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Abstract. The general relativistic Dirac equation is formulated in an arbitrary
curved space-time using differential forms. These equations are applied to
spherically symmetric systems with arbitrary charge and mass. For the case of a
black hole (with event horizon) it is shown that the Dirac Hamiltonian is self-
adjoint, has essential spectrum the whole real line and no bound states. Although
rigorous results are obtained only for a spherically symmetric system, it is argued
that, in the presence of any event horizon there will be no bound states. The case
of a naked singularity is investigated with the results that the Dirac Hamiltonian
is not self-adjoint. The self-adjoint extensions preserving angular momentum are
studied and their spectrum is found to consist of an essential spectrum
corresponding to that of a free electron plus eigenvalues in the gap (— me2,
+ me2). It is shown that, for certain boundary conditions, neutrino bound states
exist.

Introduction

In this paper we formulate the Dirac equation in an arbitrary curved space-time
(Sect. I). These equations are applied to spherically symmetric systems with
arbitrary charge and mass (Sect. II and III). For the case of a black hole (with an
event horizon) we show that the Dirac Hamiltonian is self-adjoint, has essential
spectrum the whole real line and no bound states (no point spectrum) (Sect. IV).
Although rigorous results are only obtained for the case of spherical symmetry,
it is argued that in the presence of any event horizon there will be no bound states.

In Sect. V the case of a naked singularity is investigated. For a proton or any
atom in the periodic table, the charge to mass ratio is such that the corresponding
Riesner-Nordstrom solution has a naked singularity. For the case of a naked
singularity we show the Dirac Hamiltonian is not self-adjoint. The deficiency
indices are (oo, oo) but for each angular momentum subspace ^ΰlkm(k = ± 1, ± 2, +
3,..., m = + 1/2, ± 3/2,...) labelled by two quantum numbers k and m, the
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Hamiltonian restricted to yjikm has deficiency indices (1,1). The self-adjoint
extensions preserving these subspaces are studied. The extended Hamiltonian is
labeled by a parameter θ with 0 < θ < π corresponding to a boundary condition
imposed at the origin. The extended Hamiitonian Hθ has essential spectrum
(— oo, — m] u [m, oo) and all bound states are confined to the interval [—m,nί]
(i.e. no bound states in the continuum.) In general there are bound states. What
is surprising is that for certain values of θ between π/2 and π there appears a
"new" bound state. For example, rough calculations indicated that with a proper
choice of 0, one will have a hydrogen atom with a state of energy λ anywhere in
the interval (— m, m). In particular one could have a new ground state.

I. Curved Space Dirac Equation

An important innovation in differential geometry is E. Cartan's calculus of
differential forms and movable frames [1,6]. Familiar to mathematicians since
1901, differential forms have recently been applied to physical problems. It is
particularly appropriate to express Maxwell's equations [3] for electromagnetism
and Einstein's equations for gravity. It has been shown [1,6] that the curved space
Dirac equation for spin-^ particles can be formulated using differential forms.
Unlike other formulations, this method is easy to use since it yields the Dirac
equation in terms of well-known elements such as partial derivatives and special
relativistic Dirac matrices.

Here we give a short review of the formalism described in more detail elsewhere
[1]. In terms of orthonormal frames (one forms) ωμ, every 4-dimensional
pseudo-Riemannian metric (with signature — 1) can be expressed in the form

ds2 = - (ω0)2 + (ω1)2 + (ω2)2 + (ω3)2 = ημvω
μ ®ω\ (1.1)

Here ημv denotes the Minkowski metric. Comparison with the metric for the
space-time of interest gives the one-forms ωμ by inspection. From the basis forms
ωμ, the connection one-forms ωμ and Ricci rotation coefficients yμ

β can be found
from

dωμ = - ωμ

v A ωv = \bμ

βω« A ωβ

9 (1.2)

where Λ denotes the exterior product and d denotes the exterior derivative. The
Ricci rotation coefficients can be found from

ωμ v = 7^vαωα (1.3)

or from

y*βy = - liKβy - Kβ - bβy«y ( L 4 )

The basis vectors ωμ dual to the basis forms ωμ can be found from

ω" ωv = <5;. (1.5)

In holonomic (coordinate) frames, this becomes the standard relation

dxμ-ev = dxμ-dv = ωv(xμ) = δμ. (1.6)
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The coordinate derivative aμ

v of a vector ωμa
μ can be expressed as

a^ = ωv(aη + yϊX, (1.7)

where the first term is due to the change in the component aμ and the second to
the change in the basis vectors ωμ. Except in Cartesian coordinates where the basis
vectors are position independent, the position dependent basis vectors usually
make a nonvanishing contribution even in flat space, e.g. in spherical coordinates.
In spin space associated with the Dirac equation, the basis spinors also are usually
position dependent except for Cartesian coordinates in flat space. It is because of
this difficulty that most workers write the Dirac equation in Cartesian coordinates
and then express it in the desired system. But if the change in spinor basis vectors
are accounted for, the Dirac equation can be directly expressed in the desired
system. The covariant derivation of a spinor ψ can be expressed as

