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Limits of States

Richard V. Kadison*

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104

Abstract. Estimates for vector representations of states are used to prove that
{CnC0} is strong-operator convergent to Co, where Cn is the universal central
support of ρn and {ρn} is a sequence of states of a C*-algebra 91 converging in
norm to ρ0. States of 91 of a given type are shown to form a norm-closed
convex subset of the (norm) dual of 91. The pure states of 9Ϊ form a norm-closed
subset of the dual.

1. Introduction and Preliminaries

Let 91 be a C*-algebra (with unit element /) and ρ be a (normalized) state of 91. We
denote by (πρ5 34?ρ, xρ) the representation πQ of 91 on the Hubert space Jti? resulting
from the GNS construction applied to 91 and ρ, where xρ is a (unit) cyclic vector in
J^ρ for πρ(9ί) such that ρ{A) = ζπβ(A)xe, xρ) for each A in 91. We say that the state ρ
is of type In, IIv 11^, III when πρ(9I)~, the strong-operator closure of πρ(9ί) is of
the corresponding type. We show (Theorem 4.1) that the set of states of a given
type is a norm-closed convex subset of the space of states of 9ί.

The direct sum of all representations πρ of 91 arising from states ρ of 9ί is the
universal representation ψ of 91 (on J>fu). The "universal" property oΐψ is expressed
in the fact that each cyclic representation is (unitarily) equivalent to a subre-
presentatίon ψE, of ψ [that is, the representation A-+ψ(A)Er of 91 on £'(J^J] with
Έ a cyclic projection for φ(9I) in ̂ (91)', the commutant of t/;(9ϊ). Recall that a
normal state ω of a von Neumann algebra 9ί acting on Jf has as support the
largest projection E (in 91) orthogonal to all projections annihilated by ω and as
central support the largest central projection P in 9ΐ orthogonal to all central
projections annihilated by ω. Thus P is CE, the central support of the support
projection E. If ω is the vector state ωJ9ϊ of 9? then E has range [9Γx] and CE has
range [9Wx] (where \Ψ"\ denotes the norm closure of the linear span of a set Ψ*
of vectors).
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By construction ρ°ψ~λ is a vector state, ω |φ(2ϊ), of i/?(2ί) and, so, has a unique
normal extension, ωx |τ/;(9I)~ to tp(9I)~. We denote the central support of this
extension by Cρ and refer to it as the universal central support of ρ. Recall that two
representations π1 and π 2 of 91 are defined to be quasi-equivalent when there is an
isomorphism φ of 7^(21)" onto π2(9I)~ such that φ°πι=π2. We say that two states
ρ and η are quasi-equivalent when π ρ and πη are quasi-equivalent. We use the
notation ~ q to indicate quasi-equivalence (both for states and representations).
We say that πγ is quasί-subequivalent to π 2 (and write πί^qπ2) when π x is quasi-
equivalent to a subrepresentation of π 2 . (We use the corresponding terminology
and notation for states.) In Proposition 4.3 we note that ρ<,qη if and only if
CρSCη; so that ^ q induces a (lattice) partial ordering of the (quasi-equivalence
classes of) states of 91, and the minimal (classes of) states relative to this partial
ordering are precisely the (classes of) factor states. (This structure in a more general
setting and with a slightly different terminology is discussed in [14, Sect. 1].) We
prove, in Theorem 3.3, that if {ρn} is a sequence of states of 91 converging in norm
to ρ 0 then {CρnCρo} is strong-operator convergent to Cρo. We deduce, as a
corollary, that the set of factor states of 91 is norm closed. In Proposition 4.7 we
note that the norm limit of a sequence of equivalent states is a state subequivalent
to them and, as a corollary, that the set of pure states of a C*-algebra is norm
closed. (The assertion for factor states is a result of Combes [7, Corollaire 2.3].)

To prove Theorem 3.3, we establish a convergence result (Lemma 3.1) for the
support and central support of a vector state of a von Neumann algebra. We also
need an estimate on ||x — y\\ in terms of ||ω — ωy|SR||, where ω is a vector state of 9ί
and x is to be chosen so that ωJ5R = ω. This topic is treated in the next section
(estimates are obtained in Proposition 2.2 and Theorems 2.3 and 2.4).

