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Abstract. We have previously obtained existence results for the space-homo-
geneous, non-linear Boltzmann equation for a class of encounters with infinite
range, including inverse kth power molecules with k> 3. In the present paper
those solutions are proved to converge in weak L1-sense for k ̂  5 to Maxwellian
distributions when ί->oo. Also the higher moments converge to those of the
relevant Maxwellian. The method of proof relies on non-standard techniques.

1. Preliminaries

Consider the space-homogeneous, non-linear Boltzmann equation in the absence of
exterior forces

Dtf(t,υ) = Qf(t,υ) (t>0,veR3) (1)

with Cauchy data

f(0,v)=fo(v)^0, (υeR3).

Here Q = Qk denotes the collision operator

QfivJ = QJ{vx) = J ίf®f(Ju(v1, υ2)) -f®f(vx, υ2)1φ1, υ29u)dυ2du9 (2)
« 3 x B2

and

f®g(vι,v2)=f(vι)g(v2).

In the cut-off case the impact parameter u in R2 is restricted to a disc

B2(r)={ueR2- \u\^r).

In the present paper, however, with intermolecular forces of infinite range, we
consider

B2 = B2(oo) = R2.
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The velocity after collision of two colliding particles with impact parameter u and
initial velocity ι?1 and υ2 is given by

The diffeomorphism J is generated from kth power molecules with k ^ 5, and the
weight-function

w(v1,v2) = \v1 -v2\

is the physical one, together with the cut-off version

{w for \u\ ̂  n, w ^ π

n for | w | rg n, vv > /1

0 for |w |>n.

For a thorough discussion of (2) and of J, see [8]. That reference is also
recommended in case the reader is unfamiliar with any transformation of (1)
employed but not commented upon in the present paper.

Let L\ denote the positive cone in L 1 ^ 3 ) , i.e.

Li

+={feL1{R3); f(υ) ^ 0 a.e. veR3},

and set

Qn = QWn,&f= $ f(v) logf(υ)dv.

In the infinite range case an early paper is [7], a study by Truesdell of an infinite
system of moment equations for Maxwellian molecules. The papers [9] by Wang
Chang and Uhlenbeck, and [5] by Pao are concerned with the L2 eigenvalue
problem for the linearized collision operator and inverse kth power molecules. For
k> 3 we obtained in [3] L1 existence results for a weak form of (1). Those results are
sketched below and then used to study the asymptotic behaviour of the same
Boltzmann equation.

Our proofs in the present paper rely on non-standard arguments and employ the
usual notations from that context. We discuss non-standard analysis briefly below
but advise the reader to consult [6] and references therein for a full treatment. In [2]
our non-standard approach led to a new weaker solution concept derived from a
certain non-standard construction. In contrast to that situation, the present main
result, contained in Theorem 2 below, is formulated in a standard L1 framework.
Here the non-standard approach is only a method that allows the use of a previously
developed way of proof 'from the cut-off case, which would be unavailable in that form
for the present infinite range forces within the standard framework. On the other
hand, as is well known, there is a general procedure translating a non-standard proof
of a standard theorem into a standard one. But that standard proof might be neither
reasonably short nor particularly natural. An independent proof using standard
methods, of the asymptotic behaviour of the Boltzmann equation without cut-off
should thus be of interest.

In non-standard analysis proper ordered extensions *K of the field of real
numbers are used. *K contains non-zero infinitesimal numbers, and we sometimes
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write a ^ 0 to denote that a is infinitesimal. The standard part of ae*R is

C ciϊae*R, ceR,a-c^0

st a = °a=<lao if a > n(neN)

I— oo if a < — n(neN).

The near-standard part of *# is

m*R = {xe*R;°xeR}.

The super-structure on a set S = So is by definition

v(s)= U $„.
<

n < oo

where SM + 1 is the set of all subsets of [j Sj(neN). Together with *K a map
j = o

*:F(R)-^F(*R)

is given with

*r = r {reR\

and satisfying the transfer principle. This states that if Sι,. . ., Sne V(R\ and E is an
elementary statement which is true of S 1 ?. . .,Sn in F(.R), then it is true of *5 1 ? . . . ,*5n

in K(*JR). (A statement is elementary if it is built up from e and = using the
propositional connectives and bounded quantifiers \fxey,3xey.) Standard sets in
V{*R) are *-images of sets in V(R). Internal objects in V(*R) are elements of standard
sets in K(*R).

Take ne*N\N, and set

*(QXQ)= ί Lg(vΊ) - g(vί)']f®f(υ1,v2)wn(vuv2,u)*dvίdv2du,
*Ri x R3 x B2

and

We next cite several results about (1) proved in [1].
They can by transfer be carried over to our present non-standard setting. The

equation
t

j f(t,v)g(t,υ)*dυ= j Jo(v)g{0,υ)*dυ + j j f{s,υ)D,g(s,v)*dvds
*R3 *R3 0 *R3

+ ]*(Qnf(s\g(s))*ds (ge*Cι>*>) (3)
o

has a solution

f:*R+-+*L1

+,

provided / 0 e L \ . Here

lO, ̂ ) x R3); \g\t = sup \g(t, v)\ + sup\D tg(t,υ)\

sup|grad^(ί,ι;)|< oo}.