Vβφ = ωμ{ψ)-Γμψ, (1.8)

where Γμ is the spinor connection given by

rg

μ=- b*βμy
ayβ + %i = rμ + aμi (1.9)

and aμ is an arbitrary vector [1] which can be related to the vector potential by

aμ^i{h/c)eaμ (1.10)

(take h = 1 = c). That the quantity aμ follows directly from Shur's lemma and does
not need to be incorporated in an ad hoc manner, is not generally known [1].

In orthonormal Cartan frames, the curved space Dirac equation

μ + mψ) = 0 (1.11)

can be expressed as

μ μ + mφ=0, (1.12)

or as [1] for general aμ and [6] for aμ = 0

[/(ω μ - ieaμ -Γμ) + m^φ = 0. (1.13)

This formulation quickly and easily yields the Dirac equation in terms of
well-known elements such as partial derivatives and special relativistic Dirac
matrices as will be seen below for spherically symmetric spaces.

II. Spherically Symmetric Spaces

The metric for spherically symmetric spaces such as for black holes, neutron stars,
naked singularities, etc. can be written as

ds2 = - A2at2 + B2dt2 + r2dθ2 + r2sin2 θdφ2, (2.1)

where

A2 =B~2 = 1 - 2Mr~* -f Q2r~2, (2.2)
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and

Gmc ~ 2 = m,

Gll2Qc~2 = Q.

Here m and Q are given in geometrized units where M = 6.8 x 10~ 5 6cm and

Q = 1.4 x 10~3 4cm for the electron.
A convenient set of orthonormal basis forms is

ω° = Adt,ωι = Bdr, ω2 = rdθ, ω 3 = rsin θdφ9 (2.3)

while the dual basis vectors are

ω 0 = A~1dt,ω1 =B~1dr,ω2 =r~1dθ,ω3 =(rsinΘ)~1dφ. (2.4)

For the basis forms (3.3), the Ricci rotation coefficients are

yoio=-MAB)-\γ212=y313 = (rBy\y323=cotθ/r, (2.5)

while the spinor connection is given by

Γ1=0 + ieau

r2 = -(2rBy1y2y1+iea2,

Γ3 = (2rB)~ Yy1 - (2r)" ̂ o t θy3y2 + iea3. (2.6)

Exterior to a spherical charge, the vector potential is

ao = q{rA)-K (2.7)

Substituting into (2.3) yields the curved space Dirac equation

^ + y'B-^ + r-1 + Ar(2A)~x)+ y2r-\dθ +{-cosθ)

The substitutions

^ = χs in- 1 / 2 θ (2.8)

and

iy1K = γ0(γ2de + y*(sinθ)-1dφ), (2.9)

reduce the Dirac equation to

0 = [ - A~\dt - ίeqr~ι) + y°yιB-ι{dr + r"ι + Ar{2Ayι + iγ1^'x + y°m]χ

(2.10)

The eigenvalues of K are k = ± 1, ± 2,..., [8] and the substitution

χ = r- 1 Λe- i E ί (2.11)

yields

0 = \iA-\E + eqr~x) + y 0^ 1^"\d r + Ar{2Aγx + i>1fcr"1 + y°m]R. (2.12)
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Because (2.12) contains only two matrices y° and γ1, they can be replaced by 2 x 2

matrices γ° = iί M = ( ] and R by R = ( 1 which yields
\0 - 1 / \1 0/ \GJ

(2.13)
An alternative choice of orthogonal basis forms is

ω°=Adt,

ω1 =dx + r~\B- ί)xdr9

ω

2 =dy + r~~ 1(B - ϊ)ydr,

ω3=dz + r-\B-l)zdr, (2.14)

where rBdr = xωx + zω2 +zω3. This basis has the property that it reduces to a
Cartesian basis in flat space. The basis vectors dual to the form of (2.14) are

ω3 = dz + r" \B~ι - l)zδr, (2.15)

where dr = r ~ 1(xδ;!C + j/δy + zδz).
The Ricci rotation coefficients are given by

r~2a-B-ί)z, (2.16)

and the spin connection takes the form

Γo = Ar(2rAB)-ιy0(xyι + yy2 + zy3) + iea0,

Γ1 = i ( l - B-')r-2y\yy2 + zy3) + ieau

Γ 2=i(l-B- 1)r-V(x7 1+xy 3) + ieβ2>

Γ3 = A(l - B'^rYixy1 + yy2) + iea3. (2.17)

Substituting into (1.13) yields an alternative form for the curved space Dirac
equation

Ϋω, - r~2(l - B~ι - \rAJiAB)~ι)

m]ψ = 0. (2.18)
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III. Decomposition into Subspaces of Definite Angular Momentum

In this section we exploit the rotational symmetry of the equations we are studying.
We decompose the Hubert space ξ> of four component wave functions φ into
angular momentum subspaces ΪRkm which are invariant under the Hamiltonian
associated with the Dirac equation. On ΪRfcm the Hamiltonian is a (2 x 2) matrix
of first order differential operators.

