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Abstract. In unbounded spin systems at high temperature with two-body
potential we prove, using the associated polymer model, that the two-point
truncated correlation function decays exponentially (respectively with a power
law) if the potential decays exponentially (respectively with a power law). We
also give a new proof of the convergence of the Mayer series for the general
polymer model.

1. Definitions and Results

In the finite subset A of TLά we consider the collection of random variables SΛ

= {SxeJRv,xeΛ} distributed with the Gibbs probability measure, i.e.,

-β χΣΛ Φχ(Sχ)

Z~'e ^ WΛ(dSΛ), (1.1)

where Φ is a given many-body potential,

Wx(dSx) = (ί μx(dSx) exp - βΦx(Sx)) ~ x(exp - βΦx(Sx))μx(dSx), (1.2)

where μx is the a priori single spin distribution and β is the inverse temperature, ZΛ

is the partition function and \X\ is the number of points of X.
The finite volume correlation functions are

ρΛ(Sx)^Z-^WΛχx(dSΛSX)cxp-β Σ *x(Sx). (1.3)
XCΛ

] X l - 2

Our first result is the following theorem:

Theorem 1. Let Φ be a two-body potential such that

\Φxy(SxSy)\ S e~δ^J(x, y) vx(Sx)vy(Sy), (1.4)
* Supported by C.N.R. (G.N.F.M.)
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where δ is a metric on Zd such that

sup £ e-*δix>y) = D, (1.5)
xeTLd ye%d\{x}

sup Σ J(χ,y)m=J, (1.6)

J(x, y) satisfies

and vv is such that

I(β) = O(l), β^O. (1.7)

77ien there are two functions, I3(β) and ίn(j8), boί/i O(|/J8), /J->0 such ί/iaί, if

I(β)J]/βe\pDI3(β)<l, (1.8)

# / 3 <l, (1.9)

we /lai β /or βac/i A

\QΛ{Sβy)-QASx)QΛ{Sy)\ύe^^2 + ̂ ^)2e-^^l,x{β). (1.11)

This theorem eliminates the finite range assumption on the potential present in
a similar theorem in [1], leaving essentially unchanged the other hypothesis. The
infinite range case has been already considered in [2, 3], but for special classes of
systems. We refer to [1] also for a discussion on the physical meaning of the main
hypothesis (1.7) and for the proof of the existence of the infinite volume correlation
functions to which, obviously, in a suitable range of β the bound (1.11) applies. For
the use of the term exp — δ in the potential we refer, for instance, to [4].

The main idea of the proof of Theorem 1 is to use the Mayer expansion for the
polymer model associated to our system. Let us recall the polymer model [1, 5]. A
polymer is a finite subset of TLd and its activity is given by

ζ(R)=lWR(dSR)ζ(SR), (1-12)

Σ FT Σ* ΓK^' *' 5 ' 1 - 1 ) iRi> 1.

where * means that the sum runs over the K-sequences of subsets of R with |Xf| ̂ 2 ,
Xi+Xp UXt = R and, denoted by g(Xv...,Xκ) the graph on {1, ...,K} that has a
line {ij} if and only ifX^nX^Φθ, the graph g{Xv --,XK) is connected. In force of
this definition

ZΛ= Σ Σ «*!)...£(*„), (1.13)
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where π(Λ) is the set of the partitions of A. The correlation functions of the
polymer model are

ζ(R1)...ζ(Rn)=z-Λ

ίz
ΛXX

and, using them, the correlation functions of the system can be conveniently
expressed

QΛ(SX)= Σ QA&vY)$Wy(dSY)FSx(SY)9 (1.15)

where

FSχ(Sr)= Σ Σ α S Λ l ) . . C(SR>)). (1.16)
n ^ l {Hi Λn}eπ(XuY)

The Mayer series for the general polymer model is given by the following
theorem in which appears the combinatorial function φτ (truncated function) that
we define on \}n>χ9ίn, where 91 is the set of the polymers R with | .R|^2:

Λ H »>!• (U7)

gsCn {ί,j}eg

where Cn is the set of the connected graphs on {1, ...,n} and

Theorem 2. // ζ satisfies, for each integer K^.2,

sup £ |ζ(R)|^εκ (1.18)

y , (1.19)
2e

Σ -r Σ l
«=1 n ! (Ri,...,Rn)e&n

( ^ ι ) (1.20)

and the exponentiation formula holds, i.e.,

£ Λ Σ ί(KB) (1-21)
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The classical method of proof of this theorem goes back to [6] and uses the
"algebraic method" and integral equations of Kirkwood-Salsburg type [7]. (In
[8, 9] the theorem is explicitly stated for the polymer model.) We present here a
new proof of this theorem that shows the peculiar combinatorial aspects of the
Mayer series of polymers, making clearer the reasons of its convergence. Non-
standard proofs of the convergence of the Mayer series for continuous systems are
already known (see, for instance [10, 11]). The proof of Theorem 2 is in Sect. 3.
We use it to prove Theorem 1 in the next section.

