
Communications in
Commun. Math. Phys. 86, 485-493 (1982) Mathematical

Physics
© Springer-Verlag 1982

The Existence of Constant Mean Curvature Foliations
of Gowdy 3-Torus Spacetimes*

James Isenberg1 and Vincent Moncrief2

1 Department of Mathematics, University of California, Berkeley, CA 94720, USA

2 Department of Physics, Yale University, New Haven, CT 06511, USA

Abstract. We consider the class of smooth, maximally extended, globally
hyperbolic, vacuum, Gowdy spacetimes on T3 x R and prove that these
spacetimes are globally foliated by space-like, constant mean curvature
hypersurfaces. Our results can easily be extended to cover electro vac solutions of
the same symmetry type and can probably be extended to cover other spacetime
topologies as well.

I. Introduction

The importance of constant mean curvature (CMC) hypersurfaces as useful tools for
studying the physics of general relativistic spacetimes is widely recognized.
Nevertheless little is yet known about the class of spacetimes which admit them. It
has been conjectured that every maximally extended, globally hyperbolic, spatially
compact solution of Einstein's equations (in vacuum or with "reasonable" source
field coupling) can be foliated by CMC hypersurfaces [1,2], However this
conjecture is known to be true only for a handful of examples such as the spatially
homogeneous cosmological models [3]. In this paper we shall extend the validity of
the conjecture to a rather wide class of spacetimes—the Gowdy models [4] with
T3 x R topology. For simplicity we consider only vacuum spacetimes. However,
one could easily extend our result to Einstein-Maxwell spacetimes of the same
symmetry type.

This paper is not intended to provide a review of the known results concerning
existence and uniqueness of CMC hypersurfaces nor does it discuss the usefulness
of such hypersurfaces once they have been obtained. (For the former we refer the
reader to the article by Marsden and Tipler [5] for the latter we suggest the 1979
Battelle conference proceedings edited by Smarr [6]). Rather, the paper is aimed
directly at proving our result. We proceed by first defining the Gowdy metrics and
then stating and proving our theorem. We conclude with a discussion of the possible
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usefulness of the methods developed here for studying CMC foliations of other
spacetimes.

II. Gowdy T3 Spacetimes

Definition. (M, g) is a Gowdy T3 vacuum spacetime if

a) M = T3 x R+,R+ = ( 0 , + 00).
b) In suitable coordinates {(t,θ,xa)\teR+, fle[0,2π), xΩe[0,2π)}, where θ and

{xa} = {x1,*2} are periodic coordinates on T3,g takes the form

g = exp(2ω)(-dt2 + dθ2) + gabdxadxb, α, fee [1,2], (2.1)

where ω is a smooth function of (t, θ) and gab is, for each (ί, θ), a Riemannian metric
over T2 whose components are smooth functions of (f,0) and (det#Ω b)1 / 2 = t.

c) ω and gab are chosen so that g satisfies the vacuum Einstein equations [4,7].

Each of the spacetimes admits a pair of commuting, spacelike, non-vanishing Killing
vector fields d/dx1 and d/dx2. Indeed, almost all vacuum spacetimes on T 3 x R+

characterized by such an isometry group (spacelike, T2) satisfy the above definition
and therefore fit the Gowdy class (the extra restrictions are described by
Gowdy [8]).

Recent work [9] has clarified the global properties of the Gowdy T 3 spacetimes.
In particular, it has been shown that the maximally extended globally hyperbolic
region of any of these spacetimes can be completely foliated by the t = constant
Cauchy surfaces Σt, where t = (detgα b)1 / 2 and t ranges over (0, + oo)1.

Each of these surfaces Σt has a smooth induced Riemannian metric

y(Σt) = exp(2ω)dθ2+gabdxadxb. (2.2)

Furthermore one finds that the mean curvature function tr(K(Σt)) blows up
uniformly as ί->0+ so that the Gowdy T 3 spacetimes all have "crushing
singularities" in the sense of Eardley and Smarr [2].

To simplify the analysis we shall restrict our attention throughout to C00

spacetimes. The results of ref. [7] apply to a larger class of solutions and one could
extend our theorem accordingly.

