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and the Kubo-Martin Schwinger Condition. II*

Daniel Kastler** and Masamichi Takesaki
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Abstract. Let ω be an invariant state of the C*-system {91, G,α} on a locally
compact noncommutative group G. Assume further that ω is extremal
τ-invariant for an action τ of an amenable group H which is ω-asymptotically
abelian and commutes with α. Denoting by FAB, GAB the corresponding two
point functions, we give criteria for the fulfillment of the KMS condition with
respect to some one parameter subgroup of the center of G based on the
existence of a closable map T such that TFAB = GAB for all Λ, BG 21. Closability
is either in U°(G\ B(G) or C^G), according to clustering properties for τ. The
basic mathematical technique is the duality theory for noncompact, noncom-
mutative locally compact groups.

Introduction

This paper continues the investigation of the relationship between group duality
and the KMS condition undertaken in [1, 2] as a part of the general study of the
mathematical structure of equilibrium states. Apart from their own interest for the
description of temperature states, KMS states of C*-dynamical systems appear as
a natural testing ground for the generic features of dynamical automorphism
groups (we recall that ground states are limiting cases of KMS states for a
vanishing temperature, the KMS condition becoming positivity of the spectrum in
the limit). Specifically we ask the question as to what generic properties of a C*-
dynamical system will cause its equilibrium states, defined, e.g., as the extremal
invariant states, to exhibit the KMS structure. Although partial answers to these
questions are known [1, 4, 5] we feel that there should be more to say about
distinctive features of dynamics as automorphism groups. In particular one is
tempted to think that besides locality, a property of the quantal ergodicity type
should be a generic feature of the interaction for infinite quantum systems,
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possibly responsible, with locality, for the occurrence of the KMS structure. In
order to get a handle on such questions it seems of interest to gather alternative
mathematical formulations of the fact that a given state of a C*-system is KMS for
some one-parameter group of its isotropy subgroup. Such a criterium was given in
[1] for the case of asymptotically abelian C*-systems with an abelian automor-
phism group leaving the given state invariant. In the present paper we want to
generalize some of the results in [1] to the technically more involved and possibly
more interesting case of a noncommutative group. Namely, we look for conditions
which enable us to find a one parameter subgroup of the preassigned automor-
phism group for which the state satisfies the KMS condition. In the abelian case,
we handled this problem by making use of the Kampen-Pontryagin duality
theorem. In the present paper, we shall instead appeal to the Tannaka-Tasuuma
duality theorem for noncommutative groups. Except for this change in the basic
tool, our investigation goes quite parallel to the abelian case.

1. Framework and Notations Concerning Locally Compact Groups

Let G be a (non-commutative) locally compact group with left Haar measure ds
and modular function A :

ίd(st) = Λ(t)ds

\ 1ds [ }

and set Lp(G,dx) = Lp(G), 0 < p ^ o o . We consider the following diagrams of
*-homomorphisms all of which but one are injections1

(a)

(b)

The algebras (a) are injected into L^iG) as *-subalgebras of the latter endowed
with its usual structure as a von Neumann algebra (i.e., with the pointwise product
of functions and their complex conjugation ~): These algebras are thus abelian.
C^iG) is the algebra of continuous functions on G vanishing at oo, B(G) the linear
closure of functions of positive type on G (the Fourίer-Stieltίes algebra), the Fourier
algebra Λ(G) consists of the convolution products of two elements of Jf7 = L2(G).

1 The map sending C*{G) into M(G) is injective if and only if G is amenable. The involution is

noted ~ for the algebras (a) and * for the algebras (b)
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The algebras in the diagram (b) are noncommutative, they contain as a dense2

*-subalgebra the group algebra L1(G) with the convolution product

(f*g) (s) = j f(t)g(r ^dt = J f(st)g(r ι)dt (2)

and the involution

f(^τ). (3)

M1(G) is the set of bounded regular measures on G with the convolution oϊ
measures as a product, C*{G) the group C*-algebra [the C*-envelope of Lι{G)\
and 0&G) the weak closure of L\G) in its regular representation λ:0t(G) = λ(L1(G))"
= λfQ, where

ξeL2(G), s,teG (4)

feL\G). (5)

In addition to the left G-translations (4) we shall consider the right G-translations

ρs(ξ)(t) = ξ(ts) (6)

of arbitrary functions on G.
The above algebras appear in the following pairs (J/, &) of algebras of different

types (a), (b), one of which is the strong dual of the other3:

(A9Λ = A*)9 (#„, M 1 = if * ) , (B = (C*)*, C*), (L00 = I}\ Lι). (7)

The duality form for such pairs will be noted

(a,b), aejzf, be^, (8)

in particular, for J / = L°° and J* = L1 4

$ (9)

The definition of A as L2*L2 follows from the more natural definition as the
predual of the von Neumann algebra M [or equivalently as the set of bounded
linear forms on L1(G) or C*(G) normal for the regular representation λ] : since & is
standard each of its normal states is a vector state, it follows thus by polarization
that A consists of the following "dyads" \η)(ξ\ : 5

<\η)(ξ\,b>=(ξ\bη)9 η,ξeL\ be®. (10)

For a = λ(u), ueL1, this reads

<\η)(ξ\Λu)>=Sξ(sMt)η(t-1s)dsdt

= !(ξ*η*)(t)u(t)dt, (11)

