (3.2a)
ieΛ

where

Notethat(v|yl| + | £ | - | £ c | ) = £ cf = £ ci9because cf > 0for i e £ * u 5 + Λ and

ct = 0 for iG/l\Σ*. For the interaction we get

P{φt) = λ ^ + σ. mV^I^f + ^f.

Scaling with σi we obtain

m 2

Q{ψi) = λφt + m^2λΦt+ΎΨf. (3.2b)

The partition of unity is transformed in the following way

. ξ) (3.2C)

Inserting (3.2) in (3.1b) and scaling with σ; we arrive at

l^i I J T IT J j£_-< l^1

— y Q(tAί) — τ m 2 y \jj2i — v V φf ) T\dψ-. (~> o\
ed + Λ ieΛ / ieΛ

Here Λ_(Σ) = \{ieΛ,σi= - 1 } | .
Having expanded in phase boundaries or "contours" we now turn to the pure

phases. We study the term (3.3) coupling next-neighbour spins and apply the Mayer
trick:

expί X σ.σ.ψ.1//.^ γ\
\ | - 7 l = l /

exp(^)=
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Here X is a set of bonds. The corresponding set of points belonging to bonds in X is
denoted by X*. Inserting this in (3.1) and resumming we obtain

ZΛ(λ,m) = £ ( - l ) l ^
Σ

Π (3.4a)

where

ZΛtΣ,x{λ9m)= J Π e x p ( - ^ ) Π
m\Σ*uX*\ (ij)eΣ (ij)eX

exp(-2cfί)
ie(Σ* ieδ + A n (I* u X

(3 4b)

and

gi(λ,m) = (3.4c)

- ξ 2 β £ ) f ί, ied+Λ.

The properties of the g^λ, m) for small λ are essential in proving convergence of our
contour-cluster expansion (3.4a). We will briefly summarize the results, the proofs
can be found in the appendix.

Completing the square we can easily evaluate the integral for ied + A:

gi(λ, m) = J2π{m2 + 2v)~1/2 exp {{e.m^m2 + 2v)"γλ~ x ) e x p ( - ξ2et).
(3.4d)

For ie^l we get

]exp(-P(φ)-v(φ-ξ)2)dφ
o

'2π 1 / 2 (m 2 -2vΓ 1 / 2
(3.4e)

uniformly in any sector |arg/l| ^ π/2 — <5 for |/l| -> 0. This gives us g (λ, m) ψ 0 for \λ\
small and |arg| ̂  π/2 — δ.

We can now map our expansion onto a "polymer system." Let Γ = ( I u X),
where Γ is called connected if any two points in £* u X* can be connected by a path
i n l u X . Thus Γcan be decomposed into connected components and we notice that

a) the sum (3.4a) runs over all admissible (i.e. pairwise disconnected) families of
connected Γ,

b) ZΛfΣjX (λ,m) factorizes over the connected components of Γ = (Σ,X). The
connected components of Γ are called polymers p, and Γ = (pl9... ,pnΓ).
Let

(3.5a)Π gt(λ,m)
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l\θi(λ,m)) ZΛ(λ,m)= Σ ΦχJΣ,X)
ίsΛ ' Γ = (Σ,X)

= Σ hφ^miPi)- (3 5b)
Γ = (Pu...,PnΓ)i=l

In the next chapter we will prove the basic estimate which controls the "Boltzmann
factors" φλm (p) for polymers p.

4. Estimates for φλm(Pj)

For Γ = (Σ, X), define \Γ\ = |Γ*uX* | and |p | accordingly. We will prove

Lemma 1. Let Γ = (Z, X) α,s m ^βcί. 3. For every δ > 0 ί/zere βx/5ί ε > 0
k> 0, 5wc/z that for m large and λe{λ\ | ar g A | ^ π/2 — δ, \λ\ < ε} we have the following
estimate

The proof is closely related to the methods for proving convergence of the cluster
expansion in Glimm-Jaffe-Spencer [5] and Constantinescu-Stroter [3] and uses
Holder's inequality to separate the terms coming from the contour expansion from
those resulting from the Mayer trick.

Let (ij) be a bond. We have

1

exp (φiφj) — 1 = J φiφj exp (oί^φiφ )ί/ocfj .
o

Setting di = \{jeX*,\i—j\ = l}\, da= γ[ datj and p = (Σ,X), p * = Σ * u X * , we

obtain from (3.4b)

i r

ZAlx{λ,w)—\ j < Y[ φ?1 Y\ exp( — φiφj) Y\ <
0 M\p*\ [ieX* (ij)eΣ (ij)eX

ied + Λnp*

ie/lop* iep*

We will now find an upper bound ϊovZΛΣ x(λ, m) by scaling ψ with ^/λ and replacing
A by AΉλKcosθ)" 1 , where θ = argλ!