In the last section we found the Dirac equation in a spherically symmetric
gravitational field or a combined gravitational and electric field is given by

γ°A ~ \dtφ + ίeφφ) + γ-Vψ + (A- l)yrdrφ + ((A - l)r~x + l/2Ar)yrφ + mφ = 0,

where Ar = dA/δr, φ = Q/r and yr = r~\xyx + yyy + zγz).
Multiplying through by a y° we find

idr = Hφ = A(a-p + βm)φ + eφφ + A(A - l))(xrprφ - iA((A - ί)r~' + l/2Ar)arφ
(3.1)

where p = — ϊ'V,p r= — idr,β=iy°,a= —y°y, ar = r~1(xocx +yocy +zaz). The
matrices α and β are hermitian and satisfy the relations β2 — /, βa + aβ = 0, a;af

+ afaf = 23^1. We will be analyzing the self-adjointness and spectrum of H. Now,
H is a differential operator acting on four component wave functions φ. The inner
product on these wave functions is given by

i= 1

Let 9) be the Hubert space of all four component wave functions with (φ, φ)' < oo.
The fact we are working in curved space does not effect the decomposition of §
into subspaces of definite angular momentum. The reader can refer to any of the
standard tests on the Dirac equation (see e.g. [7], [9]).

The generators of rotation are J = L + (l/2)σ, where L=r x p and σ = iy5oί with
y5 = y°y1y2y3. We introduce the wellknown operator

K = β(σ L+I). (3.3)

One can check that K commutes with αr, dr, J and H. We have

K2=J2 +1/4/. (3.4)

The eigenvalues of K are k = ± 1, ± 2, + 3, We decompose § into subspaces

mKm so that for φemKm

Jzφ = mφ Kφ = kφ. (3.5)

Since both Jz and K commute with H, ̂  m is mapped into itself under H.
The operator oί p can be decomposed as the sum of a radial and angular part

as follows (see [7], page 158)

OL'P = OLrPr + OL'L

rr
1 -r~ιβK). (3.6)
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To proceed further with our calculations we will commit ourselves to a representa-
tion of the y matrices

0 \ _ /0 τ

0

0 Λ . /τ 0'
-/ 0

where τ are the three Pauli spin matrices
λ0 1\ _/0 - Λ /I 0

o) h~\i o
Restricting H to TOkm, we express the wave function ψ in the form

where χ™ is a two component spinor depending only on the angular variables
and satisfying

= (Lz

The spinors χjj1 are normalized so that

Then on ϋlkjm the Hamiltonian H is given by a (2 x 2)-matrix of first order
differential operators

/ eφ + Am
n = ^ - A2δr - \AAY + kr~1 eφ-Arn

where Λr = drA and A=(l- IMr'1 + β V 2 ) 1 / 2 , φ - Q/r.

IV. Case of an Event Horizon, M > Q

When M > Q , the function 4(r) = (1 - IMr'1 + β 2 r " 2 ) 1 / 2 vanishes at ro =

M + ^/M 2 — <22. At this radius there is an event horizon. In the reference frame
of a distant observer, any particle beginning in the region Ro = {r:r>r0} and
moving with a velocity not exceeding the velocity of light will stay in the outer
region, Ro, for an eternity. In our analysis of the Dirac equation we will confine
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our attention to the region Ro. The Hubert space § of wave functions is space of
wave functions on Ro. The inner produce on § is restricted to the integral over
the region Ro. Passing to the subspaces sIRkm of § the inner product becomes

(/,g) = J A(r)-KAWgά) + f2(r)g2(r))dr. (4.1)

We will consider H as defined on Do the C00-functions of compact support in Ro

(i.e. we consider ft which are infinitely differentiable and there are numbers a>r0

and b > a so that if rφ\_a,b], f^r) = 0. The numbers a and b may depend on the
function /.