The results in this article were found during an investigation stemming from a
question posed to the author by G. Price, B. Blackadar, and J. Rosenberg: Is a
norm limit of type / states of an AF algebra a type / state? Price encountered this
question in his thesis work under the direction of R.T. Powers. Powers felt that the
answer was affirmative (and that an argument with finite rank density matrices
would prove it). He suggested that Price check with others to see if the answer were
known or if a simpler argument were available. The combination of norm
estimates on vector state representatives ("Bures distance") and the "magic" of
universal representation techniques produces a complete analysis of this sort of
question. There are further (and deeper) avenues of investigation possible along
the lines of "Bures distance" through the more sophisticated techniques of the
"Fα cones" of Araki, Connes, and Haagerup [5, 8, 13] and some of these have
been explored in recent papers. The simpler techniques used here suffice for the
results on "stability of type" under norm limits.

2. Differences of Vector States

In this section, we study the extent to which "nearby" normal states of a concretely
represented C*-algebra can be realized as vector states corresponding to "nearby"
vectors. Bures introduces [6, Definitions 1.2 and 1.3] as a distance between normal
states ω and ω' of a von Neumann algebra % the infimum d(ω,ωf) of ||x — x'\\ over
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all x, x' and faithful normal representations φ of % where ω = ωχoφ and
ω' = ωx,°φ. He studies this distance function for the purpose of extending
Kakutani's theorem on the existence of infinite product measures to the noncom-
mutative case. Bures proves, among other things, that d(ω, d) is attained in some
representation of 9ί and that d(ω, ω ' ) ^ ||ω — ω' | | 1 / 2 . This inequality is established
with the aid of the Sakai-Radon-Nikodym theorem (cf. [17, Theorem 7.3.6]). That
the Sakai-Radon-Nikodym theorem is very much a part of this study is
emphasized by Araki's results [1, 2]. Evidently inspired by the work of Bures,
Araki subjects the function d to a penetrating analysis - emerging with an
important extension of the Sakai-Radon-Nikodym theorem (to the case where no
order restriction is imposed on the positive, normal functionals). From the current
viewpoint, these estimates are most efficiently obtained by using the (unique)
representing vectors in the "natural" (self-dual) cones of 5R (at least when 91 has a
separating and generating vector) [4, 5, 8, 13, 18]. (Our thanks are due to Richard
Herman for recalling to us the relevance of the Bures Distance Function for these
problems.)

For our use (see Theorem 4.1), we will want the representation of 9ΐ and the
vector representing one of the normal states given. This introduces special
problems of "fitting" that are dealt with by the detailed comparison theory of
projections in Theorem 2.3. Araki treats this problem [1, Theorem 3]. Our
Proposition 2.2, used in the proof of Theorem 2.3 is similar to but not as strong as
[1, Theorem 4 and Remark] (our constant, ]/ϊ, is replaced by 1 and it suffices to
assume that ω and d are vector states of 9ί in [1]). Our proof is correspondingly
simpler (we use the Radon-Nikodym derivative in 91' in the situation where

The first question, of course, is when a normal state of a von Neumann algebra
is a vector state. There are circumstances under which each normal state of 91 is a
vector state. This is the case if 91 has a separating vector (cf. [17, Theorem 7.2.3]).
It is also the case for 91 represented in its "universal normal representation" (cf.
[17, Lemma 7.1.6]). In general a normal state of ϊ l is a vector state if and only if its
support projection is cyclic in 91 (cf. [17, Proposition 7.2.7]). The proposition that
follows records a necessary and sufficient condition for each normal state of 91 to
be a vector state.

2.1. Proposition. Each normal state of a von Neumann algebra 91 acting on ffl is a
vector state if and only if each countably-decomposable projection in 91 is cyclic.

Proof. The support of each normal state of 5Ϊ is countably decomposable.
Conversely, if E is countably decomposable in % it is the sum of a countable
family {EVE2,...} of cyclic projections En in 91. With xn a generating vector of

CO

norm 2~"/2 for Ew Σ ω

Xn\^ is a normal state ω of 91 whose support is E. In fact,

CO

ω(E) = Σ 2 ~n = 1 and if ω(E0) = 0 for some subprojection Eo of £, then Eoxn = 0,
n = l

/ co \

so that EoEn = 0, for all n. Hence 0 = £ 0 Σ En\ = E0E = E0.
\n=l 1
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We have identified the set of countably-decomposable projections in 91 with
the set of support projections of normal states of 91. Our result follows, now, from
[17, Proposition 7.2.7]. •

In case 91 acts on a separable Hubert space Jίf, each projection in 91 is
countably decomposable, and the requirement that each such projection be cyclic
reduces to the assumption that I be cyclic in Ώ-equivalently, that 91 have a
separating vector. In any event, the family of vector states of 9ί is a norm-closed
subset of the (continuous) dual of 91 [15, Theorem D] (see, also, [17, Theorem
7.3.11]).