Note that

where we have put ξ' = m(8/l/)~1/2. We find after some lengthy but straight-forward
calculations, involving a rescaling with λ'~112

" i ) Z ^ ί ; X ( Γ , m ) . (4.2)
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where

,i.*U'."»)=i ί ί π W Π exp(-<Mθ ) Π
0 ire IP*I lieX* {ij)εΣ (ij)eX

Π
ίel* u (β + ΛnX*) ied + Λn p*

We see that the quality of the estimate depends on the sector which we study.
We will now apply Holder's inequality to (4.2) with respect to the measures

exp(- vφ^

Πl^i 2 d ι Π

J Π ^
Rip*! (ij)eΣ

Π e x P ( - 4Cjξ>,) Π exp ( - ((1 - η)m2 + v)tf )dψi. (4.3)
ieΣ*u(d + ΛnX*) iep*

We have chosen ηe(0,1) and m2 large, such that both (1 — η) m2 and η m2 are greater
than v.

We can now estimate the factors separately. We will first treat the second
integral in (4.3) which comprises the phase boundary terms.

a) Phase Boundary Terms

This integral can be majorized by

- Acgψi - ((1 - η) m2 + v)φ2)dφi

ie(X*nd+Λ)\Σ* - oo

. j Π e χ P (Ψί + W Π e χ p ( - 4cέ'Ψi) e χ p ( - ((i - nW + v)
U\Σ*\ (ij)eΣ ieΣ*

The second and third factor can be estimated by completing the square so that we
can majorize the integral by

2 2 ( ( l - η)m2+ v)'1).
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In the final estimate of φλm (Σ,X) the exponential divergencies are outweighed by
exp ( - ξ2{v\Λ\ + \Σ\- \Γ\)) which also comes from (3.2a).

b) Pure Phase Regions

We will now study the first integral in (4.3) comprising terms which result from the

Mayer trick. Using 2αίj ι//ι ι//j g φf + ψj we bound this factor by

ί J Π I ^ I 2 " 1 Π χ2ΛΦi +
K |p*l LieX* ieΛnp*

ieΣ*\X* ieX* J iep*

The integral over lR|p*' factorizes into one-dimensional integrals and we get the
following cases:

1.) ied + ΛnX*:

00

J |ιAil2dι exp( - (ηm2 - v ) ^ ? ) # f = (ηm2 - v)" d ι " 1 / 2Γ(d f + i ) . (4.5a)
— 00

2.) ied + ΛrΛ{Σ*\X*):

j exp(-(^m 2 + v ) ^ f ) # i = π1 / 2(> ?m
2 + v)- 1 / 2 . (4.5b)

— oo

3.) ie(Σ*\X*)nΛ:

J χ2

+( A, + Oexp( - 2λ>f - 2m y2T^f - (ηm2 + v)^ 2)# ;
— oo

co 2

2(λ'(2ξ'2)2{l ) ( ξ ' ) 2

If ε and jf are chosen such that 1 — η + ε<^ we can apply a lemma by
Constantinescu and Stroter [3] which gives us λ\φ2 — ξ'2)2 — (1 — η + ε)(m2/2) x

<P) ^ 0. We can majorize our integral by

π1/2(v + ε m 2 Γ 1 / 2 . (4.5c)

4.) ieX*nΛ:

In this case we must choose ε,η such that 1 — η + ε + v/m2 < ^ , we can then
apply the above lemma and obtain an upper bound

(sm2ydi~1'2Γ{di + l/2). (4.5d)

1.) —4.) is basically a very simple way of estimating co variances by Gaussian
integrals.
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c) Final Estimates

Lumping together all the terms from (4.4) and (4.5) and using the properties of the
g^λ, m) we obtain the final estimate for φλ>m(Σ, X). The main factor of convergence
coming from the phase boundary or contour expansion is exp(— 2ξ'2(v|/L| +
|Z| — \ΣC\)) or exp(— 2ξ'2 ]Γ £?f). From the cluster expansion we derive convergence

ieΣ*

factors
(δm2yll2 + 4 <5>0, for every ieX

which cancel the divergence from the g^λ, m). We have asymptotically for λ -» 0 in a
sector with opening angle less than π

βλ,m{Σ,X)\2 ύ {exp( - 2ξ'2 ^ b,) Π
(. ieΣ* ieΣ*

ied + Λn(Σ*uX*)

\ JJ ^ 2 _ v ) - ί , - 1/2
ίeδ + ΛnX*

+ Λn(Σ*\X*) ieX*nΛ

*̂
This yields

where k = k(m, λ,θ)>0 for m2 large enough. This concludes the proof of Lemma 2.

