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Abstract. I use Israel's methods to prove new theorems of "ubiquitous
pathology" for classical and quantum lattice systems. The main result is the
following: Let Φ be any interaction and ρ be any translation-invariant
equilibrium state for Φ (extremal or not). Then there exists a sequence {Φk} of
interactions converging to Φ, having extremal (or even unique) translation-
invariant equilibrium states ρk, such that {ρk} converges to ρ. In certain
situations the perturbations Φk—Φ can be chosen to lie in a cone of
"antiferromagnetic pair interactions." I discuss the connection with results of
Daniels and van Enter, and point out an application to the one-dimensional
ferromagnetic Ising model with 1/r2 interaction (Thouless effect).

1. Introduction

Israel [1, 2] has recently introduced elegant abstract methods for the study of
classical or quatntum lattice systems in statistical mechanics with general
translation-invariant interaction. Two of his results are quite surprising, for they
assert that situations generally considered to be "pathological" are in fact
ubiquitous:

(a) Let ρv ..., ρn be any finite family of ergodic translation-invariant states with
finite mean entropy. Then there exists some interaction Φ (in a certain Banach
space & of interactions) for which all these states are equilibrium states.

(b) There is a dense set of interactions in gβ each of which has uncountably1

many ergodic equilibrium states2 (i.e. uncountably many pure phases)!

1 In fact, the cardinality is exactly that of the continuum. This is because the extreme points of a
metrizable compact convex set are a Gδ [2, Lemma IV.3.1], hence a Borel set; and it can be shown,
without invoking the continuum hypothesis, that every uncountable Borel (or even analytic) set in a
complete separable metric space has cardinality exactly that of the continuum [3]
2 The proof of Lemma V.2.3 in [2] is incomplete: it needs the additional remark that the set
{ρ:F(ρ)ΞΞP(Φo) + ρ(ΆΦo)-s{ρ)<δ} is dense in the set {ρ:F(ρ)^δ}. To see this, assume that F(ρo) = δ;
then taking some ρx such that F(ρί) = 0 [i.e., ρ1 is an equilibrium state for Φo] and letting ρt = {l — t)ρ0

+ tρv we have ρt-+ρ0 as t-*Ό and F(ρt)<δ for f > 0 by the convexity (actually affineness) of F. I thank
Professor Israel for supplying this observation in response to my query, and for giving me permission to
include it here
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It may be objected, however, that these two results are devoid of physical
content because the interaction space 3 is too large. For example, in the classical
case it is reasonable to consider the Dobrushin-Lanford-Ruelle (DLR) theory of
Gibbs states [4-9] as fundamental, and the theory of invariant equilibrium states
as tangents to the pressure as derived. Now it turns out [2,9] that the DLR
equations can sensibly be defined only for interactions in a space J* strictly smaller
than &. Thus, it is reasonable to argue that only interactions in J* are physically
relevant3. But in J?, unlike J*, result (a) is demonstrably false [2, Sect. III.4], and
result (b) is presumably false (in any case, the proof fails in ffl\

In this paper I shall use Israel's methods to prove yet another theorem of
"ubiquitous pathology." But unlike the two results quoted above, this one cannot
be explained away as unphysical: it asserts the existence of Ising models with pair
interactions (albeit quite long-range ones) having surprising properties. Similar
results have been obtained, also using Israel's methods, by Daniels and van Enter
[10-12].

Let {Φk} be a sequence of interactions converging in a suitable sense to an
interaction Φ, and for each k let ρk be an extremal ( = ergodic) translation-invariant
equilibrium state ("pure phase") for Φk. Assume that the states {ρj converge in a
suitable sense to a state ρ. Clearly ρ is a translation-invariant equilibrium state for
Φ. But must it be a pure phase? One's first (naive) conjecture is that the answer is
yes one might even conjecture that, as a general fact about convex functions, a
limit in the above sense of extremal tangent functionals is necessarily extremal. In
fact, this is not the case, as the following simple example shows: on 1R2, let

Then at each point (xv x2) = (0, α) with α +0, the function / has the unique tangent
functional (Vf) (0, α) = (0,2α) these converge to (0,0) as α-»0. On the other hand, at
the point (xvx2) = (0,0\ / has the two extremal tangent functionals (±1,0); thus
(0,0) is a non-extremal tangent functional there.