III. Theorem and Proof

Theorem. Let (M, g) be a maximally extended, globally hyperbolic, vacuum, Gowdy
T3 spacetime. Then there exists a unique (up to spatial diffeomorphism) spacelike
CMC foliation iλ of(M,g) which covers (M,g). The mean curvature tϊ(K(λ)) of the
surfaces iλ{T3) is a monotonic function of λ which approaches — 00 as iλ{T3)
approaches the "crushing singularity of(M,g).

Proof The basic idea of the proof is as follows. We start by proving two lemmas.

1 This coordinate condition has the property that the hypersurfaces Σt are each foliated by flat

two-tori which are integral manifolds of the Killing fields d/dxa and which have surface area (2τt)2t. It

was introduced by Gowdy to simplify the form of Einstein's equations
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The first lemma shows that if (M, g) admits an "initial" CMC hypersurfaces Σλo then
it admits a global foliation iλ by CMC hypersurfaces Σλ = iλ(T2). This foliation is
unique and monotonic. The second lemma shows that Cauchy data for any Gowdy
spacetime can be connected by a smooth curve of Gowdy Cauchy data to initial data
for a Kasner spacetime. Kasner spacetimes are spatially homogeneous and, as is well
known, admit global CMC foliations for which tr(K) ranges over (— oo,0). To
complete the proof of the theorem we use a slightly modified version of a "method of
continuity" argument of Marsden and Tipler [5] to show that along the curve of
Gowdy spacetimes generated by the curve of Cauchy data just described, one can
construct a curve of embeddings of CMC hypersurfaces with a fixed value of
tr(K) = fc0 < 0 . The estimates of ref. [7] can be used to show that this curve of
embeddings cannot degenerate and thus always extends to an embedding for the
initially given spacetime (M, g). This provides the initial CMC hypersurfaces needed
to construct the global foliation.

We now state formally and prove the two lemmas after which we shall complete
the proof of the theorem.

Lemma (1). Let (M,g) be a maximally extended, globally hyperbolic Gowdy T 3

spacetime and assume that Σλo is a smooth spacelike CMC hypersurface in (M, g) with
mean curvature k0 < 0. Then (M, g) admits a unique, monotonic foliation iλ by spacelike
CMC hypersurfaces Σλ = iλ(T3) which covers (M,g). The mean curvature tr(K(λ)) of
Σλ approaches— oo as Σλ approaches the "crushing singularity" of(M,g).

Lemma Proof. We know from the proof of Theorem (3) of Marsden and Tipler
[5,10] that there exists a unique, monotonic, local CMC foliation of {M,g) defined
near Σλo, and that this local foliation can be extended so long as the CMC
hypersurfaces Σλ = iλ{T2) remain bounded away from the singularity and away
from the causal cone.

Suppose we have a local CMC foliation of (M,g) near Σλo contained within an
open submanifold (ί0, ί j x T 3 of M. Here t0 and t1 are some values of the Gowdy
time function t satisfying 0 <to<t1< co. We shall show that this foliation is
uniformly spacelike-that the hypersurfaces cannot approach the causal cone unless
t0 -+0 or ί t-> oo.

A result of Fischer, Marsden and Moncrief [11] shows that the spacelike Killing
fields of (M, g) must be tangent to any CMC hypersurface of (M, g). This also follows
as a corollary to the uniqueness of tr (K) = constant φ 0 hypersurfaces as discussed
by Marsden and Tipler [12]. It follows that if Σλ is a CMC hypersurface in the local
foliation there must exist a smooth function hλ:S

ι -+R+ such that Σλ is defined in
Gowdy coordinates (ί, θ, xa) by t = hλ(θ). Moreover, since Σλ is a CMC hypersurface,
hλ must satisfy the equation defining a CMC embedding,

(3.1)

where h'λ = dhjdθ, ω = ω(hλ(θ\ θ) (recall Eq. (2.1) for the definition of ω(ί, 0)) and
where tr(K) is the (constant) mean curvature of the embedded surface. Note that the
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induced metric on Σλ is given by

yλ = e2»(l - (h'λ)
2)dθ2 + gabdxadxb (3.2)

and is strictly spacelike provided \h'λ\ < 1.
We want to use Eq. (3.1) to show that \h'λ | remains bounded away from unity on

the local foliation. To do this we first use Einstein's equations to reexpress dω/dt in
terms of the energy density S defined in [7].2 $(t, θ) is expressible in terms of
(gab9 dgab/dt, dgab/dθ)(t, θ) and is a positive definite quadratic form in the derivatives.
The Einstein equations give

