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General Lower Bounds for Resonances in One Dimension*

Evans M. Harrell II
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Abstract. Lower bounds are derived for the magnitude of the imaginary parts
of the resonance eigenvalues of a Schrodinger operator

dx2 ' w

on the line, depending only on the support and bounds of V and on the real
part of the resonance eigenvalue. For example, if the resonance eigenvalue is
denoted E + ίε, then there exist C and / 0 depending only on || K|| ̂  and E such
that if the support of V is contained in an interval of length *f > /0, then

wherem=||F(x)-£|| 1/2

Spencer has recently raised the question of whether there is a lower bound for the
magnitude of the imaginary parts of the resonance eigenvalues for a quantum-
mechanical particle in a compactly supported potential that is randomly generat-
ed, and therefore neither necessarily regular nor known at all in detail [1]. The
purpose of this note is to derive such lower bounds in the one-dimensional case
assuming knowledge of the real part. The many somewhat distinct notions of
resonance for operators — A + V(x) on L2(W) become all more or less the same if
n = 1 and V is compactly supported. A physically motivated definition would be a
complex value of k for which a scattering state for

dx1
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proportional to exp(— ikx\ when x <inf supp V is proportional to exp( -f ikx) when
x>supsuppK It may as well be assumed that suppFc[0, /]. Physical tunneling
arguments lead one to expect that if I is large, then the resonance width should be
at least on the order of exp(— C(V,E)l), where C depends on V and the energy E in
some simple way. This is essentially what is shown in Eq. (8). The assumption
about the support of V makes the resonance equivalent to an eigenvalue of a non-
self-adjoint Sturm-Liouville problem on a finite interval:

Definition. Let V be a bounded, real-valued, measurable function of xe [0, /] and ψ
be a function (with absolutely continuous first derivative) satisfying

k2)ψ = O (1)

a.e. and

)=-ik, ψ'(t)/ψ(t)=+ik, (2)

-d2

dx

|Im/c2| is called the resonance width.

0 > argk> — π/4. Then k2 is called a resonance eigenvalue for Λ 2 + V and

Remarks

1. By scaling the coordinate one could assume 1=1 or alternatively
Ξ sup I V(x)\ = 1, but for physical applications the limits /-> oo or || V\\ ^ -> oo

or some combination of these can be of interest, so the dependence on these
quantities will be left explicit. A limit related to those was studied in [2], where a
detailed perturbation and resonance theory was worked out (on a half-line) for
potentials with certain regularity assumptions, especially at the boundary between
the region where V<0 and the confining barrier where V>0. In that case detailed
uniform estimates of ψ can be resorted to to obtain precise formulae. Moreover,
the existence of shape resonances was proved in limiting cases, whereas the present
article assumes their existence. An arbitrarily chosen V could quite easily not have
any resonances. Discussions of quantum resonances from various points of view
can be read in [3-5].

2. On physical grounds one might expect the potential producing the nar-
rowest resonance width to have roughly the form

ίV 0<x<a l — a<x<l

for some optimally chosen a. These resonance widths can be worked out by hand
and are somwhat larger than Eqs. (6) and (7). Also, many obvious small improve-
ments could be made in the bounds Eqs. (6) and (7) at the expense of some
complication, by modifying the proof. There may thus be a little room for
improvement, although the general functional form of these bounds is surely
optimal. The lower bounds on |Im/c2| will be derived by expressing it in terms of ψ
and estimating ψ.
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Lemma 1. Let Refc2 = £ and Imk2 = ε. Then

Refc(MQ)| + lφ(/)l)
ε— - j . \D)

\\ψ{xψdx
o

Proof. This comes from integration by parts, and is only a variant of a formula
used in [2] and elsewhere. In particular, one finds from

2iε\\ψ(x)\2dx=\{ψ(x)\--^2+V-E}ψ(x)-ψ(x)ε\\ψ(x)\2dx=\{ψ(x)\--^2+V-E}ψ(x)-ψ(x) -J^

that

ε =
l\ψ(x)\2dx
0

Re/c[|y(0)|2

\\ψ(x)\2dx
0

because of the boundary conditions (2). •
Since the eigenvalue equation is linear it may be supposed that

if necessary by changing variables to xf = l — x. The problem is thus to bound the
denominator of (3) above. This is easy to do with standard comparison arguments,
which are best used in the framework of integral equations to avoid the problem of
discontinuities in V and therefore \p".