To analyze H further we make a coordinate transformation. Let S(t) be the
solution to the differential equation

Ϊ-S(t) = A(S(t))2 = 1 - 2MS(t)"1 + Q2S(ty\ (4.2)
at

and S{0) = 2r0. The physical significance of S(t) is that this function gives the r
coordinate of a point moving radially outward at the velocity of light. One can
find an implicit formula for S(t) but for our purposes all we will need are the facts
that

UmS(ί)ί"1 = l,
ί-> oo

lim
> - o o

where Co is a positive constant and b0 = 2^/M 2 — Q2 r0

 2. Roughly speaking
S(t) behaves like t for large positive t and approaches rΌ exponentially for large
negative t.

Using this function we transform to a new Hubert spaces ξ>x. Let § 1 be the
Hubert space of square integrable two component functions on the whole real line.
The inner product on § 1 is given by

— oo ί = 1

We define a unitary mapping from 9Wtm to § x by the formula

Note U preserves inner products, i.e., (Uf, Ug)ι = (f9g). Under this transformation

we have

U(Λ(r)2dr 4- 1/2,4 A.) fix) = — (l//Mx).
αx

Then the transformed Hamiltonian in § x becomes Hi = UHU'1 given by

1 = 1

1 - d/dx + fci4(S(x))S(x)~' eψ(S(x)) - i4(S(x)) '"
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The domain X>1 on which H1 acts is D 1 = UΊ)0 which is simply the space of
C°°-functions of compact support.

Theorem 4.1. H is essentially self-adjoint on T>0.

Proof To prove H is essentially self-adjoint it is sufficient to show H\(Wlkm n T)o)
is essentially self-adjoint for each k and m. Now H\(Wlkm n X)o) is unitarily equivalent
on Hί restricted to Ί)x given by Eq. 4.3.

Note the functions φ(S(x)) and A(S(x)) are bounded C00-functions. (Recall that
as x-> — oo S{x)-+r0.) Then we can write Hί in the form

H.-0. + V. whe,e

and F is a bounded hermitian operator. The operator Do (which is an hermitian
matrix times — id/dx) is well known to be essentially self-adjoint in Ί)ί. Since H±
is bounded perturbation of Do, H1 is essentially self-adjoint. In fact, H\ is essentially
self-adjoint as can be seen in Chernoffs article [2].

Next we investigate the spectrum of H1. Note as x-+ — oo the differential
operator Ho approaches

Jeφ(r0) dldx
d/dx eφ(ro)

One can easily calculate the spectrum of H _ and one finds σ(H _J = R the whole
real line. From this one would expect the spectrum of the closure of Hι to be the
whole real line. This we show to be the case.

Theorem 4.2. The spectrum of the closure of Hx is the whole real line.

Proof. Suppose λ is real and let w = eφ(r0) — λ. Let

r, λ _ 1 / 4 _ 1 / 2 ( - ( x + ή)2 .

fn(x) = π ι^n 1 / 2exp — — + ιwx
V In

A straightforward computation shows | | / J = l,/π tends weakly to zero as π->oo
and IKHJL — A)/|| ->0 as n-^oo. Hence A e σ ^ ) . This completes the proof of the
theorem.

We will prove that H1 has no eigenvalues. For this we will need the following
lemma.

Lemma 4.3. Suppose ξ) is a Hubert space and Vt for t > a, is a bounded linear
operator on ξ> so that Vt f is continuous in t for each / e § . Suppose f(t) is a solution to
the differential equation

~df-=VJ(t) for t>a, (*)

where the derivative exists in the strong sense. Suppose

]\\Vt\\dt = K<co.
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Then the lim f(t) exists and if this limit is zero then f(t) = 0 for all t.
t ^ OO

Proof Suppose the hypotheses of the lemma are satisfied. Suppose / is a solution
to (*). Then

^ii/(on ̂  ran/wιι.

Note if f(t) = 0 the above inequality is still valid. Hence

~ln | |/( ί) | |g | |FJ,

and therefore

In(II f(t2) 11/11 f(h)||)^'/ || Vt\\dt£K.
ίl

Hence for t, ίoe[α, oo) we have

It follows that if f(t) vanishes for any ί in [a, oo) it vanishes for all t. Now we
have

ύeκ\\f{t0)\\l\\Vt\\dt.

Since the integral above is convergent from t to ©o we have \\f(t2) — /(ίi) || —> 0 as
t1, t2 -> oo. Hence/^ = lim f(t) exists and

Thus if f ^ = 0, fit) = 0 for all t. This completes the proof of the lemma.

Theorem 4.4. Hί has no eigenvalues.

Proof. Suppose λ is real. We will show (H — λ)f = 0 has no L2 solution. To this
end suppose (H1 — λ)f = 0. Let w = eφ(r0) — λ and let

A straightforward computation shows that
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where {F^-^O exponentially as x-> — oo. Hence by Lemma 4.3 we have

lim αt (x) = α^ — oo) exists and both αf( — oo) can not be zero if / φ 0. But from the
χ - > — oo

form of f{x) it is clear that / cannot be square integrable. Hence Hί has no
eigenvalues. This completes the proof of the theorem.