ω f ί = - — + i<?(t,0). (3.3)

The energy estimates derived in Sect. Ill of ref. [7] show that ω(ί, θ) and $(t, θ)
are smooth functions on [t^t^xS1 f° r a nY [^o^il ^ (0> + °°) Integrating
Eq. (3.1) from θ0 to θ1 where θx is arbitrary but θ0 is chosen so that h'λ(θ0) = 0 (such a
value of θ0 always exists by the mean value theorem on a circle) we get, after a
straightforward sequence of estimates,

eωh2h'

^ Jdθϊ ^ ( t , θ) + ̂ J + eω|tr (X)| 11 ^. (3.4)

From the boundedness of ω and $ and the fact that hλ(θ)e[t0, ίx] <=(0, + oo)
we thus find that | Λ̂ /( 1 - (h'λ)

2)ι/21 is bounded by a finite constant. It follows that | h'λ \
is bounded away from unity and thus that the CMC hypersurfaces of the local
foliation are uniformly spacelike.

Since this argument holds for any [ί0, t{\ <= (0, + oo) it follows from the
continuation argument of Marsden and Tipler that the (unique, monotonic) local
foliation iλ can always be extended until the "leaves" of the foliation, Σλ = ιλ(T3),
approach the boundaries of the maximal Cauchy development at t = 0 and t = + oo.
We shall now show that the leaves Σλ cannot approach the boundaries at ί = 0 and
t = oo without foliating a whole neighbourhood of these boundaries.

First note that since \h'λ\ < 1 on any local foliation, the Gowdy time function t
has bounded variations on each of the CMC hypersurfaces. More precisely, since
βe[0,2π) and \h'λ\ < 1 we get

0 ^ sup (ί) - inf (t) ̂  2π. (3.5)
n(τ3) ιλ(τ3)

It follows that the hypersurfaces ίλ{T3) cannot approach the boundary of (M,g) at
t = + oo without in fact foliating a full neighbourhood of ί = -f oo.

Finally, consider the region near t = 0. A result due primarily to Brill
and Flaherty [13,14] shows that if there exists a CMC hypersurface Sk with

2 In the notation of ref. [7], £ =±tGAB(XAXB + XΛ'XB>), where XA and GAB are defined by Eqs. (2.1)-

(2.5), (2.8) and (2.10) of that reference. The integral of S gives the total "energy" defined by Eq. (3.1) of ref.

[7]
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tr (K(Sko)) = ko<0 and compact spacelike hypersurfaces Σ+ and £_ such that

0 < sup( - tr(K(Σ_))) <-ko< inϊ(-tτ(K(Σ+))) < oo, (3.6)

then Sko lies within the compact subset of M bounded by Σ + and Σ_. However, we
showed in [7] that for any Gowdy spacetime and any t0 > 0 there exist
monotonic functions σ _, σ + : (0, ί 0] -> (0, + oo) such that, for any t = constant hyper-
surface Σt, with ίe(0, t 0 ] ,

)£σ + (t), (3.7)

Furthermore σ+ and σ_ increase without bound as ί->0 + . The existence of σ+

follows from the energy estimates which demonstrate global existence of the Gowdy
solutions on (0, + oo) x T 3 . We derived an explicit form for σ_ in ref. [7] to show
that inf(-tτ(K(Σt)))-+ao as ί->0+ (i.e., to show that the edge at f = 0 + is a
"crushing singularity").

It follows from the above remarks that a CMC foliation iλ cannot approach the
boundary at ί = 0 + unless - tr (K(iλ(T*))) = - kλ increases without bound.
However the same remarks show that for any ίe(0,ί o] one can choose —kλ

sufficiently large that the corresponding CMC hyper surface Sλ = iλ(T3) lies within
(0, ί] x T 3 . Thus the CMC hypersurfaces foliate a whole neighbourhood of the
crushing singularity at t = 0+ and the mean curvature function approaches — oo as
Sλ approaches this boundary. H

To prove the second lemma we need some results on the Cauchy problem for
Gowdy spacetimes. In [7] we introduced a convenient parameterization for the
Riemannian metric gab (satisfying (det#) 1 / 2 =ί) in terms of two unconstrained
functions {XA(t,Θ)}, A = 1,2. From the Lagrangian for their equations of motion
one can define conjugate momenta {PΛ(t, θ)}. The only restriction upon the choice of
{XΛ,PA} on some t = to= constant initial surface is the constraint,

\dβ{p*dχA\ = 0, (3.8

which is necessary and sufficient to ensure that ω(ί, 0), determined by Einstein's
equations to be

ω(t, θ) = ω(ί, 0O) + i J d θ ' j p ^ ^ j(ί, 0'), (3-9)
2ΘO I Od J

be a smooth function on spacetime.