5. The Algebraic Formalism. Proof of Theorem 1

We will now briefly summarize the algebraic formalism which we need for the proof
of Theorem 1, for details see Gallavotti et al. [4] and Bricmont et al. [1] for the
pressure and Seiler [8], Constantinescu, Klόckner [2] for the correlation functions.

a) The Pressure

Recall that a polymer is defined as a connected component of l u l and
let & be the set of all such polymers in any A <= Zv. The elements of 2P are
called p 1 ? p 2 , . . . . Let $F be the set of multiindices (multiplicity functions) on 0>. For

we define

1 for some P

φ(P)=J « ( 5 1 }
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where φ(pf) is defined by (3.5a). Calling p l 5 . . . ,pn the elements of P (or supp P) for
which P(p) = 1 we can define a compatibility function g by

JO if p,p' are disconnected

( — 1 otherwise.

This allows us to rewrite (3.5b), which is really the sum of our admissible partitions,
as

Z(λ,m)= X φ(P). (5.3)

Note that P(p) — 0 if p^ A. The φ(P) can be interpreted as the coefficients of a formal
power series ΣPφ(P)Xp, where Xp = ΠpX

p

p

ip\

In (5.3) we have set Xp = l for all p. The φ(P) can be interpreted as Boltzmann
factors and the corresponding Ursell functions can be found by the formalism
described by Gallavotti et al. [4].

We define φτ{P) as the coefficients of the formal power series \og(ΣPφ(P)Xp).
Explicitly

iz^f (5.4)

where the sum Σ' runs over all P1,...,Pne&r, such that Pt φ 0 and Σ Pt = P, the
ί = 1

addition being defined pointwise. Thus we have (formally at least)

φτ(P)\ (5.5)

This expression is justified by Lemma 2. Gallavotti et al. [4] and Bricmont et al. [5]
showed that for polymer systems with exponential decay of the Boltzmann factors a
bound of the following type exists independent of A: for any i e / v

Σ \ΦT(P)\ <oo. (5.6)
ieP*

Now we can easily deduce our result for the pressure. Using Lemma 2, (5.6) and the
properties of the g^λ, m) we have for any sector {λ\ |arg/l| ^ π/2 — δ, \λ\ < s} with ε
small enough and m large:

log ZΛ(λ, m)=Σ log 0 A m) + X (/>Γ(P). (5.7)

It is evident that \A\~X logZ^^, m) is uniformly bounded on any compact subset of
the above sector. Applying Vi tali's theorem analyticity of the pressure in the infinite
volume limit follows.

b) The Correlation Functions

We will now briefly sketch the method for obtaining analyticity of the correlation
functions. We introduce modified partition functions following a method of E. Seiler
[8]. For details see Constantinescu and Klόckner [2]. Let A be a multiindex on Z v

with A(φ) = [ ] φf{i\ For βeC let A(β)(φ) - 1 + βΛ{φ).
iesupp A
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Let

ZA,AV)&™)= ί A(β)(φ)exp( £ φiφj) f] dμt{φ\ (5.8a)
m MI M ΐ - JΊ = /

where

ί , m)~x exp ( - vφ2 - P{ψ))dφ, ieΛ

ί - vφ2 -~(φ ~ ξ)2)dφ,ied + Λ.

We then have

λ). (5.9)

We can now proceed with the contour cluster expansion as in Sect 3. With the
notations of Sect. 3 we have

• y f < ( ! + / ? ( - l)]Λ-{Σ)rΛSXippΛ]A(ψ + ξ))Γίχ+(Ψi + ξ) Γf expi-ψ Ψ;)
*—> - I . ' T 1. L * T IT j

X^ΣC^\Λ\ L ιeΛ (ιJ)εΣ
(

. Π ( e χ p (ΨiΦj) - 1 ) exp I - Σ 2ci£Ψi - Σ Q(Ψi)
(ij)eX V ieΣ*ud + Λ ieΛ

Σ ) \ Π / ΐ \ (5-10)
d + A ieΛ )) ieΛ J

Instead of (5.10) we will study

ZA,Λiβμ,m) = <A(β)>o1ZΛ,A(ββ>rn), (5.11a)

where

<Λ(j3)>0= j A(j8X<j»)n<//iM (5.11b)

Let us call p a polymer, if it is either a connected component of Σ u X not intersecting
supp A or the (disjoint) union of all connected components intersecting supp A. Thus
a compatibility function can be defined for such polymers by

{0 if the supports are disjoint and not both p and p' intersect supp A

— 1 otherwise.