Still, one might think that this kind of behavior, while mathematically possible,
does not occur in statistical mechanics. Indeed, a system having a free energy (or
pressure) of the form (1.1) would violate the Gibbs phase rule as usually
formulated [2, 13, 14]. Of course, the Gibbs phase rule is only a heuristic guide; it
is not, at present, a rigorous theorem [10]. Still, one might surmise that it is
"usually" valid - that violations of the phase rule are rare "pathologies."

In this paper I prove the exact opposite - that violations of the phase rule are
not rare but are in fact ubiquitous. To be precise, I prove the following (Theorem
2.1 and Corollary 2.2): Let Φ be any interaction and ρ be any translation-invariant
equilibrium state for Φ, extremal or not Then there exists a sequence {Φk} of
interactions converging to Φ, having extremal (or even unique) translation-
invariant equilibrium states ρk, such that {ρk} converges to ρ. Actually, this result
holds in the large Banach space J>, so it is open to the objections noted previously.
But a related result (Theorem 2.3) shows that in many cases the interactions Φk can
be taken to lie in the smaller space Ik indeed, in the common case in which Φ has

3 Note also that the pressure can be defined in & only for free boundary conditions if one wishes to
allow nontrivial boundary conditions, one must restrict attention to interactions in $ [2, pp. 13-14]
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exactly two extremal translation-invariant equilibrium states, having different
values of the spontaneous magnetization, the perturbations Φk—Φ can be chosen
to be antiferromagnetic pair interactions (albeit of quite long range).

I should emphasize that quite similar behavior has been found previously by
Daniels and van Enter [10-12]. Moreover, their results, while less general than
those of the present paper, have a clear physical interpretation (a virtue which is
unfortunately not shared by the abstract proofs given here). The construction in
[11] is particularly transparent4: Let Φo be the interaction for the 2-dimensional
Ising model at some temperature T below the critical temperature, and let Ψ be a
certain (explicitly given) long-range antiferromagnetic pair interaction. Then van
Enter [11] shows that for λ>0, the interaction Φ0 + λΨ never has a mixing
translation-invariant equilibrium state with nonzero magnetization. The proof is a
simple energy argument (see [15] for related ideas): given any translation-
invariant state ρ having lim ρ(σ0σJ = M 2 > 0 , one can construct a new state ρN

|*|->oo

by flipping the spins in bands of width N (and then averaging over translations).
Now ρN has the same entropy as ρ, but it has lower energy with respect to Φo + λΨ
for any λ > 0 (provided that N = N(λ) is chosen sufficiently large), so ρ cannot have
been an equilibrium state for Φ0 + λΨ. Presumably the physical picture is that the
equilibrium state(s) for Φ0 + λΨ has large "domains" inside which the state looks
roughly like the + or — state for Φo, and as λ->0 the domains get larger, so that
the limit is a half-and-half mixture of the + and — states. Indeed, if van Enter's
theorem could be strengthened to remove the qualifier "mixing" (or equivalently, to
replace it by "ergodic"), this conjecture would follow from the fact that the only
translation-invariant equilibrium state of the 2-dimensional Ising model which has
zero magnetization is the half-sum of the + and — states [16].5. It would be of
interest, therefore, to strengthen van Enter's theorem in this way, thereby giving an
explicit example of the general phenomenon established in the present paper.

Thus, what I term in the title of this paper a "surprise" perhaps ought not to be
surprising at all, once one has absorbed the message of [10-12]. In any case, the
results of [10-12] together with those of the present paper indicate that the phase
diagrams of lattice systems with general (long-range) interaction must be far more
complicated than the naive Gibbs phase rule would suggest.

Finally, it is worth noting that at least one other well-known model - the one-
dimensional ferromagnetic Ising model with coupling J/r2 - exhibits the type of
behavior here at issue. In this model, it is believed that:

(i) There is spontaneous magnetization at sufficiently low temperature (large

J);
(ii) The spontaneous magnetization M(J) exhibits a discontinuous jump at the

critical coupling Jc, i.e.

with M(Jc)>0 (the "Thouless effect"); and

4 I am indebted to Professor Israel for this lucid explanation of [11]
5 This is true also for the ^-dimensional Ising model, for all but at most a countable set of
temperatures [17] and for all sufficiently low temperatures [18]
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(iii) The free energy density (= pressure) F(J) is infinitely differentiable in J as
J passes through Jc.