We have shown that H1 has continuous spectrum the whole real line and no
point spectrum. We conjecture H1 has no singular continuous spectrum.

When we mentioned the result of Theorem 4.4 to Professor Shale he asked if
the presence of a black hole prevents the existence of bound states in general. It
seems the answer is yes. Suppose we have a static space time manifold with no
singularities except for an event horizon around a single black hole. Suppose λ is
an eigenvalue of the Dirac Hamiltonian and φ is the associated eigenvector. In
general φ cannot vanish on any open set and so φ will be non-zero in a
neighborhood of the black hole. But Theorem 4.4 indicates that φ cannot be square
integrable near the black hole. It seems the existence of a black hole anywhere in
the universe prevents the existence of bound states.

In physical terms one may describe the situation as follows. Imagine a hydrogen
atom on Earth and a black hole a light year away. There is a positive probability
(admittedly a very small one) that the electron in that hydrogen atom will fall into
the black hole. If one makes the very crudest estimates of the probability, P, that
an electron on Earth will disappear in one second due to a black hole a light year
away one finds P < e x p ( - 1O20). In short the effect is small.

V. Case of a Naked Singularity, Q> M

For the case of Q > M the function A(r) never vanishes and as r -» 0, A(t) approaches
infinity like Qr~1. As in the last section we will make a change of coordinate. Let
S(t) be the solution to the differential equation

ds
— - A(S(ή)2 = 1 - 2MS(t) -x + Q2S(t)'2
at

subject to the additional condition that S(t) -• 0 as t -> 0 from the right. The function
S(t) gives the r coordinate of a point moving radially outward at the velocity of
light. One can show that

lim

limr1S(ί)=l.
ί-> oo

Let ξ>ί be the Hubert space of two component square integrable functions on
the positive real axis. The inner product on § x is given by

0 1=1

We define a unitary mapping from SOΪfcm onto § t by the formula
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As in the last section U preserves the inner product, i.e. (Uf,Ug)1 = {f,g) and
under this transformation H becomes H1 — UHU^1 given by

/ eφ(S(x)) + A(S{x))m d/dx + kA(S(x))S{x)~ι

~ \ -d/dx + kA(S{x))S{x)~1 eφ(S(x)) - A(S(x))m

H = HQ + V, (5.1)

(x) 0
0 \-d/dx + u -m / ' V 0 v2{x)

where u(x) = L4(S(x))S(x)~ *, ux(x) = eφ(S(x)) + (A(S(x)) - l)m and ι;2(x) = eφ
•(S(x)) — (^(S(x)) — l)m. We note u^x) and u(x) go to zero like x~1 for large x and
ι (x) goes to infinity like x~ 1 / 3 asx->0 + and u(x) goes to infinity like x ~ 2 / 3 as x -> 0 + .

Lemma 5.1. // f,geΊ)(H\) then f and g are continuous and

Proof. We recall that the definition of the domain of H is such that the domain
£ ( # ! ) is all C00-function of compact support in (0, oo) (i.e. if Fe^H^f^x) = 0 in
a neighborhood of zero and oo). From the theory of ordinary differential operators
as given in ([4], Chapter XIII) it follows that if /e£>(H*) and H*f = h, then the
/;(x) are absolutely continuous and have derivatives which are in L2(a,b) for
0 < a < b < oo. Integrating the equation H\f = h we find

ΛW = e^H Λ(0) - J e-«*Xh2iy) - (m - v2(y))f2(y))dy

/2(x) = e-^(f2φ) + J e^KhM - (m + i^M/iOO^A (5.3)

where ?/(x) = j u(y)dy. Since t/(x) behaves like x 2 / 3 for small x the integrand for
o

η(x) is well defined and ^(x)->0 as x->0. Since ί ̂ (x) is in L2(0, b) for 0 < b < oo,
we have v^y) ft{y) in 1/(0, b) and therefore the expressions for 5.3 are integrable and
therefore ft(x) is continuous. In particular we have lim /,(x) = /f(0) (i.e. the / f are

continuous at zero). From these remarks it follows that if f,geD(H%) then

= l i m ϊ Σ fkxWXg)i(x) - {H*f)x(x)gx(x)dx
b->ooα^0+

 α i- i

= lim (-/1(x)/2(x) + /2(x)/1W)|ί:J

This completes the proof of the lemma.
We remark the same result holds for Ho
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The bilinear form < }ί on the domain T>(H^) is directly related to the deficiency
spaces of Hf and the possible self-adjoint extensions of Hί. We refer to [4, Chap.
XII, Sect. 4] for a discussion of extensions of hermitian operations. From the form
of < >i given in (5.2) it is clear that this form is the difference of two positive rank
one bilinear forms. Each feT)(H*) can be uniquely expressed in the form