Lemma (2). Let (M,gf1) be any chosen Gowdy spacetime and let {Xfip
Pfi)} be Cauchy data for ( M , ^ ) specified at t — t0. Then there exists a spatially
homogeneous Gowdy spacetime (M,g0) with Cauchy data {Xf0)9 PfO)}\t=tQ and a
smooth curve of Gowdy Cauchy data {Xfsp Pfs)}\t=t0, with se[0,1], connecting
{Xf0), Pf0)} and {Xf1}, Pf^}. The corresponding one parameter family of Gowdy
spacetimes (M,gs) is smooth if restricted to a compact subset [ίfl, th~] x T3 ^ M. The
spatially homogeneous solution is globally foliated by C N4C hypersurfaces (which
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coincide with the t = constant surfaces) and the mean curvature, tr(K), of these surfaces
ranges over ( — oo,0).

Lemma Proof. For this argument any spatially homogeneous Gowdy solution
would suffice for (M,g0) since all such "Kasner spacetimes" have the properties
mentioned in the lemma. For defϊniteness however we shall choose g0 to be the "flat-
Kasner" metric given by [15]

go=- dt2 + dθ2 + t^dx1)2 + (ώc2)2. (3.1.0)

One easily verifies that the t = constant surfaces define a CMC foliation with tr(X)
ranging over (— oo,0).

To construct the desired curve of Gowdy Cauchy data we set, for se[0,1],

Pfs) = (l-s)Pf0) + sPfiy (3.11)

Noting that the Kasner data satisfies dXfO)/dθ = dPfO)/dθ = 0, it is straightforward
to verify that condition (3.8) is satisfied everywhere along the curve. One can
complete the choice of initial data for (M, gs) by choosing a smoothly varying
constant ωs(θ0,t0) and definining ωs(θ,t0) through Eq. (3.9).

The global existence theorem of ref. [7] assures the smooth dependence of the
solutions (M, gs) upon their Cauchy data in the sense that on compact subsets,
[A> *&] x T2, of M the curve of metrices gs is smooth in a suitable Sobolev topology.
One can choose the Sobolev spaces in such a way that the metric components,
gμv(t9 0, s), are Ck functions of (ί, θ, s) for any k ̂  2. •

To complete the proof of the main theorem we use the "method of continuity"
technique to show that, for a suitably chosen constant fc0, one can construct a curve
of embeddings is of T 3 into M such that is (T3) is a tr(K) = k0, spacelike hypersurface
of (M, gs). One can appeal to a (slightly modified[16]) result of Marsden and Tipler
(Theorem (4) of ref. [5]) to show that such a curve of embeddings always exists on
some neighbourhood of the Kasner solution (M,g0) and that the curve can always
be extended until is(T3) approaches the singularity of (M,gs) or turns null. We
shall exclude these possibilities by arguments similar to those of Lemma (1).

To choose a suitable value for k0 let Γ: [0,1] x S1 -> R be defined by Γ(s, θ) =
— tr(Ks(t0, θ)\ where tr(Ks) is the mean curvature function for gs. Now Γ is
continuous on the compact set [0,1] x S1 and thus achieves some maximum value
Γm a x. Choose fe0 such that Γm a x < — kQ < oo. This will ensure that if a tr(Ks) = k0

surface exists for (M,gs) it will lie within the subset (0, ί 0] x T 3 and thus remain
bounded away from the edge at t = oo.

The derivation of the second inequality in Eq. (3.7), given in Sect. Ill C of ref. [7],
shows that σ_ can be expressed as σ_(t) = C/ί3 / 4 where C is a constant (for each
solution) which varies smoothly with the initial data. Thus one can always choose a
t1 such that 0 < tx < t0 and

and VSG[0, 1].