2 Either in their weak'or in the weak * topology

3 We shall henceforth omit in the symbols (a), (b) the explicit mention of the group G given once and
for all
4 See below for the definition of" and Λ

5 (f\g) denotes the scalar product in Jf = L 2 considered according to the physicist's convention as
linear in a
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where /" denotes the function

Γ(ί) = / ( r 1 ) , teG. (12)

We note that the map (12) is an involutory isomorphism of each of the algebras
si of type (a). We denote byΛ the involutory antiisomorphism of the corresponding
algebra & obtained by transposition

(13)

We have, for J* = lΛ

f\s) = A(sΓ1f(s-1), feL1, SEG. (14)

We shall also consider on the algebras M the operation ~ given by

b=φ*γ=(bγ9 be@, (15)

coinciding on Lι with complex conjugation.
We recall the known fact that for each of the algebras si, $ in (a), (b) the

involution is continuous and the product separately continuous for the topology
σ{si,0S\ respectively σ(β,si\ The G-translations (4), (6) leave the algebras s/
invariant and are σ(si, ^-continuous, so that we may define

whereby λs on & = L1 is consistent with (4) whilst λ's = A(s)ρs.
In the proofs to follow we shall treat in a uniform manner the pairs of algebras

(si, 81) in (7). It is therefore appropriate to cast our assumptions in the following
abstract manner subsuming the above facts.

Definition 1. We say that two Banach * algebras si and J* are in duality if the
following conditions hold:

(i) si = @* or J* = J / * ;

(ii) for each aoesi, the maps aesi^aQaesi and aesi^>aaoesi are both
σ(si, ^-continuous

(ii') for each boe&, the maps be&-^>bobe@ and be^^>bboe^ are both
/)-continuous

(iii) the antilinear involutions ~ oisί, and * of &, are respectively σ(si, 3$)- and
/^continuous.

Assumptions. With the notation introduced above for the locally compact group G,
we assume the existence of a diagram

(17)

fulfilling the following conditions:
I) si and $ are Banach * algebras in duality.

II) π, π^, and π, π^ are pairs of adjoint maps; and π^, π, π^ are
*-monomorphisms, whilst π is a *-homomorphism.
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III) π°π^ is the canonical embedding of A into L00 πoπ^ = λ, the regular
representation (5) of L1.

IV) The group G acts on si bilaterally as follows

s9teG, aesi. (18)

V) si possesses a σ(si, ^-continuous involutory automorphism" , thus
inducing in J* as in (13) a transposed involutory antiauthomorphlsm \ and one
has

(19)

where " and Λ on the right hand side are the involutions (12) and (14) of L00,
respectively ZΛ

For more clarity we shall use different notations for the products in si and £8:
the former will be denoted a1 a2 (corresponding via π to the pointwise product of
functions), the latter b1b2 (coinciding on L 1 with the involution).

Property (ii) allows us to define as follows an action of si on M

(20)

Property (ii') on the other hand yields as follows a right and a left action of $ on si

aesi, bl9b2eόl. (21)

We end up this section with three lemmas stating intuitive technical facts
needed in the sequel.

Lemma 1. For fsL1 we have

ίλf(a) = J f(s)λs(a)ds = π

\
a

ρf{a) = I f(s)ρs{a)ds = aπ^ff.

Proof. We have, for geL1

= f f(s) (λs(a), πjjg)} ds

= tf f(s)g(t)π(λs(aMt)dsdt

= tff(s)g(t)π{a)(s-it)dsdt

= N f(s)g(st)π(a) (ήdsdt = <π(α),

The second relation in (22) is checked similarly.

Lemma 2. For b e ^ , ξ, ηe^C we

ι j
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Proof. We have, for bγ

= <\ξ)(φ*)η\Mbi)>

)|}A> (25)

The proof of the second relation (24) is analogous.
Let i be the natural imbedding of 2tfc\U°{G) into L°°(G). When a function

gives rise to a bounded operator as the convolution from the left:
*g, we denote the corresponding operator by λ(f). Of course, λ(f)

belongs to St(G).

Lemma 3. Denote by J^o the subset of 2tf consisting of the convolution products
f*Q > f 9 compactly supported continuous functions on G. We have, for be& and

= π(b~ao), (26)

where a0 is the element of s$ such that i(f0) = τc(a0) and

λ(π(b)fo) = π(b)λ(fo). (27)

Proof Let fo = η*ξ\ η, ξe^κ(G). We have according to (11)

(π°πj{\ξ)(η\} = i(η*ξ"), (28)

thus

aQ = π*{\ζ)(n\), (29)

hence, by (24)

fcαo = πl|({|f)(π(6 )f/|}, (30)

thus

π{Ka0) = πoπ J \ξ) (φ*)η\} = i(π(ft*>/*O = i{π{V)f0). (31)

We proved (26). Now, for any xe$i(G\ g^^f0, we have

(χfo)*g=λ'(gW=xXW - *f**9), (32)

since λ'{g)eM(G)\ so that xf0 is left bounded and λ(xfo) = xλ(fo). Thus (27) follows.