Lemma 2. ForO<x^l,

\ψ(x)\ < ]/l+((Im/c)2+(Re/c)2)x2 exp J |V(x')-E- iε\(x-x')dx' (4)
\o

and

. / M 1./ ^ |Imfc|+Refc . u . ,
\ψ(x)\ < cosh (mxx) H smh (mxx)

mmx

iΛ |Imfe| + Rek\ , λ< 1 + exp(mxx), (5)

where mx= sup ]/\V(y) — E—ίε\.

For the interesting physical limits /->oo or \V(x)\ large, (5) is much the better
(0(lecl) versus 0(lecl2)) and is of the right general form for quantum-mechanical
tunneling. The former formula (4) might be better under other circumstances.
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Proof Since integration of (1) with (2) yields the integral equation

ψ(x) = 1 — ikx + I dx1 j dx2(V(x2) — E — iε)ψ(x2),

\ψ(x)\^ l/l+((Im/c)2+(Refe)2)x2 + j\V(y)-E-iε\(x-y)\ψ(y)\dy,
0

Eq. (4) is just GronwalΓy inequality [6, 7]. The inequality is strict because it is
strict near x = 0. For Eq. (5), observe that

Now for x ^ z,

\ύ l/(l+Im/cx)2+(Rek)2x2+ jdxx J dx2m
2

x\ψ(x2)
0 0

+Refc)x+ ίdx 1 \ dx2m
2

x\\p{x2)\.
0 0

f(x) = cosh (mzx) H sinh (mzx) > 0
m

is just the solution of

f(x)=l+(\Imk\ + Rek)x+]dx1 \ dx2m\f(x2).
0 0

By continuity f(x)>\ψ(x)\ in some neighborhood of x = 0, and it is then clearly
impossible for f(xo)—\ψ(xo)\ to vanish for any positive x0, as from the integral
equations f(x0) — \ψ{xo)\ is the sum of a nonnegative function and the integral of a
nontrivial nonnegative function. •

Theorem 3. For any δ>0,

(Rek)exp(-im2(l+(52/m4) 1 / 2/2)\
(6)

and

Γ 3
M _j i
\ 2 R k

m \ 2m Re k m

where m= sup ]/|F(x) — E\.

Formula (7) will ordinarily be stronger than Formula (6). Note that these are
equivalent to bounds involving E alone or Re/c alone because

= l/(Re/c)2-(Im/c)2<Re/c< ]/E + ε2/4E.
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Corollary 4. For any η>0, there exists l0, depending only on || V\\ ^ and E, such that
if l>l0, then

m 3 ^ m / ) . (8)

The number η may be chosen less than a constant over zf.

Proof The theorem comes from substituting the bounds of Lemma 2 into the
formula of Lemma 1, taking into account that if x>l/2 it is more efficient to
replace Lemma 2 with the analogous bounds for the interval [//2,/]. Thus, for
instance, from (4),

1/2 j 1/2

2 J \V(x')-E-iε\(l/2-x')dx'

Since |Imfc| =
2Re/c

sUl + ((Im kf + (Re kf) l-) exp (2mff2 ( -

which is assumed < for the inequality (6), and
2, rCe K

/ m2(l +ε 2 /m 4 ) 1 / 2 , (6) follows. Inequality (7) is similar, and the corollary
follows immediately from it, with a simple expansion of the exponent. •

In closing, note that in the ̂ -dimensional case one can of course integrate by
parts and estimate eigenfunctions with comparison theorems, but what is lacking
is the easy control on the gradient and value of the resonance wave-function at the
edge of the support of V.
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