2. Proof of Theorem 1

We get from (1.15), introducing the shortened notation

FSχ{T)=SWj(dSτ)FSχ(Sτ)9

ρΛ(SxSy)-ρΛ(Sx)ρΛ(Sy) = £ QΛ{xyT)FSχSy{T)
TcΛ\{x,y)

- Σ U*Ti)FSJϊτi) Σ QΛ(yT2)FSy(T2). (2.1)
TιCΛ\{x) T2CΛ\{y)

Equation (1.16) gives, putting

(2.2)

(2.3)
T.CT

and so

ρΛ(SxSy)~ρΛ(Sx)ρΛ(Sy)= £ ζ(SxSyT)ρΛ(xyT)
TcΛ\{x,y}

Γ1C^1\{Λ;,>'} T2CΛ\{x,y}
T2nTί = 0

~~ L L ζ(5xT1)ς(5yT2)ρy l(Λ:T1)^y ί(3;T2). (2.4)

We perform some obvious manipulations quite similar to the ones in [1] and
get

ρΛ(SxSy) - ρΛ(Sx)ρΛ(Sy) = !, + ... + !,, (2.5)

where

X y
TcΛ\{x,y}

Σ2= Σ Σ
TiCΛXfay) T2CΛ\{x,y}

= - Σ Σ aSxT
TxCΛMx^} T2cΛ\{x,y}
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£ 4 = - Σ Σ tt
yeTιCΛ\{x) T2CΛ\{x,y)

Σ5 = - Σ Σ a
TiCΛMx^} xeT2cΛ\{y}

Σ6=- Σ Σ ttS TJζiSyTJUxTJρM). (2.6)
yeTiCΛ\{x) xeT2CΛ\{y}

We use the following two lemmas to estimate the terms Σv ...,Σ6.

Lemma 1. In the hypothesis (1.4), (1.6), (1.7), (1.8), (1.9), we have

sup X iζmύKβfiJΫβf-Hl-jVβr1, (2.7)
x xeReB?

\R\=K

sup Σ UR)\ύe-δ{x>y)I{β)κ{jγβ)κ-'{\-J]fβy\ (2.8)
{x>y} {x,y}CRe&

\R\=K

sup X \Wτ(dSτ)\ζ(SxSySτ)\
ίχ,y) τcπd

|τ | = κ

g e * 'vx(sJt)2 + iJv^sJ,)ϊe-ί(,,),)/( j8)X(j|/^)Jf+i(1_j|/^)-i) (2.9)

sup Σ $Wτ(dSτ)\ζ(SxSτ)\
{x,y} yeTcΈd

\τ\=κ
1 . (2.10)

Proof. Our main task is to show (2.7) because the other inequalities follows from
obvious modifications of the proof of (2.7). We have

ζ(R)=$WR(dSR) Σ Π (e-βφ^s^-ί). (2.11)
geCR {x,y}eg

We use (1.4), the inequality eλt-\^t{eλ-\) for O^ί^ l , λ^O and (1.9):

geCR {χ,y}eg

geCR\{x,y}eg J

The argument of the exponential, for each geCR, is bounded by

{χ,y}cR {χ,y}cR

and so also by \J ]Γ vx(Sx)
2 in force of (1.6).

xeR

The integral is so bounded by

\eiJvx(Sx)
2



522 C. Cammarota

and, using (1.7), we have

Σ Π
geCR{x,y}eg

(2.12)

where δ(R) is the smallest length of the graphs in CR.
We observe, as in [8], that to each graph geCR and to each xeR, one can

associate at least one sequence (x l 5 ...,xq)eRq with q^\R\ such that x 1 = x ,
xί^xi+v {χvxi+\)e9i a n d if {y^z)EQ there are one or two labels ί such that
{Xi,xί+ι} = {y,z}. This implies, if (1.9) holds,

oo

Σ Σ Π (βJ(χ,y)m)s Σ Σ
q— 1

xeReM geCR {x,y}eg
\R\=K i = X,X{ Φ JCί + 1

and (2.7) follows remembering (1.8).