2. The Operator Γ: A Duality Theorem

In this section T denotes a σ(jtf, ^)-closed linear operator on $$ with
dense domain 3). We consider the properties

(i;) Qs{β)Q®\ and Toρs = ρ soTfor all seG
(T[) λs(3f)C9\ and Toλs = λs°T for all seG
(T2) ^ - ^ C ^ ; and Γ(α1α2) = Γ(α1)T(α2) for all al9 a2e@.
In what follows we seek to characterize such operators T.
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Lemma 4. Let T be σ(jtf, $)-closed with σ(j/, &)-dense domain 3) and denote T\
with domain 2\ the adjoint of T on $
if (Tx) holds one has

(i) 2Sfc2\ and
(ii) 2'0ίz&; and

if (T[) holds one has
(i') SS3fZSf; and T(b'a0) = b\Ta0),

(ii') gg&C®1 and Γ(bbo) = b(Γbo)9

if (T±) and (T[) both hold one has
(ii") r(bob1) = bo(r
(iii) sίΘ^c2; and
(iii') S ' V C ® ; and Ί

if (T2) holds one has
(iv) ( T ^ ^ 'C®'; and

Proof (i) and (i;): let aoe@, k f . By the closedness of T, and (TJ, respectively (T[\
one has for feL1 that ρf@C@, T°ρf = ρf°T, respectively λf9>c3>, T°λf = λf°T.
But Lemma 1 tells us that ρf and λf are the right, respectively, left, multiplication
by π%(f)\ respectively π*(/T Since the latter are dense in gg, b can be approxi-
mated by sequences π^(fnY, respectively nj^f^f, fnEL1, yielding

respectively

ή*(fnTa 7 ^ bao T(K(fJao) = K(fJTao -^r^ b(Ta0), (34)

whence (i), respectively (i')} by the closedness of T.

(ii) and (ii'): we have, for α o e ^ , boe& and beΘ, using (i), respectively (i'):

<7α0, bob) = <(Tao)b\ b0} = <T{aob\ b0} = (aob\ Γ6 0 >

=<flo,(rbo)&>, (35)

respectively

< Tα0, bbo> = <fc'(Tα0), b0} = < TXfe'flo). foo> = <*>'«<» Γ ' f eo>

= <αo,6(Γfto)>, (36)

(ii"): follows from (ii) and (ii').

(iii) and (iii'): we have, for aestf and bo,b1e3>', using (ii')

(aV0, TbJ = <a, (T'bjbo} = <α, b^Tb,)} = (aiTbJ^,) (37)

and

<b'ΰa, Tb,} = <α, fco(r^)> = <α, (ΓfeoJfe!> = <(Γ'bo)'α, fo^. (38)

(iv): we have by (T2), for α l 5 α 2 e ^ and boe2>'

(39)



162 D. Kastler and M. Takesaki

Lemma 5. Let T be as in Lemma 4 and assume (7^), (T[), (T2). Let further S>00 C @0

and @*0 C ®0 be defined as

(40)

(41)

where [ ] indicates a linear closure and Jf0 is as in Lemma 3. There are mutually
adjoint closed operators ΊΓ, ΊΓ* on Jf, with domain ^ T D ^ O , respectively 2τ*D2*,
such that

T'h0T}f, (42)

or

τ*(π(bo)f) = πΓ^' ' J—' b°e®' ( 4 3 )

Furthermore 3>00 and S>^0 are cores of T, respectively T* on which T and T* are
related as follows with T, respectively T: we have

and

= π(Tα), / e ^ 0 0 , α e ^ such that π(α) = ί(/)

and

and

U(T*π(6)/) = π(Tb)λ(f), fe Jf0, be®\ ^

where T is defined by T'k= T'k, ke&. Finally T is affiliated with the center of
and one has, with W:L2(G x G)^L2(G x G) defined as in the appendix

(46)

Proof We first show that @0 and ^ * are dense in Jf: if gre Jf is orthogonal to ^ 0

(respectively ®$) we have indeed, for all feJί? and boe^;:

0 = (#, π(&o)/) = < \f)(g\, ΦΌ)> = <\f) (g\Mbo)> >

(respectively 0 = (φo)f\g) = < \g) (f\9 Ko) = { \g) {f\\ b0)).

Thus, by the σ(β,sf) density of 2' in 38, |/)(gff=O (respectively |gf)(/)Γ=O) for all
, thus gf = O.

Now we notice that, for fi f'eJ/f and fco,b1e^/

*//) (48)

as immediately follows from Lemma 4: this shows that the relations

coherently define closable linear operators To, So with domains ^ 0 , respectively
2%, such that So C T*, To CSJ. Let T = T** and § = S**. Then T C §* and § C ΊΓ*.
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We next check that ^ 0 0 , respectively ^*o> a r e c o r e s of TΓ, respectively § : With
, let the {/B}CJf0 be a sequence such that \\fn-f\\2-^0, we have, for all

(50)

[respectively π ( ^ 0 ) * / n ^ ^ π ( ^ 0 ) * / ,

whilst

Properties (44) and (45) are easily checked from the definitions (42), (43) taking
account of Lemma 3. Let / e ^ 0 0 , we have f = π(b"0)f0 with /oejfo, thus, by
Lemma 3, i(f = π{boao), aQesf such that π(αo) = ΐ(/o), whereby a = blaoe@ by (iii')
in Lemma 4. Now, by (42) and (26).

On the other hand let he@$Of we have h-π(bo)fo, thus by (43) and (27)

(53)

Now (44) and (Tr\ (T2) readily imply that S)oo is right and left G-invariant and
that T commutes with λs and λ's, then T is affiliated with the center 2£ of @t. Hence
§ = T*.