The integrals in (5.10) factor over such polymers. Let us define

Ί if p * n s u p p A ^ 0

\ 0 otherwise,
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and

p* if p* n supp A = 0

p* u supp A if p* n supp J

We can then rewrite (5.11a) in the same way as (5.3)

K. Klόckner and B. Strόter

0.

(5.12)

where P is a multiindex and
Boltzmann factors

means p <= Λ for all p with P(p) = 1. We have the

(5.13a)

where

"(1') ί

Π exp(-^)

)" ( p ) Π
jeAnp*

(ίj)eXnp

exp| -

expl — \m2

ίep*

(5.13b)

(5.14)

with φp

A{β){P) defined as in (5.2). Taking into account (5.4) we notice that differen-

We can now apply our algebraic formalism and obtain

Λiβ)(λ,m)= X Φl(β)(P)

{β)

tiating with respect to β reduces to differentiating (fiA(β)(p\ where supp
Let φA(p) be defined by (5.13b) with A(β) and (1 + β ( - l ) ^ Σ ) n s u p M (A(ψ + ξ))
replaced by A and (1 - ) l Λ - ^ ^ i A(φ + Q respectively and let < A >0 be defined in
a similar fashion.
Then

d ~

dβΦΛ

Note that

= <Ayo(ψ~A(p)-$(p))-

Σ dβVA
= 0

(5.15)

(5.16)

As we can bound (5.15) exponentially in the fashion of Sect. 4, we can employ the
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same reasoning as for the pressure, obtaining an estimate analogous to (5.6). For
details see Constantinescu and Klόckner [2]. Vitali's theorem gives us the desired
result and the theorem is proved.

Appendix

In this appendix we will prove (3.4e). Here g^m) does not depend on i for ieΛ,
therefore we will drop the subscript. In the following we will set |argΛ,| ^ π/2 — δ.
We have

oo oo

g{λ,m)= J Qxp(-p(φ)-v{φ-ξ)2)dφ- j χ_(φ) exp ( - p(φ) - v{φ - ξ)2)dφ.
— oo — oo

(Al)

The first part of the right-hand side will be called g(λ, m). The second part can be
further decomposed. After scaling φ we obtain

f χ_(φ) exp ( - p(φ) - v(φ - ξ)2)dφ = λ -1/2

The second integral can easily be bounded by \λ\ 1 / 2 λ/1/2 e 1/A v(m 2/ 8) j where
λ/ = (RQλ-ίy1=\λ\ cos0-\ Θ = argλ
For the first integral note that

/ 2 β - ( α M > 2 f o r φ ̂ 0 and αe[0,1),

cf. Constantinescu, Stroter [3] or Glimm, Jaffe, Spencer [5].
This allows us to bound this integral by

m2\2 ( m \ 2 α Ί 0 Λ .
φ2 — — ) -h v( φ γ= ) 4- -φ ^ const mι > 0, so that this can again be

bounded by cosfl"1 e x p ( - c o n s t i m 2 / ^ ' ) ^ " 1 / 2 ^ ! - a)~ 1 / 2 a~ 1 / 2 .
Thus we see that the second part of the right-hand side of (Al) decays exponentially
fast for λ ->0 (or ξ -+ oo).

Let us now consider g(λ,m). We have

oo oo

g{λ, m)= j exp ( - p{φ) - v(φ - ξ)2)dφ + j exp ( - p(φ) - v(φ + ξ)2)dφ.
o o

The second integral decays exponentially for λ -» 0. This is immediately clear from
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the above reasoning. It remains to study the asymptotic properties of

00

g(λ, m) = j exp(- p(φ) - v(φ - ξ)2)dφ.
o

Scaling φ as above we obtain

/ 1 \
=λ~1'2 $ expl-jf(φ)\dφ.

Here/(φ) = (φ2 - (m2/8))2 + v(φ - (m/^/δ))2 attains a minimum 0 at φ0 = ^/
with/"(φ0) φ 0. We now apply the complex Laplace method (see Olver [7], p. 125ff)
and we get

uniformly in any sector |argA| ^ \π — δΛ δ > 0.
It was not possible to construct a path of steepest descent for an integral with

|argλ| ^ π/2 and rotated contours. This seems to be another indication that Borel
summability cannot be obtained.
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