Lemma 2. /TΊ ί/ze hypothesis of Lemma 1 am/ (1.10) there is a function

) = O(]/j8), jS ̂ O, such that

- 1 Σ Σ
XGX yeY

and, in particular,

ρΛ(X)ρΛ(Y)
- 1

(2.13)

(2.14)

where δ(X, Y) = min δ(x, y).
xeX
yeY

Proof The bound (2.7) of Lemma 1 and (1.10) allows us to apply the exponen-
tiation formula (1.21) if we choose

and we get

It follows, then,

GO -J

Σ - Σ -
w=l n (Λi,.-.. , l ί n)e^; n

Σ

(2.15)
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The argument of the exponential is bounded by

Σ^r Σ Σ jφΓ(Λ1,...,ιucαίi) αR»)i

^ Σ Σ Σ^r Σ iφ7^!,...,#„)«*!)...cuy
xeX {x,y}cRe£% n— 1 ̂  {R\,...,Rn)e0ln

yeY 3iRτ = R

xeX {x,y}cRe
yeY

Σ
y)CR

= Σ Σ Σ \C(R)\(ί+KeκI2(β)),
^ y \R\ = K

where we have used (1.20) and we have put

(2.18)

The last expression can be bounded, using (2.8), by

Σ Σ ^+KeκI2(β))e-δ^l(β)κ{jγβ)κ-\i-J]β)^
xeX K=2
yeY

= Σ Σe~δix'y)I3(β), (2.19)
xeX yeY

where I3(β) is defined by the last equation, the series converges by (1.8) and this
proves the lemma.

In order to prove Theorem 1 we need to estimate each one of the terms
Σ 1 ? . . , Z 6 . We have by (2.9)

y
TcΛ\{x,y}

= e^ASx)- + iJvy(Sy)2 e - δix,y) j ^ β ) ^ ( 2 < 2 0 )

where I4(β) is defined by the last equation (in the same way are defined all the
functions / in the following).

We have in the second term from Lemma 2

For the term in Σ2 with Tx φ 0 and T2 Φ 0 we use the bound

Σ Σ
tί,t2eΛ\{x,y} ί i e

ί i * t 2 ό(x,
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* Σ Σ Σ Σ
tltt2eΛ\{x,y} KltK2=l ίieTiC Λ\{;c,)>} t2eT2cΛ\£x,y}

*'|Ti| = κ*' * X)τ2\^κx

2

t\eΛ\{x,y} t2eΛ\{x,y,ti)

1 Σ

(2.21)

where we have used (1.8) and δ(x, y) S δ{x, tλ) + <5(j/, t2) + δ(xTl9 yT2\ The terms with
Tx = 0 or T2 = 0 must be separately estimated. For Tx = 0 and T2 φ 0 we have

Σ Σ ιC(^τ2)|β-
f2eΛ\{x,y} ί2eT2Cyί\{x,)?}

ύ Σ Σ Σ
t2eΛ\{x,y} K2= 1 t2eT2cΛ\{x,y}

\T2\=K2

Hτ)^δ(t)

) y e-iδ(y,t2) y
t2eΛ\{x,y} K2=ί

^e-^^y)e^y^2I6(β), (2.22)

where we have used δ(x,y)Sδ(x,yT2) + δ(y, t2). The term with Tj+0 and T2 = 0
give the same contribution, while the term with 7\ = T2 = 0 gives a contribution
less than

We so get

| 2 ; 2 | ^ ^ - ^ ^ ^ ^ J V - ( ^ ) 2 + "JV-% )2/7(iS). (2.23)

The third term in (2.6) is bounded by

Σ Σ Σ Σ MSΛMs^
teΛ\{x,y) Ki,K2=l teTiCΛMx^} teT2cΛ\{x,y)

\T1\=K1 \T2\=K2

co T/ M i +K2( τi ίΈλKi + K2

< V y c-δ(x,t)-δ(y,t)ciJvx(Sx)
2 + iJvv(Sv)

2lyP) \J V P)y c c

tsΛ\{x,y} Ki,K2=l ( 1 — J\ίβ)2

<e-iδ(x,y)e±Jvx(Sx)
2 + ίJvy(Sy)

2j ^βy (2.24)

The fourth term in (2.6) is bounded by

Σ Σ lαs.Tji Σ Σ Σ IC(syτ2)i
Ki = l yeTίCΛMx} K2 = 0 ί2eyl\{x,y} t2eT2cΛ\{x,y}

\T1\=K1 \T2\ = K2
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K2 = 0 t2eΛ\{x,y)

<e-δ(x,y)e±Jvx(Sx) + iJvy(Sy)2j /β\ (2.25)

The fifth term gives the same contribution as the fourth and the sixth gives

Σ Σ lfM)i Σ Σ lC(s,τ2)i

< e - 2δ(x,y)eiJvx(Sx)
2 + iJvy(Sy)21 ^ # (2.26)