These beliefs result from a renormalization-group "solution" of the model
[19-21] in addition, (i) has now been rigorously proven [22], and (ii) is supported
by quite general entropy-energy arguments [23, 15] (but see [24]). Now (ii) implies
that, at Jc, the + and — boundary-condition states are distinct pure phases while
(iii) implies, by a theorem of Lebowitz [17], that at Jc there are at most two pure
phases. Thus, the state obtained by letting J]JC must be ̂ (< > + J c + < >_ Jc); in
other words, a limit of pure (in fact unique) phases in the sense described above is a
non-pure phase.

2. Ubiquitous Failure of the Gibbs Phase Rule

We assume that the reader is familiar with the results of Israel [2], whose notation
we follow; for a brief summary, see [10].

Theorem 2.1. Let Φoe&, and let ρ0 be an invariant equilibrium state for Φo (not
necessarily extremal). Now let Do be a subset of & which is dense in a neighborhood
of Φo, and for each ΦeD0 let T(Φ) be some nonempty set of invariant equilibrium
states for Φ. Then there exists a sequence of interactions ΦkeD0 and states
ρkeT(Φk) such that Φk-+Φ0 (in norm) and ρk-^ρ0 (in weak-* sense).

Proof By [2, Lemma IV.3.2], there exists a sequence {ρk} of ergodic translation-
invariant states such that ρk-+ρ0 in weak-* sense and s(ρk)J,s(ρ0). Since ρ0 is an
invariant equilibrium state for Φo, we have

o) + ρo(AΦo)-s(ρ0) = 0

(Gibbs variational equality). Thus

P(Φo) + Qk(AΦo)-s(ρk)->0

as fc-»oo by passing to a subsequence we can assume that

0) + ρk(AΦo)-s(ρk)^l/k2. (2.1)

Then by the Bishop-Phelps theorem [25] in Israel's form [26,1, 2], there exists, for
each /c, an interaction Φke& and an invariant equilibrium state ρk for Φk such that

| | |Φ k -Φ 0 | | |^ l/A; (2.2)

and
\\ρk-ρk\\SVk.

But by the argument in [2, Theorem V.2.2] it follows that ρk is also an invariant
equilibrium state for Φk (provided that fe>l); and since ρ^is ergodic, it is an
extremal point of the set of invariant equilibrium states for Φk.

To complete the proof we utilize a generalization of a theorem of Lanford and
Robinson [27] this result is stated and proven in the Appendix. We first equip the
set of invariant states with a metric d inducing the weak-* topology; this is
possible because C(Ω) [classical case] or % [quantum case] is separable (as is J*).
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Then conclusion (c) of Theorem A.I implies that (for sufficiently large k) we can
choose ΦkeD0 and ρkeT(Φk) such that

ll|Φk-ΦJI^V* (2.3)

and

k)^l/k. (2.4)

It follows from (2.2)-(2A) and the definition of ρk that Φk^Φ0 in norm and
in weak-* sense. •

Corollary 2.2. Let Φ o e J*, and let ρ0 be an invariant equilibrium state for Φo (not
necessarily extremal). Then there exists a sequence of interactions Φke& having
unique invariant equilibrium states ρk such that Φk^Φ0 (in norm) and ρk-*ρ0 (in
weak-* sense).

Proof. Since $ is separable, Mazur's theorem [28] (see also [29, 30]) implies that
the set of interactions having a unique equilibrium state is dense in J* (in fact, a
dense Gδ). Hence Theorem 2.1 applies. Π

The meaning of Corollary 2.2 is best understood by comparing it with the
(superficially similar) theorem of Lanford and Robinson [27]. The Lanford-
Robinson theorem, which is a general result about convex functions, states that
the set of tangent functional at any given point is the closed convex hull of the set
of limits of unique tangent functionals at nearby points. Corollary 2.2, by contrast,
is a special fact about a particular class of convex functions (the pressure in certain
statistical-mechanical systems): it asserts that for these apparently rather strange
convex functions the words "closed convex hull" in the Lanford-Robinson
theorem may be omitted.

Of course, since Theorem 2.1 and Corollary 2.2 refer to the unphysically large
Banach space $ of interactions, they are subject to the objections noted in the
Introduction. But by using Israel's generalization of the Bishop-Phelps theorem [2,
Corollaries V.I.2 and V.3.1], we can arrange for the perturbations Φk—Φ0 to lie in
a cone of "antiferromagnetic pair interactions" (with possible "magnetic field") in
particular, if Φo lies in the physically reasonable space U, then so does Φk. We can
no longer demand (as in Corollary 2.2) that the ρk be unique invariant equilibrium
states for Φfc, but they are in any case extremal.