We now proceed to prove (46). Since two closed operators affiliated to an
abelian von Neumann algebra, one of which extends the other, must coincide, it
suffices to (46) with the equality sign replaced by C. For this in turn it suffices to
show that

(54)

or that both sides of (54) have the same scalar product with h®k, heS)%0, ke Jf.
Taking account of (A3) in the appendix, this comes to

j£jfΓ £gj (55)
We shall need to know that

Hφ φmrΦΛφHnπtf))), Ψ^A{G), be®, ξeH0, (56)

indeed, for ψeA{G),

φ)ξ),ψ)} = (,φ λ(π(b)ξ),ψ} by Lemma A6

= (λ(π{b)ξ), φψ} = <π(b)λ(ξ), φψ} by (27)

= <π(bπ*(ξ)l φψ} = (Jbπjiξ),
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Now on the one hand, with aest, such that π(a) = i(f) and be@'9 ξeJ^o such
that π(b)ξ = h, we have

(56)

And by (44), (45), (Ta)-MJξ)e(m) @'c& [cf. Lemma 4 (iv)], thus λ(Ίf
h ) k @ * @ d

- h)k = π(T(Ta-bπ^ξ))k

= π(a Tbπ^ξ))k. (58)

On the other hand, we have, by (56) and (45),

= π(a (T'bπ^ξ))k; (59)

we proved (55), i.e., (46).
From this and Theorem A5 in the appendix now follows

Theorem 6. Let G be a locally compact group, with s$ and & a pair of Banach
algebras in duality satisfying assumptions I through V above (for example one of the
pairs in {!)). Let T be a linear σ(stf\@)-closed operator on srf with σ(stf', &)-dense
domain Q) fulfilling properties (7^), (T[), and (T2) above. Then there exists an element
s0 in the center ££(G) of G and a continuous one-parameter subgroup {g(t}} of
such that for every aeQ) and seG there is a ueHco(D\ D={ze<£; — l ^ I m z ^
such that

MO = Λ(α)(0(O-1s)
(t)-15)' '

Conversely with G, stf and $ as above, soeG, and {g(ή} a continuous one-
parameter subgroup of G, there is a unique densely defined closed operator T on si
such that for every a in its domain and seG we have a ueH^iD) giving rise to (60).

For the proof we need the three following lemmas.

Lemma 7. With the assumptions of Theorem 6, let

and Tπ^{φ)eπ^Λ)}

and Tπ^fteπ^L1)}. l j

Then £)A is a dense sub algebra of A and &Ll is a dense ideal of L1. Furthermore the
linear operators TA on A and TLi on L1 defined by the following commutative
diagrams are both closed

ύ/) ΎA v A ύ/)' Tί! > T 1
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The closed operator TLoo on L00 defined as the adjoint of TLl then gives rise to the
jollowing commutative diagram

(63)

the domain 3LO0 of TLoo containing π(β) as a core.

Remark ί. It follows that T'L, is the adjoint of TLOO and that TLOO fulfills the
conditions (7^), (7]), and (T2) with J / = L°° and J> = Zλ The conclusions of
Lemmas 4 and 5 thus hold for T=TLoo, Γ = T[ί9 J / = L°° and ^ = Zλ

Remark 2. Diagram (63) shows that the direct statement in Theorem 6 holds for the
dual pair (si, di) and the operator T if it holds for the dual pair (L00, L1) and the
operator TLOO: indeed for any ae@, (π(a),π(Tάj) belongs to the graph of TLao.

Proof of Lemma 7. Since Graph TA = (π^xπ^)~1 Graph T and Graph ΓL1

= (#* x π * ) " 1 Graph T, closedness of TA and TLi follow from that of T and V.

Now we have the inclusions

^ifanJ'^Woo)}, (64)

^ O i ( T ® 0 0 ) . i ( ® * 0 (65)

from which the density of <2)A and 3ϊ'Ll follow: indeed the preimage of i(β00) for
n°n^ is evidently dense in A. And i ( ^ 0 ) ΐ(TΓ^00) is dense in L1 since 3)%0 and
T ^ o o are dense in Jf (the latter since ^ 0 0 is a core of the nonsingular operator T).

We prove (64): let / e ^ 0 0 , aestf and φeA with fc(a) = ί(f) and π#(φ) = α. By
Lemma 5 π(Ta) = i(Έf\ thus π(7^) belongs to (π*π^)(A\ thus Tα belongs to n^(A).

We prove (65): We first claim that

πβ{φ)\π{b)ξ)) = π^φy{bπ^ξ)), φeA(G)nL2(G), be®,

ξeL\G)nL2{G). (66)

In fact, if {/J is a net in LX{G) such that {πJJk)} converges to b in the σ(@,j/)-
topology, then λ(fk) converges to π(b) σ-weakly, so we have, for aes/,

=lim<π(α)ί(φ), λ(fk)ξ)

WM I Φ)ξ)
= (π(a),i(φ)-(π(b)ξ)y.

Hence (66) follows. Let h = i(Έf)-(π(b)ξ) with fe3)00, beO)' and ίejf o . Since
Ί:feL2(G)nA(G), we have, with αeja/such that π(α) = ;'(/),

= π,(π( Γα) π(ft)ξ) = Ta • (bπ(ξ)).
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Thus π#(Λ)6(7®) ®'C®' (cf. Lemma 4); and

T%(h) = a [(Γfe) π,( £))] = π # (*(/) (π(T b)ξ)). (67)

Lemma 8. ̂ i contains a bounded approximate identity of L1.