Collecting the six bounds we finally get (1.11) and it is easy to see that

3. Proof of Theorem 2

We rewrite Eq. (1.13) in the form

ZΛ=I+ΣΪΪ Σ C(RI) C(RJ
n ^ l n- (Ri,..-.;Rn)e0ln

RinRj=0,RiCΛ

= i + Σ - τ Σ «*i)..-C(ig Π ήRt>Rj)>
n ^ l n l {Ru...,Rn)e®n UJK {1,.,.,«}

and we insert in the last expression the expansion

Π ARi,Rj)= Σ Σ φτ(RhMh). .φT{RhMIκ)'
i l } K 1 { 7 / } ( { l } )

So we get, at least formally, the exponentiation formula (1.21) exchanging the
order of summation. This exchange can be done if the series

Σ "T Σ <pΓ(R1,...,RJ«R1)...C(Rn) (3.2)
n=ln- (R1,...,Rn)emn

RiCΛ

is absolutely convergent. This follows from (1.20) if we use

Σ ( - ) g Σ Σ (•••)
(Rι,.,.,Rn)e@" Rem (RU ..,Rn)e@n

RiCΛ RcΛ 3Rf = R

and the bound (1.18). In order to prove (1.20) we observe that

Σ Λ Σ |<P Γ (R 1 , . . . ,R Π )£(R 1 ) . . .C(RJ (3.3)
M=1 n l (Rlt...;Rn)e0in

lRR



526 C. Cammarota

( l+ Σ ^ Γ Σ Σ |φΓR1,...,Rπ)ΠC(Rx)l) (3-4)
\ Ri = R I

+ Σ Λ Σ |φτ(R1?...,Rπ)C(R2)...C(Rj), (3.5)
n = 2n- (R2,...,Rn)e^n~ί I

and so our task is reduced to estimate the sum

Σ \φτ{Rl9...,RXiR2)...ζ{RJ (3.6)

We rewrite this sum as a sum over the connected graphs on {1,..., n) using that
φτ{Rv -..,Rn) depends only on the graph g(Rv ...,ΛΠ). If we define the function φ
on Cn by

[feCn

we have

and so (3.6) is equal to

\φ(f)\ Σ ICίl?!)...^)!. (3.8
feCn

We use the following nontrivial bound for φ(f) in terms of N(f), the number of
trees contained in /

Proposition

For the proof we refer to [10]

Σ

\φ(f)\^N(f)

or to [13, 14].

( ) y y
V' ' */ JLJ L-i AT

From

1
ί r\\' ' '

feCn ίeTn/DίiVUJ

where Tn is the set of the trees on {1,...,n},we get

(3.8) g Σ Σ Σ \ζ(R2)-ζ(Rn)\
teTn fDt (R2,...,Rn)e^n'1

g(Ru...,Rn) = f

= Σ Σ \aR2)-ζ(Rn)\
teTn (R2,...,Rn)eMn~ί

g(Ru...,Rn)Jt

= Σ w M , (3-9)
teTn

where the definition of w(ί) is implicit in the last equation. Let us compute w(ί),
for instance, for the tree on {1,2,3,4} made by the lines {1,2}, {2,3}, {2,4}. We
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have

i Σ \c(R3)\ Σ
R2eM R3e@ RΛe0ί

R2nRι*β K 3 n i ? 2 + 0 jR 4 nJR 2 *

The sum over R4 gives by (1.18) a contribution less than

and the same does the sum over R3. We so have

x xeR2eM

We are so led to estimate the series

Σ \C(R)\\R\"
xeRem

for each nonnegative integer p and this can be done using, for instance, the bound

GO

£ κ ( 3 . 1 0 )κ=ί i — ε

that holds if ε(l — ε)~x <(e— 1)~x and follows from a simple induction argument.
We so find

Generally, for a tree ί such that the degree, i.e. the number of lines containing the

point ie{l, ...,n} is di5 we have

l^]1 'Π^-I)! (3.11)

The number of trees on {1,...,«} such that the degree of the point z is ά{ is given, by
the Cayley formula [12], by

(w-2)!

Π
i = 1

The sum over the trees can be performed summing over the sequences
(dv ...,dn)eΓn_v where 7W = {1, ...,n}, with the constraint dί + ...Jtdn = 2(n—1).
(3.9) is so bounded by

Σ
n | \1 ε / i = 2

.., + d n = 2 ( n - l ) l l V ^ ί " " 1 ; 1

i = l

» - l w-1 i n |di

(n-2)l Σ f ϊ ^ Σ ... I- (3-12)
d2+..,-+dn=2(«-l)-d1

We now need a bound of the sum over (d2,..., dn)e /"I}. This sum can be bounded,

for instance, with the sum over (d2, •••> d J e / ^ - υ - d i t n a t w e c a n denote
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Γn_ί(2(n—ί)—d1) if we define for 1

Γκ(m)

But we have, via a simple induction argument on K

mκ

and so

Finally (3.6) is less than

and Eq. (1.20) follows summing the series (3.5).
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