/ = / o + / + + / - with /oeDίtfJ, / + , / . e δ ( H * ) with H*f+ = ±if+ Then if
/,flf6D(H?) with / = / o + / + + / _ and g = go+g++g^ then <f9g>1=2i(f+9

g + )1 — 2i(/_,0_) 1. Since < >1 is the difference of two positive rank one bilinear
forms (times i) it follows that H1 has deficiency indices (1,1). Hence the deficiency
indices of Hί (and Ho) are (1,1). The self-adjoint extensions of Hλ (or Ho) are
obtained by imposing a boundary condition at x = 0 so as to make < }1 vanish.
It is clear that a necessary and sufficient condition for the vanishing of < }ί is
the requirement that the ratio /i(0)//2(0) be real. We parametrize the possible
boundary condition with a parameter θ with 0 < θ < π and the boundary condition
./i(0)sin θ + /2(0)cos Θ = 0. We have shown

Theorem 5.2. H^, and Ho have deficiency indices (i, 7) and have self-adjoint
extensions given below.

Definition 5.3.

fflfl = J f * | D l β , where D l β = {/eD(H*);/1(0)sinθ + /2(0)cosθ = 0},

HOΘ = H%I£OΘ, where £ O Θ = {/e£(tf*);./i(0)sin θ + /2(0)cos 0 = 0}.

Now we analyse the spectrum oϊH0θ. Let g m = (— oo, — m] u [m, oo) = IR — (— m, m)
and let Q^ be the interior of Qm9 i.e. Q^ = ( - oo, -m)u(m, oo). First we will show
that the spectrum of H0Θ contains Qm. For Λeβ^ let

ί^/1 - m i /

A straightforward computation shows that (HOθ — λ)fnλ ->0 as n-> oo, | |/ n λ | | = 1
and /π λ tends to zero weakly as n-^oo. It follows that /Leσ(i/Oθ) the spectrum of
HOΘ. Since σ(HOΘ) is closed we have β m c: σ(HOΘ).

Next we will show that the spectrum of HOΘ is Qm plus at most a single point
in (— m, m) and that point is an eigenvalue of multiplicitly one. To see this assume
feΊ)(HOΘ). Then a straightforward computation shows

oo oo

!I#OΘ/H 2 = ί \(-d/dx + u)ft\
2dx + j \{d/dx + u)f2\

2dx
0

+ m2 ll/ll2 + msin(2^)(|/1(0)|2 + |/2(0)|2). (5.4)

For 0 rg θ ^ π/2, sin 20 ^ 0 and all the above terms are positive. Hence for
O^θ S π/2 we have Hlθ ί> m2 I and therefore σ(HOΘ)a Qm and since we have the
reverse inclusion we have σ(HOΘ) ~ Qm for 0 ^ θ ^ π/2.

For 0 satisfying π/2 < θ < π the last term of 5.4 is negative and it is therefore
possible that there may be an feΊ)(HOΘ) with \\H0θf\\2 <m2\\f\\2. Since the last
term of 5.4 is a rank one bilinear form on ΐ>(HOΘ) (recall /^O) and /2(0) are related
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by a boundary condition) it follows that the spectral projection for Hoθ for the
open interval ( — m,m) can be at most a rank one projection. Hence if HOΘ has any
spectrum in (— m, m) it must be a single eigenvalue of multiplicity one. Hence, we
have shown

Theorem 5.4. For O^θ^ π/2σ(HOΘ) = Qm and for π/2<θ<π σ(HOΘ) =) Qm

and any spectrum of HOΘ in the complement of Qm must be at most a single eigenvalue

of multiplicity one.

We briefly discuss the relation between θ and the eigenvalue λ ε( — m, m). When
u = 0 (see Eq. 5.1) we have

In general the relation between λ and θ depends in a nontrivial fashion on the
function u. Our calculations indicate that for the functions u occurring in 5.1 all
eigenvalues λ between — m and + m can occur by a proper choice of θ. However,
not every θ satisfying π/2 < θ < π leads to an eigenvalue λ. For example for
u > 0(k> 1) it appears that as λ goes between — m to +m, θ goes between θ0 and
π/2 where π < θ0 < π/2. As u increases (fc increases) θ0 approaches π/2.

If E(λ) is the spectral resolution of a self-adjoint operator A then the essential
spectrum of A is the closed set σe(A) of all real λ so that E(λ + ε) — E(λ — ε) is a
projection of infinite rank for all ε > 0. We will show that σe{Hlθ) = Qm. It follows
that any points of the spectrum of Hlθ in the open interval ( — m,m) must be
eigenvalues of finite multiplicity.