Proof. For each relatively compact neighborhood U of the unit eeG, set

ds, (68)

(χv the characteristic function of U): we thus get an approximate identity of {ev} of
L1. Now, by the density of 3)'Lι in L1, there are elements fve^'Li such that

\\fυ-eυ\\x^\U*)dx and H / J ^ l . (69)

Obviously {fv} is a bounded approximate identity of L1.

Lemma 9. i(S 0 0 ) is # core o/ TLoo.

Applying Lemma 4 (i), (iii') to TL00 and T[ι we have that, for fe&^ and

LOO, fue ^Loo and

rL.( A)=f\τL a ou)=(Γ^/r^. (70)

With {/y} the approximate identity described in Lemma 8, ueS)L<x and geL1, we
have

1>(u,g) (71)

whilst, from (70)

<T L O o(/^), g) = <fv(TL^l a) = <TLΰOu, fvg) ^ <TLooι/, βf> . (72)

Thus 0£i0Loo is a core of Q)L^ Now let fe2f'Li and ue@LO0. Since i(Jf0) is
^(L^^^-dense in L00 there is a sequence {ξj]CJ^0 with i{y-rz~^M- We have

then, for all geL1

j gy = <i(£j), /flf> T Γ ^ <w, Λ> = < A , ^> (73)

whilst, from (70)

• — > (u£ΓLif)g> = <(TLlfTu, g> = < T L 4 / H g> (74)

We proved that @Lii(3#Ό) = i(900) is a core of TLOO.

Proof of Theorem 6. By the Duality Theorem (Theorem A5 in the appendix) there
exists an soeG and a one-parameter subgroup {g(t)} of G such that

υ=λso; \Έ\u = λm9 ί€», (75)

where T = UJ|ΊΓ| is the polar decomposition of T. Furthermore, since T is affiliated
with the center of ^ , s0 and {g(ή} are both central. The domain Q)τ of T then
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consists for all those fe H such that the //-valued continuous function

m (76)

admits an extension to a bounded continuous function zeS->f(z)eJ^ on the strip

S={zeC;-l^Imz^O} (77)

which is holomorphic in the interior of S. We then have

ίeR. (78)

Let now fe@00. We noted that Lemma 5 applies to the case stf' = LCO, ϋ8 =
T= TLoo: (44) then yields that ί(f)e@LOO with

(79)

Thus if we set

F/ i S(z) = i(/(z))(s), seG, zeS, (80)

we have, by (18), using the fact that i°λg = λgή, geG, that

Ffβ) = ί(λg(t)f) (s) = i(f) (gity's), seG, teR, (81)

whilst

F / § s(ί - 0=ί(λgi t )\τ\f) (s) = ί(λgit)λSo- ,
1 seG,

. (82)

We have thus established property (60) for T= TLao and the elements of JZ? = LCO

belonging to i(@00). In order to extend this property to all elements of ̂ L o o we now
use the fact that {λg{t)} acting on Z,00 is a bounded continuous one-parameter group
and this gives rise to the analytic generator in the sense of Cioranescu and Zsidό
[11], a σ(IJ°, L^-closed operator U( — i) with domain consisting in all /eL 0 0 such
that t^λg{t)f admits an L00-valued bounded holomorphic function F(z) on S, with

U(-i)f = F(-ί). (83)

The above discussion shows that

. (84)

Since i(@>00) is a core of TLOO, λSQU(—ί) is an extension of TLaΰ. Therefore, if
there exists an L°°-valued bounded function F on S, σ(L°°,L^-continuous on S
and holomorphic in its interior, such that

F(t) = λg{t)f Fit - ΐ) = λg{t)λ;o' Tf, t E R . (85)

Let Φ be a left translation invariant lifting of L00 to J^00 [13].6 We then set

Fs(z) = Φ(F(z))(s), seG, zeS. (86)

6 if00 denotes the algebra of bounded measurable functions (defined everywhere without identifi-
cation modulo null sets)
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Since Φ is a norm-continuous isomorphism of L°° into the algebra of bounded
measurable functions on G, Fs is holomorphic inside S, and we have

{ή λs).

We ended the proof of the direct statement in Theorem 6 (cf. Remark 2 above).
The converse part of Theorem 6 is obtained by taking T=λSQU(—i\ U(—i) the

analytic generator of the automorphism group t^>λg{t) of s$ [11].

3. Density of the Two-Point Functions of Invariant States

Our two last sections are minor modifications of the corresponding sections of [1],
of which we adopt exactly the notation and definitions, G being now a (noncom-
mutative) locally compact group.

For the discussion preceding Propositions 3.4 and 3.5 of [1] to go through in
the noncommutative group case we have merely to replace the assumption
Sp U = G by the following corresponding requirement:

(R) The unitary representation U contains weakly the regular representation
λof G.

The above-mentioned propositions now generalize to the following density
results for the two-point functions of invariant states:

Theorem 10. Let ω, with the notation of [1, 3] be an invariant state of the C*-system
{2I,G,α}. We have that

(i) £F (or ^, or f, or $) is weak * total in B iff (R) holds.
(ii) these sets are even weak * dense in B if we assume in addition the existence

of an action τ of a locally compact group H on 21 commuting with a and such that ω
is τ-invariant and τ-clustering.