Constant Mean Curvature Foliations of Gowdy 3-Torus Spacetimes 491

It follows from the proof of Lemma (1) that if (M,gs) admits a tr(Ks) = k0

hypersurface, then this surface lies within the compact subset [ ί l 5 ί 0 ] x ^ 3 °f M.
Thus as one varies s the embedding ίs{T3) remains bounded away from the edge of
(M,0 s )a t ί = O.

For s sufficiently small we therefore have a continuous curve of tr(Ks) = fc0

embeddings defined, in Gowdy coordinates, by ts = hs(θ). Here hs(θ) = h(s, θ) for
some continuous function /z:[0, s0] x S1-^[t1,t0] and either s0 = 1 or else the
embedded surfaces approach the null cones of (M, gs) as s -> s0. When evaluated for
gs, however, the energy density $ and metric function ω become continuous
functions of (s,t9θ) on the compact set [0,1] x [ ί 1 ? ί 0 ] x S1. Therefore, one can
repeat the argument leading from Eq. (3.1) to Eq. (3.4), making the obvious
modifications hλ^hs, etc., to show that \h's\ remains bounded away from
unity as 5->50. It follows that the embedded hyper surfaces remain bounded away
from the null cones for all s0 ^ 1.

Thus the curve of embeddings is(T3) cannot degenerate as s-> 1 and so, by the
continuity argument of Marsden and Tipler, extends to define a spacelike CMC
embedding for ( M , ^ ) . Since ( M , ^ ) was an arbitrary Gowdy spacetime, this
construction completes the proof of the main theorem. •

It is worth noting that our proof does not show that tτ(K(iλ(T3)))-+0 as ίλ(T3)
approaches the edge of (M,g) at t = + oo. We believe this is always true but could
not find a simple proof. To prove this conjecture it would suffice to show that
sup (— tr (K(Σt))) -> 0 as t -> + oo (i.e., to show that tr (K) tends uniformly to zero in
the Gowdy chart). One can probably prove this with a slight extension of the
arguments given in ref. [7],

IV. Conclusion

There are several straightforward extensions one can make of the results derived
here. First, one can include the coupling to Maxwell fields of the same symmetry
type. The needed global existence theorem for the coupled Einstein-Maxwell
equations (with Gowdy symmetry and T 3 x R topology) has been given else-
where [17]. The remainder of the argument is essentially the same as that given
here.

In addition one can study spacetimes with different topologies. Gowdy
considered three different spatial topologies, the three-torus, the three-sphere and
the "wormhole," S2 x S1. To prove a corresponding global existence theorem for the
S 3 and S 2 x S1 topologies is not completely straightforward however since, in these
cases, the orbits of one or both Killing fields degenerate at certain "axes of
symmetry" within the spacetimes. In adapting the coordinates to the symmetry
(which is important for making the global existence estimates) one introduces
coordinate singularities at the symmetry axes and renders the task of making
estimates more difficult. We believe that this is merely a "technical problem" which
one could overcome with additional effort but we have not carried this effort out.

On the other hand, however, there is an infinite dimensional sub-family of the
Gowdy spacetimes which one can compute almost explicitly for each of the three
topological types. These are the "polarized" solutions which have orthogonal
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Killing fields and which obey separable, linear hyperbolic equations [18]. For these
solutions one does not need a global existence theorem since the global behavior
(e.g., the occurrence of crushing singular boundaries of the maximal Cauchy
developments) can be studied explicitly. We believe that a slightly modified version
of our argument could be used to prove the existence of global CMC foliations for
these polarized Gowdy spacetimes.

Finally one can study spacetimes of lower symmetry. In a recent paper[19] one
of us has shown how to construct an infinite dimensional family of analytic vacuum
spacetimes on T 3 x R, each having only one Killing vector field and each having a
smooth Cauchy horizon and an extension of Taub-NUT type[20]. The construction
shows that the Cauchy horizons in these solutions are always "crushing singula-
rities" in the Eardley-Smarr sense [2]. The main problem in extending our results to
this family of spacetimes is proving that the CMC hypersurfaces of a local foliation
cannot turn null. We believe that this can probably be shown by a generalization of
the argument in Lemma (1). A study of this question as well as the associated global
existence problem for cosmological spacetimes with one Killing field is currently in
progress.
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