We have shown that σe(HOΘ) = Qm and we will show σe{Hlθ) = Qm by showing
V is HOΘ compact. This means Ί)(V)^T>(HOΘ) and if /„ is a sequence which tends
to zero weakly (i.e., (h,fn)->0 as rc->oo for all heSfry) and \\HOθfn\\ ^K for all n,
where K is a constant, then | | F / J | ->0 as n->oo. As shown in Kato's book ([5],
Thm. 5.35 page 244) the essential spectrum is unchanged under a relatively compact
perturbation, i.e. HOΘ and HOΘ + V = H1 have the same essential spectrum. We
begin with the following lemma.

Lemma 5.5. Let Dβ be the operator

( °θ~\-d/dx

d/dx\

0 1

on the positive real axis with the boundary condition /^O) sinθ + /2(0)cosθ = 0.
Initially Dθ is defined as C°°~two component functions of compact support satisfying
the boundary condition at x = 0 and then we take the closure of this operator. Let
A be the operator

«2lW <*22(X)/

where the atj are functions in L2 ([0, b]) for all 0 < b < oo and a^ipc) -> 0 as x -> oo.

T/ẑ w 4̂ Z5 Dg compact.

Proof. A necessary and sufficient condition for A to be Dθ compact is that
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A(DΘ + ic)~1 is compact for c > 0. This is what we shall show. Define (Anf)i(x) =
2

Σ aij(x)fj(x) f° r 0 <x <n and (Anf)i(x) = 0 for x > n. A straightforward

calculation shows Vn(Dθ + zc)"1 is a Hubert-Schmidt class operator. (An operator
B is Hilbert-Schmidt if B*B is of finite trace. It is well known that Hilbert-Schmidt
operators are compact.) A sketch of this calculation is as follows. We have

where

1/1 -i\ ί-id/dx 0

2\-i l) i θ ' { 0 id/dxj'

where in Tθ the boundary condition /2(0) = α/^0) with α = —ie~2iθ is imposed.
The resolvent Tθ is

Then we have An(Dθ-{-icy1 = A^Te + ic)-^-1 = U(U~1AnU(Tθ + icΓ1U-1.
Since the Hilbert-Schmidt operators are invariant under unitary transforms it is
sufficient to show U~ίAnU(Tθ + ic)~1 in Hilbert-Schmidt. Since U~ιAnU have
the same form as An (the transformation simply replaces the atj by linear
combinations of atJ) it suffices to show An(Tθ -f ic)" 1 is compact. But we have
an explicit formula for this operator. We have

μΛ(Tβ + ic)-1/) iM= Σ 1 Kij(x,y)fj(y)dy.
j = i o

Since the functions αi<7 (x) are in L2([0, rf\) it follows the functions Kifx.y) are in
L2([0, oo]2). Hence An(Dθ + ic)~x is a kernal operator with an L2 kernal. Such
operators are well known to be Hilbert-Schmidt operators. Since the αIJ (x)->0 as
x - * o o , we have \\An -A\\ - ^ 0 as n^oo. H e n c e \\Λn(Dθ + ic)~1 - A{DΘ + ic)~1\\ ^
I I Λ - ^ I I II(^Θ + ^ ) ~ 1 I I = c " 1 | | ^ [ | 1 - ^ | | ^ 0 as n-*oo. Hence yl(Z)θ + /c)"1 is the
norm limit of a sequence of compact operators. Since the norm limit of a sequence
of compact operators is a compact operator it follows A(Dθ + ic)~1 is compact.
This completes the proof of the lemma.

Theorem 5.6 V is HOΘ compact and therefore the essential spectrum of Hίθ= Ho + V
is Qm = (— oo, m] u [m, oo).

Proof. Let η^x) be the function given by

X

for O ^ x ^ l ,

for x > l .
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Let

/exp(*h(x)) 0

V 0

A straightforward computation shows HOΘ — SDΘS + W where W is a bonded
operator since

SDβSJ ° d/dx + u) forO<*<l,
\ - d/dx + u 0 /

0 d/dx\
forx>l,

-d/dx 0 )

and this expression differs for HOΘ by a matrix of bounded functions.
Now suppose fn is a sequence so that | |/J | ^K and ||HO Θ/W | | ^K for all n

(where K is a constant) and /„ tends weakly to zero as n -> oo. We will show
| | F / J - 0 n->oo. We have | |H o β /J | = || (SDβS + W)/J| £ X. Then it follows

\\SDθSfJ ^ \\HOθfJ + \\WfJ^K + \\W\\

\\DθSfJ = WS-'SDeSfJ £ WS-'W \\SDθSfJ £ H S ^ H ^ l + | | ^ | | ) .