Theorem 11. Let again ω be an ̂ -invariant state of the C*-system {21, G, α} with the
notation of [1, 3]. And assume the existence of an action τ of an amenable group H
on 21, commuting with α5 ω asymptotically abelian, and for which ω is weakly τ
clustering. If (R) holds the sets 3F, 0, f, and g are all weak * total in L°°. These sets
are even weak * dense in L00 if ω is τ-clustering.

4. Criteria for the KMS Property

The argument of [1, Sect. 4] are valid for the following generalization, to the case
of a non-abelian G, of Theorems 4.1 and 4.3 in [1].

Theorem 12. Let ω be an a-invariant state of the C*-system {2ί,G, α} with the
notation of [1, 3] and assume that (R) holds. Assume further that ω is extremal τ-
invariant for an action τ of an amenable group H on 21 which is ω-asymptotically
abelian and commutes with oc. Let (jtf, @) be one of the pairs (B, C*) or (L00, L1). If
there is a closable linear operator To in jtf, with domain the linear span of #" (f), such
that T0FΛB = GAB{TofA = gAB) for all v4,£e2I, then ω is KMS for some continuous
one-parameter subgroup of the center of G - and conversely.
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These conclusions are maintained under the following alterings of
assumptions

(i) τ is assumed τ-invariant and τ-clustering (instead of merely extremal
τ-invariant).

(ii) To is merely defined on #Xf) and closable in sd (the linearity assumption for
To and its domain is suppressed).

The fact that the KMS condition implies in turn the existence of the operator
To follows by taking, for the letter, the restriction to #"(f) of the analytic generator
of Cioranescu and Zsidό [11].

We conclude with a comment on the physical context of this paper. Our
general aim is a description, within the field-theoretic frame proposed by Rudolf
Haag, of the general features of thermodynamical (i.e. finite temperature) equilib-
rium states. Haag's scheme for local physics consists in the representation theory
of a C*-algebra endowed with a relativistic local and automorphic structure [an
inductive limit of local algebras with the natural inclusion and (space-like)
commutativity properties, acted upon by the Lorentz group equivariantly with
respect to the local structure]. In this scheme equilibrium states are defined as the
extremal invariant states for the one-parameter groups of time-like translations.
The first main challenge of the theory is then to give a basic explanation for the
occurrence of the KMS condition universally observed in this context (the so
called Gibbs structure - the positivity of the energy in the vacuum representation
is a limiting case). Since the Gibbs structure is shared by relativistic and non-
relativistic situations, we expect an explanation based on the automorphic
rather than the local structure - in fact on these features of the automorphic
structure common to relativistic and non-relativistic situations. This actually
happens for the two kinds of explanations proposed thus far, based on the
postulated dynamical stability, resp. the passiveness, of the equilibrium states [4,
14]7. Now these derivations relate the hitherto mysterious KMS condition to
physically necessary properties of the equilibrium states, and thus provide a
physical understanding of the Gibbs structure. However the problem remains to
explain the latter from basic properties of the interaction. It thus seems worthwhile
to try and reformulate the KMS property in a way hopefully more closely related
to these basic properties. In this connection we pursue the project of deriving the
Gibbs structure from a combination of locality (here technically asymptotic
abelianness) and a modernized form, stated within the algebraic quantum context,
of Boltzmann's ergodicity (pervading nature of the interaction). The latter
property is clearly a general property of physical interactions, hitherto in-
sufficiently exploited, and which could tentatively be expressed as an "in-
splitability" of the dynamical C*-system - or the presumably related fact that an
appropriate subgroup of the Lorentz group already contains the automorphisms
with which it commutes (few constants of the motion). We hope that the result
presented in this paper relates to such a program, since we believe that the

7 Passiveness is a condition related to the second principle of thermodynamics. We do not mention
here the explanations based on extremum principles - confined to models of the (hopefully provisional)
absence of the entropy concept in the algebraic frame. We recall that the fact that KMS is for a mixture
of time and gauge on the field algebra is well understood algebraically [3, 15]
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existence of the map T:FAB-+GAB is connected with ergodicity (as a tightness
condition - this however still has to be demonstrated). The present extension of an
earlier result to the non-commutative group case is motivated in this context by
the possibility that ergodicity should only hold with respect to non-abelian
subgroups of the Lorentz group (possibly the whole Lorentz group).

Appendix. Duality of Locally Compact Groups

This appendix, added for self-containment, describes the duality of locally
compact groups (Tannaka, Stinespring, Eymard, Tasuuma, Saito) in an operator-
theoretic spirit.

Theorem Al. Let G be a locally compact group, let Jtf?®2 = L2(G)®L2(G)
= L2(GxG\ and let W'.J?®2^^®2 be the operator

{Wf){s,t) = f{s,st)9 feie®2, s9teG. (Al)

Let furthermore & be the set of nonvanishίng bounded operators on J4? = L2(G)
fulfilling

W(T®T) = (T®ί)W. (A2)

We have & = {λg; geG} the set of representatives of G in its left regular
representation.

We prove this theorem by establishing a succession of lemmas.

Lemma A2. λse^ for all seG. Consequently λ is quasiequivalent to λ®λ, and Λ{G) is
a *-subalgebra of B(G).