The proof of the following theorem is essentially identical to that of [2,
Theorem V.3.2] with a few signs changed. It is valid for both classical and
quantum systems we use the notation of the quantum system.

Definition. A family Sc% of observables is said to separate the invariant
equilibrium states at Φo if, given any two such states ρx and ρ2, the equality ρx{A)
= ρ2(A) for all AeS implies that ρΐ=ρ2.

Theorem 2.3. Let Φoeέ%, and let ρ0 be an invariant equilibrium state for Φo (not
necessarily extremal). Let S be a family of self-adjoint finite-range observables, and
for each AeS let AA be a finite subset of the lattice such that Ae°ilA . Now let £Fbe
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the closed convex cone in & generated by interactions Ψe& of the form

ψ(i + AA) = hτiA, (hreal),

Ψ((i + ΛΛ)v(j + ΛΛ)) = J(i - j) M ) (TjA) (J £ 0),

ψ(Y) = 0 for all other Y,

with AeS. In the quantum case, to make sure that (τ^^-A) is self adjoint, we
require in addition that J(i) = 0 unless (i + ΛA)r\ΛA = β.

Then there exists a sequence of interactions ΦkeΦ0+ 2F having extremal
( = ergodίc) invariant equilibrium states ρk such that Φk-^Φ0 (in norm) and ρk-^ρ (in
weak-* sense), where ρ is an invariant equilibrium state for Φo satisfying ρ(A)
= ρo(A) for all AeS. In particular, if S separates the invariant equilibrium states at
Φo, thenρ = ρ0.

Proof As in the. proof of Theorem 2.1, there exists a sequence {ρk} of ergodic
translation-invariant states such that ρk^ρ0 in weak-* sense and (2.1) is satisfied.
Then by Israel's generalization of the Bishop-Phelps theorem [2, Corollary V.3.1],
there exists, for each k, an interaction ΦkeΦ0-\-^ and an invariant equilibrium
state ρk for Φk such that

(2.5)

(2.6)

Qk(AztA) S ρk{AτiA) + k ~' \\A \\2, (2.7)

for all AeS and all i satisfying (i + AA)nAA = ΰ. In particular, if we let

where Cn is a cube of side n, then (2.7) implies that

lim ρk(cn(A)2)^ "m ^ ( c ^ ) 2 ) + /c" xMil 2 (2.8)

for all AeS. (Note that the limits exist, by the ergodic theorem.)
Now since ρk is an invariant equilibrium state for Φk, it has an ergodic

decomposition

ρk=ίρfdμk(ρ/)9 (2.9)

where μk is a probability measure supported on the ergodic invariant equilibrium
states for Φk. Since the ρ' are ergodic, we have

\imρ'{cn{A)2) = ρ\A)2 (2.10)
n-*co

for each Ae°U. Thus

lim ρk{cn(A)2)= lim Jρ\cn(A)2)dμk{ρ')

= lQ\A)2d~μk{Q') (2.11)
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by (2.10) and the dominated convergence theorem. On the other hand,

\imρk(cn(A)2) =

(2.12)

for all AsS, by ergodicity of ρk, (2.6) and (2.9). Combining (2.8),(2.11),and (2.12), we
get

S t f ^ V (2.13)

for all AeS.
Now let {Aj} be a countable (or finite) dense subset of S (which exists because

S C °U is a separable metric space), and define

Aj = 2-\\\Aj\\^\)-1λj (2.14)

so that £ H ^ p ^ l . Applying (2.13) to the {A}) and summing over j (using the
j

monotone convergence theorem), we get

1. (2.15)

Hence there must exist at least one ergodic invariant equilibrium state ρk for Φk

such that

ΣίQk(Aj)-ρk(Aj)']2^~ί- (2.16)
j

Thus, for each j , we have

lim ρk(Aj)= lim ρk(Aj) = ρ0(Aj); (2.17)
k-*ao fc-»oo

and by density the same holds for all AeS. By passing if necessary to a
subsequence we can also arrange that the ρk converge in weak-* sense to an
invariant state ρ and by (2.5), ρ must be an invariant equilibrium state for Φo. •

All of the above results are ultimately based on the fact that the set E1 of
translation-invariant states is particularly badly-behaved: its extreme points form
a dense subset. Amusingly, it turns out [31, 32] that E1 is the unique (up to affine
homeomorphism) metrizable Choquet simplex with this proerty (except for the
one-point set)!