Hence \\DθSfn\\ is bounded and Sfn tends weakly to zero since S is bounded. Note
VS'1 satisfies the hypothesis of the previous lemma. Therefore VS~1 is Dθ compact.
Hence, since Sfn tends weakly to zero and \\DθSfn\\ is bounded we have
|| VS~ 1(Sfn) || = || Vfn || ->0 as n-> oo. Hence, we have shown F is HOΘ compact. As
mentioned earlier since V is Hoθ compact it follows that Hίθ = HOΘ + V and Ho

have the same essential spectrum. This completes the proof of the theorem.

Next we show that both Hoθ and Hlθ have no eigenvalues in the continuum,
i.e. if λ2 > m2 then λ is not an eigenvalue for Hlθ or HOΘ.

Theorem 5.7. The eigenvalues of HOΘ and Hlθ lie in the closed interval \_ — m,m].

Proof. Suppose λ is real and \λ\>m. Let

' eφ(s(x)) + A(s(x))m -λ it + kA(s(x))s(x)"1

- it + L4(s(x))s(xΓx eφ(s(x)) - Λ(s(x))m - A ^

We have det(Z(ί,x)) + t2 =(eφ(s{x)) - λ2) - A{s(x))2{m2 + /c25(x)"2) = Γ(x)2, with
Γ(x) ^ 0. As x-> oo, s(x)-^ oo, φ(s(x))->0 and A(s(x))-^ 1 and since A2 > m2 there
is an a > 0, so that Γ(x) > 0 for x ^ α. We have det (Z( ± Γ(x), x)) = 0 for x ^ α.

Let χ±(x) be two component functions satisfying

Z(±Γ(x),x)χ±(x) = 0

with the normalization conditions

and(χ±)2>0.
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Now suppose λ is an eigenvalue of H1 and / is the associated eigenvector.
Then we have (H1 — λ)f = 0. We express / in the form

f(x) = fll(x)χ+(xK"w + a2(x)χ_(x)e-inix\

X

where η(x) = J Γ(y)dy. A straightforward computation shows

where the functions W^{x) tend to zero as x approaches infinity like x~2 (i.e.
|H^-(x)| ^ kx~2 for x > α). Hence it follows from Lemma 4.3 that αf(x) approaches
a limit α, (oo) as x->oo and furthermore both the numbers α^oo) cannot be zero
unless / is identically zero for x > a. If |(/i(x)|2 -I-|/2MI2 approaches a nonzero
limit as x-^oo then / cannot be in L2. But if this limit is zero it follows that
fi(x) — 0 for all x > a. And the argument of Lemma 4.3 shows that if both
/IC^O) = 0 and / 2(x 0) = 0 for some x0 with 0 < x0 < oo, then /{(x) = 0 for all x. Hence
/ cannot be square integrable unless / = 0. Thus, λ can not be an eigenvalue. This
completes the proof of the theorem.

Theorem 5.8. For the case of neutrinos {e^m = 0) Hoθ has no eigenvalues unless
θ — π/2 and k> 1 or θ = 0 and k < — 1. For these two cases HOΘ has an eigenvalue
at zero of multiplicity one.

Proof. From the proof of Theorem 5.8 it follows for m =0, zero can be the only
eigenvalue of HOΘ. If/ is an eigenfunction for the eigenvalue zero we have HOθf = 0
or

~ Λ W = - u(x)f2(xl ~^(x) = u(x)Mx).

Both these equations are easily solved, and for k> 1 one finds fx has no square
integrable solution and f2 has a square integrable solution. Therefore, for θ = π/2,
there is an feT)(HOΘ) with HOθf = 0. For k < — 1 the roles of /x and f2 are reversed
and for θ = 0 there is an feT>(HOΘ) with HO έ >/ = 0. This completes the proof of
the theorem.

In summary we have shown the spectrum of Hlθ (for Q>M and arbitrary
k + ± 1 , ±2,. . . ,) consists of essential spectrum Qm = ( — oo, — m]u[m, oo) plus
possible eigenvalue confined in [ —m, m]. In general there will be eigenvalues in
this interval. Their existence can be established by constructing wave functions /
so that | |H l θf | |2 < m21| / | |2. We note that rough calculations have led us to conclude
that for some values of θ in the interval (π/2, π) one will find a "new" bound state
corresponding to the bound state in HOΘ (see Theorem 5.4). By a "new" bound
state we mean all but one of the bound states of Hlθ will be relatively unaffected
by θ (i.e. they will vary continuously with θ) and there will be a bound state that
suddenly appears at a θi and disappears at a second θ2. A more precise
understanding of the situation will require numerical computations.

Finally we conjecture that HOΘ and Hlθ have no singular continuous spectrum.
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