Proof For feJtf®2 one has {λu®λu)f(s9t) = f(u'1s9u~iή thus W(T®T)f(s,t)
= f(u~1s, u~ίst) = (T®l) Wf(s, t). Since 3t(G) is a standard von Neumann algebra,
each of its normal forms is a vector form, thus λ®λ~ λ implies that the set A(G) of
normal forms is multiplicative.

Our next lemma states properties of the operator W.

Lemma A3. The operator W defined in (Al) is unitary belongs to the von Neumann
tensor product m{Lco{G))®M{G) (where m is the representation of L^iG) by
poίntwise multiplication on Jίf); commutes with C (where Cf = f); and fulfills the
property

= (g\λ(f h>k), (A3)

where g*k"eA(G) and f-heL^G).

Proof One has obviously W* = W~1 with

W-1f(s9t) = f(s9s'1t)9 s9teG. (A4)
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We recall that the commutant M'{G) of &(G) is generated by the λ's, seG, where8

(Kf)(s) = A(r)ll2f(sr), r,seG. (A5)

Now W commutes with t®λ's, seG:

W(ί®K)f(s, t) = A(r)V2f(s, str), fe ^ , r,s,teG

= (l®λ'r)Wf(s,t). (A6)

Our claim that W belongs to m(Lx(G))®^(G) then follows via maximal abelian-
ness of L°°(G) from the fact that W commutes with all mg®% #eZ,°°(G), where

mgξ(s) = g(s)f(s)9 geL°°(G)9 ξeJf, seG. (A7)

Indeed

(mg®t) Wf(s, t) = g(s)f(s, st) = W(mg®t)f(s, t). (A8)

W obviously commutes with C. On the other hand

(W(f®g)\h®k)= lf(s)g{st)h{s)k{t)dsdt

= l(Jhβ*k)){s)dx, (A9)

(A3) thus follows from (11).
The next lemma shows that ^ consists of unitaries of 0t(β) acting multipli-

catively on L1(G)nLco(G).

Lemma A4. The set & possesses the following properties

(i) let T,Te<& with T=U\T\ be the polar decomposition of T9 let T=CTC:
then TT, T*, T, \T\, U belong to &, and so does T~ι if it exists;

(ii) ^C^(G); thus_T{f*g) = (Tf)*g, Te$, feJf, Διt2geL\G);
(iii) let Te$ with T* = T. One has

thus
f. Th=TT{f Th}, /, heL2{G)πL™{G) (All)

(iv) each self adjoint projection in & coincides with 1
(v) ^ is a group of unitaries in 0l(G) commuting with C

(vi) each Ue^ leaves invariant the * subalgebra L2(G)nLco(G) of L™(G) on
which it acts multiplicatively:

U(f'g)=Uf'Ug, f9geL2(G)nL">(G). (A12)

Proof (i): the facts that TT, T*, % and T " 1 if it exists, belong to 0, are
immediately obvious from (A2). Let T= U\T\ be the polar decomposition of Γe^,
since we have

W*(U\T\®l)W=W*(U®t)W-W*(\T\®t)W

(A13)

In the appendix λ's is defined in a way which differs from that of the main text
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with equality of the right supports of W*{U®ί)W and W*{\T\®±)W, resp. U® U
and |T|(x)|T|, the uniqueness of polar decomposition implies that \T\, U satisfy
(A2): since they do not vanish, they belong to ^ .

(ii): we have, for Te^ and seG

W*(T®i) (t®λ's) W= W*(ί®λ's) (T®ί)W, (A14)

hence, by (A2) and the fact that J¥em(L°°(G))(§)^(G),

(A15)

i.e. T®(Tλf

s-λ'sT) = 0 whence Tλ's-=λ'sT since TφO.
(iii): we have, for fheL^nL^iG), g,kej^, using (A3) and (ii)

(A16)

whence the first equation (A10). The second follows exchanging T with T and /
with h; and the combination of both yields (All).

(iv): let E be a self-adjoint projection in ^ : applying (All) to EΛ we have

mfEh = EETnifEh, / heL\G)nL™(G). (A17)

Thus mfEh = EnιfEh, whence, by density, mfE = Emf and Eem(L^(G))'
= m(Lco(G)). Thus, by Lemma A3, E®1 commutes with W, hence (A2) with T=E
yields

W*{E®i)W=E®i = E®E. (A18)

Thus E®(E-i) = 0, whence E = ί since £ φ θ .
(v) let Te^ have the polar decomposition [/|T|, so that [/, \T\e$. By (iv) [/*[/

= UU* = 1, U is unitary. Thus, T*, and 7̂ , have dense range, thus (All) implies
that

i=rτ= |TΓC/ Λ l / |T | (A19)

hence that || |T 11| ̂  1. Analogously \T\~1 ^ 1. Since |T| ̂ 0 we must have \T\ = 1: we
proved that T= [/ is unitary. Now from UΛ= U~ \ but IΓ= CU*C = CU~XC, thus
U commutes with C.

(vi): from (A10), we have, for /jfieL^GJnL^G), since [/ is unitary,

\\(Uf).h\\2S\\f\\oo'\\h\\2- (A20)

Thus N^ll = || 17/11^^ 11/11 „ and 17 leaves L2(G)nL°°(G) invariant. Furthermore
since, as we saw in (v), [Γ=l/~\ the first equation (A10) with
g = TheL2(G)nLco(G) yields (A12).