478 L. Arkeryd

If moreover

(l+\v\2)f0,f0\ogf0eI}(R3), (4)

then

J g(υ)f(t,υ)*dv=]g(v)fo{υ)dv (5)
*R3 R3

for

φ) = l9υ9\υ\2 (6)

Also J^f(t) is defined for t > 0 with

s. (7)
o

Here
1 J U®f{Ju {vl9υ2))-f®f{υuυ2)-\^n{υl9υ2)

log [/®/K, υ2)lf®f(Ju{υx, v2))rdudVl dv2.

The standard weak-limit approach of [3] to existence under infinite range forces
does not permit us to go to the limit in (7), whereas in [1] for the cut-off case, that
inequality is used in an essential way for the asymptotic studies. But also in the
present case with no cut-off we are able to use the approach of [1], if we employ a
non-standard setting. That is the main reason for the use of non-standard analysis in
this paper.

Since Jff is non-positive, (7) implies that

By the *-version of Gibbs' lemma

(9)

Here ° denotes the standard part mapping introduced above, and Eo is the unique
exponential function such that

E0=exp(a\v\2+b'V + cl (10)

and for g(v) of (6)

$E0(v)g(v)dv = $ fo(v)g(v)dv. (11)
R3 R3

For each te*R+ the solution/ of (3) defines a mapping

Lt:g^ °J f(t9υ)*g{υ)*dv = Lt(g)9

*R3

which is linear from C0(R3) to R with

\Lt(g)\^ °ί /(ί^)*dt? sup |^(t;)| ^ J/ 0 (ϋ)ώ sup | ^ ) | .
*R3 veR3 R3 veR3
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It follows that Lt defines a measure μt on R3. Also μt — μt, if t — t' = 0. Under (4) we
proved in [3] that

μt = Ftdv

with FteL\, and that

is a weak

Here

solution

f* .c
R3

(Qf,g) =

of(l)

R3 xfi 3

in the sense that

)dυ= J

+

0

j f Fs(v)Dsg(s, v)dvds
OR3

(12)

In [4] T. Elmroth has shown that certain solutions of (12) generated by a weak L1

convergence construction have globally bounded moments of order s, if f0 has
moments of order s. This result also holds with an analogous proof for the solutions
F above, generated by our non-standard method.

Proposition 1. [4] Assume that for some s > 2

/o logfoeI}(R3), (1 + \v\YfoeLi(R3).

Then there exists a constant Cfo,s only depending on s and on

R3

such that

Here F is the above solution of the Boltzmann equation (12) for kth power molecules
with k ^ 5. Moreover for g of (6)

$g(v)F(t,v)dv= \ g(v)fo(v)dv.
R3 R3

2. Convergence Towards the Maxwellian

In this section we study the asymptotic properties of the solution F of (12)
constructed in Sect. 1.

Theorem 2. Assume that for some s>2

f0logf0eL\R3X(l +\v\)%eL\.

Then for g(v) =(1 4- |v|)s',0 rgs' < s, the family (gF(t))t>0 converges in weak L1-sense
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to gE0, where Eo is the unique exponential function of type (10) which satisfies (11).
In the proof the following lemma is used.

Lemma 3. If s>2 and the sequence (tj)jeN is such that

sup j (1 + \v\)sF(tj,v)dv< oo,
jeN R3

thenfor

(l + \v\)s\2<sf <s,

the sequence (gF(tj))jeN contains a subsequence converging weakly towards gG for
some GeL\.

Proof. By Dunford-Pettis's theorem the conclusion of the lemma holds, if

a) sup j F(trv)(l + |υ|) s'dt;< oo

b) given ε> 0, there exists δ > 0, such that

if \dv<δ\
jeN A A

c) given ε > 0, there exists r0 > 0, such that

sup J F(ίJ ,t;)(l +
jeN \v\^r0

Now a) follows from the condition of the lemma, and c) is a consequence of

For b) we shall use the following estimates.

5 '-* j F(t,v)(l+\v\)sdv+ j F(t,v)(l+\v\f'dv.
\v\^.r Ar>\v\ <.r

For t = tj the first term is bounded by

To estimate the second term we notice that for K > 1

An\v\<r *An\v\<r

r)s> °j f(t,υ) log +f(t,v)*dv + K(\ + r)s'°$*dv.
f>K *Λ
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Also

Recalling (5) and (8) this gives

J exp(-\υ\2)dv
JR3

+ Sfo{v)\v\2dv].
R 3

From here b) is immediate.