Finally, it is worth remarking that the Bishop-Phelps theorem - which is the
main tool in all of the results of the present paper - has been refined and
generalized in numerous directions [33-36]. It would be interesting to know
whether any of these generalizations can be applied usefully to statistical
mechanics.

Appendix. A Theorem on Convex Functions

L e t Z be a real Banach space, and U an open subset ofZ. Let / be a real-valued
convex function on U. A linear functional leX* is said to be a tangent functional
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(or subgradient) to / at the point xoe U if

for all xeU. The set of all tangent functional to / at x0 is denoted by df(x0). It
follows immediately from (A.I) that df(x0) is a convex, weak-* closed subset of X*.
Moreover, if / is continuous, then df(x0) is non-empty (by the Hahn-Banach
theorem) and weak-* compact (by the local Lipschitz property of / [2, Lemma
VI.2.1], which implies that df(x0) is bounded). Indeed, this local Lipschitz
property implies that df[Jf\= (J df(x) is bounded for some neighborhood U of

xeU

x0.
We now prove a slight generalization of a theorem of Lanford and Robinson

[27]. If S is a convex subset oϊX*, we denote by extS the set of all extreme points
of S.

Theorem A.I. Let U be an open subset of a real Banach space X, and let f:U->TR> be
continuous and convex. Let xoeU, let Do be a subset of U which dense in a
neighborhood of x0, and for each xeD0 let T(x) be a nonempty subset of df(x).

Define

Z = Z(fxo,Do) = {leX*: there exist nets xα->x0

(in norm) and la-*l (in weak-* topology)
suchxhat xaeD0 and laeT(xa) for all α}

and let Z s e q be defined analogously using sequences instead of nets. Then:
(a) Z is a weak-* compact subset of X*.
(b) cδ(Z\ the weak-* closed convex hull of Z, is weak-* compact and equals

df(xo)
(c) Z contains extδ/(x0).
(d) // X is separable, then Z = Z s e q .
In particular, if X is a Banach space which has an equivalent norm such that the

dual norm \\-\\x* is strictly convex (for example, if X is separable or reflexive),
then we can take D0 = Dί(f)\{x0}, where

Di(f)= i χ e U: Sf(x) has exactly one element}.

Proof. Let Uo be a neighborhood of x0 such that d/[£/0] is bounded; then so is
Z c δ / [ l / 0 ] . Moreover, Z is easily seen to be weak-* closed. By the Banach-
Alaoglu theorem, this proves (a). Likewise, co(Z) is bounded and weak-* closed,
hence weak-* compact. Also, it follows easily from (A.I) that Zcdf(x0) and hence
also cδ(Z)cdf(x0).

Now assume that (b) is false, i.e. that there exists loeδf(xo) with l0φco(Z). Then
by the Hahn-Banach theorem there exists yoeX such that /0(^0)>l(y0) for all

leco(Z). Now for n sufficiently large, xo-\—yoeUonDo, so we can choose

xneUonDo such that zn = xn — lxo+ -y0) has norm at most 1/n2. Now choose any



General Theory of Lattice Systems 335

lneT(xn). Then </„ —ί0, xn — xo> = 0 by a simple computation using (A.1), hence

where K = diam9/[(7 0 ]<oo. Since {ln} is bounded, we can extract a weak-*
convergent subnet {lφ)}-+leZ and conclude that l(yo)^lo(yo), a contradiction.
This proves (b).

(c) follows from (a)-(b) and Milman's converse to the Krein-Milman theorem,
(d) follows from the boundedness of <3/[£/0] and the metrizability of the weak-*
topology on bounded subsets of X* when X is separable. The final assertion
follows from a result of Asplund [29], which states that Dγ contains a dense Gδ

subset of U. (This was proven earlier by Mazur [28] for the case of X separable.)

Remarks. 1. This result is contained (without proof) in a note of Shih [37]. Lanford
and Robinson [27] proved part (b) in the case D 0 = D1(/)\{x0}, X separable. My
proof of part (b) follows a simplification of their proof, due to Ruelle [9, p. 44],
which allows "dense Gδ" to be replaced by "dense." The key additional obser-
vation, which is needed in Sect. 2 of the present paper, is that Z contains extdf(x0)
this was already noticed by Preston [8, p. 153]. A complete proof is given here for
the reader's convenience.

2. Theorem A.I can be extended to Frechet spaces. Also, it holds in the more
general framework of monotone mappings ΓfromX to subsets ofX* see [38, 39].
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