Proof of Theorem Al. We now endow the subgroup ^ of the unitary group of
£%(G) with the topology inherited from the weak-*-topology of the latter. ^ is then
locally compact since it was defined as #\{0}, # the closed subset of the weak-*-
compact unit ball of 0&(βtf) singled out by requiring (A2). 0 is furthermore a
topological group under this locally compact topology as readily follows from the
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following facts: on the unit ball of &(G\ the weak-*-topology of the latter
coincides with the weak-operator topology, which coincides in turn on unitaries
with the strong-operator topology due to the fact that

(U- Uor(U- U0) = (U*- U*)U0 + C/*(C/— Uo) (A21)

for U and Uo unitary. Now the strong operator topology makes ^ a topological
group, since, for U, V, Uo, Voe^ and ξe Jf

- U0V0)ξ\\ g | | ( 7 - V0)ξ\\ + | | ( l /- Uo)Voξ\\

W

We thus reached a situation where ^ is a locally compact group, with λ:G-*& a
continuous group monomorphism: we now want to show that λ(G) = (3. For this
we use as a technical device the following construction of the Haar measure of 0 in
terms of A{G\ Since ^ C ^ ( G ) we can embed A(G) as follows into <β J&Y if we set

α(U) = (α,U}, αeA(G), Ue$, (A23)

a appears as the restriction to ^ of a continuous function on # vanishing at
infinity. Now fix ξ.ηeJ^ so that ξ ^eLHG): by the Riesz theorem there is a
Radon measure μηξ on ^ such that

(α,λ(η ξ)}= $ α(U)dμηξ(U) = (η\m(α)ξ), (A24)

where the last equality follows from the fact that, if α = \g)(f\ with f,geJ^ the
above expression equals

(A25)

as easily checked using (All). Now we have the property

^(φ-ηHψ-ξ^Ψ'Ψ^ηξ^^^φψ^ *l> t ψ, ψ£ & ̂ A{G) , (A26)

indeed, in that case, for αeA(G)

(A27)

Using (A26) in the form \φ\2dμηξ = ηξdμφφ we see that, since the support of μφφ is
included in that of φ, we can define

1
dμ=-—Jdμa)Φ, φeJίfnA(G)9 (A28)

\φ\

thus obtaining a Radom measure on ̂  fulfilling

dμηξ = η ξdμ, η,ξeJ^nA(G), (A29)

i.e.

j η(s)ξ(s)a(s)ds = J η(U)ξ(U)a(U)dμ(U) = (η\m(a)ξ),

aeA(G), η,ξejenA(G). (A30)
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We now show that μ is a left Haar measure of ̂ . We have indeed, for Uoe$, using
the allowable limiting case a = i in (A30) and taking account of Lemma A4, (v),
(vi):

= !<U0(η-ξ),U>dμ(U)

= l<(Uoη) {Uoξ),U}dμ{U)

= \{U~η){Uy{Uoξ){U)dμ{U)

Since μ is a left Haar measure of ^, thus has support the whole of ^, (A30) implies
that the sup norms on G and ^ coincide on all geJ^nA(G). Each Ue^ is
therefore, according to (A12), a multiplicative functional on J^nA(G) continuous
for the sup norm on G: by density this functional extends to a continuous
character of ^ ( G ) : we thus have a group isomorphism s:^->G such that

U = λ(s(U)), Ue&. (A32)

Theorem (Al) can be extended as follows to the case of closed densely defined
operators T.

Theorem A5. // T is a densely defined closed operator on Jtf? = L2(G) such that

W*{T® i) W=T®T, (A33)

where T®t and T®T mean the closure of the algebraic tensor products, then, with

T=U\T\ (A34)

the polar decomposition of % there exists an element seG and a one parameter
subgroup {g{ή} of G such that

( Λ 3 5 )

Proof Since one has

(T®T)* = T*®T*, (A36)

we get as follows the polar decomposition of T® T:

The uniqueness of the polar decomposition yields

(W*(U®t)W=U®U;

\w*(\T\®i)W=\T\®\T\. [ }

By Theorem Al, U must be of the form: U = λs for some seG. Hence \T\ is non-
singular, so that |Γ| ι ί yields a one parameter unitary group on Jf. Since W
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intertwines the functional calculus of |T |®1 and |T|®|T|, we get

Wr*(|T|iί®ll)Py=|T|it(8)|TΓ'ί

5 ίelR. (A39)

Hence our assertion follows from Theorem Al.
An element feL2(G) is called left bounded if the left convolution:

ξ<=L2(G)\->f*ξL2(G) is bounded, and the corresponding operator on L2{G) is
denoted by λ(f). It is easy to see that λ(f) belongs to M(G).

Lemma A6. // φeA(G) and feL2(G) is left bounded, then mφf is left bounded and

(mφf) = φ-λU)9 (A40)

where φ-λ(f) is defined by (20) and based on the duality between Λ(G) and M(G\

Proof Let φ = \η)(ξ\. By (20), we have φ(s) = ξ*η\s). Now we simply compute:

= <W*(%f)®ί)W,\η)(ξ\®\η1){ξ1\>

= (ξ®ξ1\W*(λ(f)®ί)W(η®η1))

i}. (A41)

Therefore, φf is left bounded and (A40) follows.
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