Proof of Theorem 2. With/ our non-standard solution of (3) there is by (7) and (9) an
increasing non-standard sequence {tj)jeN9 such that

lim °jrf{tj) = 0. (13)

For s'<s, we can take a subsequence (tjv)veN, such that ((1 + \v\Y'F(tjv)\eN

converges in weak L1 sense to some L\ function (1 + \v\)sΈ. This is possible by
Lemma 3 and Proposition 1. Rename for simplicity the subsequence to {tj)jeN9 and
notice that in particular

f g(v)E(v)dv = lim j g(υ)F(tj9 v)dv = f g(υ)fo(υ)dυ (14)

for f̂ of (6).
Define

AG(vί9v29u) = G®G(Ju(vί9v2))-G<g>G(υί9v2)
for functions

G:R3 xR3->R.

We shall next prove by contradiction that

AE(vί9υ29u) = 0 for a.e. (U1 SI;2,M)GJR3 X JR3 X R2. (15)

So let us suppose that AE φ 0 on a set of positive measure. Then there is a bounded,
measurable set A <= K3 x R3 x JR2 of measure m >0,

for some real r0, and

j AE(v1,v29u)w{v1,v2)dudυίdv2 = C o

for some real C o with 0 < Co < 1. This will below turn out to contradict (13).
Let K > 1 be given together with an arbitrary subset A' <= A of Lebesgue measure

j dv1dv2du < K~2.
A'
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Then

J AF(t9v1,v2,u)w(vί,υ2)dudvίdv2
A'

^2r 0 °J f®f(t,vί,v2,u)^dudv1dv2
*J(A')

^2r0(χ-1+(l/logK)2π^[jr/0+J3exp(-|ι;|2)^

R 3 R 3

The proof of the last estimate is similar to that of b) in Lemma 3.
By (16) there is a standard Ko, such that

j ΔF(t,υ1,v2,u)w(v1,υ2)dudυίdv2 < C0/4,
A'

if A' <= A, t > 0, and j dv1dυ2du < πrl/Kl. The subset of A with
A'

F®F(t,v1,v2)>K2

0{

has measure smaller than nr^/K^, since

This implies together with the discussion preceding (14) that there is an index j 0 , and
given j>j0 a set A} <= A of measure larger than m — πr\jK%, such that

on τ4j, and

°j Af(tj,v1,v2,u)w(v1,v2)*dudv1dv2

= J ΔF(tj,υί,v2,u)w(υ1,v2)dudυ1dv2> Co/2.

Set zl + / = max(0,4/) By a proof in [1] carried over to our present non-standard
setting, there is a standard ε > 0 and for eachj > j 0 a partition *Aj = AjXκj Aj2, such
that

j)ύ - ( 4 m C 1 r 0 ) - 1 Y J Δ+f(tj)w^dudv1dυ2

- log(l -f ε)°J J +f(tj)w*dudυ1 dv2

^ -min((4mC 1 r 0 )- 1 , log(l +e))C§/16
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This contradicts (13) and so (15) holds a.e.. But (15) implies that E = Eo, with Eo

determined by (10) and (11) (cf [1]).
We shall finally, again by contradiction prove that (1 -f \v\)sΈo for s' < s is the

weak L1 limit of (1 + \v\f'F(t\ when ί-> oo. So let us suppose the opposite. Then

there is a sequence (tj)jsN, lim t = oo, with
j

the limit taken in weak L1 sense, as well as a function geC1'™, such that

J E'(υ)g(υ)dυφ J E0(v)g(v)dv.
Ri R3

We proved in [3] that

i{F(t29υ)-F(tί9υ))g(v)dυ
κ3

^ I0I1\t2 - h

And so there is h > 0, such that for ί > 0

Kv)-F(t,υ))g(v)dv J ( £ ' ( ι ; ) - (17)

By (7) and (9) for some finite C

h

0 < f Y — Jffiti + s)*ds < C
0 j — Ϋi

Since -Jfj^ 0, there is some s0,0 < 50 < /z, with

As in the case of (13) above, from here we conclude the existence of a subsequence
(tjv)veN with the weak L1 limit of F(tjv + so)veN equal Eo. Thus

lim l(F(tjv + so,v)-F(tjv,υ))g(v)dυ= $ {E0{v)-E'(υ))g(υ)dvίO.
V-^X I?3 Λ 3

This contradicts (17), and so (1 + \v\f' Eo is the weak L1 limit of (1 + \v\)s>F(t) when
f-> oo.

Remark. By Theorem 2, any moment of F of order less than s converges towards the
same moment of EOi when ί-> oo. For k = 5 we obtained a better result in [3]. As
discussed there, the moments in the case k = 5 satisfy TruesdelΓs moment equations,
and converge exponentially to those of Eo.
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