In [12] it is proved that if ρ and τ are pure states of a C*-algebra 91 and
|| Q — τ || < 2 then πρ and πτ are unitarily equivalent representations of 91 and ρ and τ
correspond to unit vectors in the representation space of some irreducible
representation of 91. If 9ί acts irreducibly on Jf, it is a consequence of [11, Lemma
3.2] that, with x and y unit vectors in Jf,

(These are proved simply and are entirely sufficient for Glimm's purposes.) In [19,
Lemma 2.4], Powers and StΘrmer develop the precise formula:

| | ω J 2 I - ω y | 2 l | | = 2 [ l - | < x , . y > | 2 ] 1 / 2 , (1)

from which, for some θ of modulus 1,

Since 91 acts irreducibly on Jf, 9 I ~ = S ( ^ f ) ; and, from the Kaplansky density
theorem, ||ωJ9I — 0)̂ 9111 = \\cox — ωy\\. If J^o is the space spanned by x and y,
| | ω x - ω y | | = ||(ωx-ωy)(93(Jf0))||. Another proof of (1) proceeds as follows. With E
and F the one-dimensional projections of J^o on [x] and [y], (ωx — ωy)(Λ)
= tr ((E — F) A) for each A in S(«^f0), where "tr" denotes the (non-normalized) trace
on S p f o ) Clearly, then, \\ωx-ωy\\=tv(\E-F\). Since ( E - i 7 ) 2 commutes with
both E and F, x and y are eigenvectors for (E — F)2. We may assume that <x, y} ή= 0
[for (1) is immediate when <(x, y) = 0], in which case, x and y must correspond to
the same eigenvalue for (E — F)2 (a self-adjoint operator). Thus (E — F)2 is a scalar.
But < x , ( E - F ) 2 x > - < x , x - E F x > = l - | < x , y > | 2 ; from which (1) follows.

2.2. Proposition. // ω and ω' are normal positive linear functionals on a von
Neumann algebra 91 acting on a Hilbert space ffl and the union of the support
projections of ω and ω' is a cyclic projection Ein9ϊ then there are vectors x and x' in
2tf such that ωx\9ϊ = ω, ωx,\9l = ω', and

Proof. From [17, Theorem 7.4.7], ω — ωf = ω1 — ω 2, where ω1 and ω2 are normal
positive linear functionals on 91 with orthogonal supports such that HωJI + | |ω 2 | |
= ω1(I) + co2(/) = || ω — ω' ||. The supports of ω1 and ω 2 are contained in E as is that
of ω + ω 2 ( = ω' + ω1); so that all these supports are cyclic, by assumption. From
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[17, Proposition 7.2.7], there is a vector z in ffl such that ωz|9?
Since ω ̂  ωJSR, there is an operator H' in $1' such that O^H'SI and ω = ωH,J9l. It
follows that {I-H'Ϋ^l-H'2 so that

= <z, z> - <H'z,tf'z> = ( ω z - ωH.z)(ί) = \\ω2||.

Similarly there is a X' in 9?' such that, O^-K'^I, ω' = ωκ,z\% and \\K'z-z\\2

^HωJI. Hence

and

The proof is completed by choosing H'z as x and K'z as x' in our assertion. •

2.3. Theorem. // ω is a normal positive linear functional on a von Neumann algebra
% v is a vector in Jtf, the Hilbert space on which 9ΐ acts, and EMM, the union of the
support projection E of ωJ9t and the support projection M of ω, is cyclic, then there
is a vector u in ffl such that ω = ωu|$R and

Proof If we use ωJ9ί in place of ω', the hypotheses of Proposition 2.2 are fulfilled;
and there are vectors x and x' in Jf such that ωJ9ί = ω, ω'x\9l = ωv\

<$l and

When ω = ωv\% our theorem is proved by choosing v for u. We may assume that
ωφωJSR so that [ 2 | | ω - ω J 5 R | | ] 1 / 2 < 2 | | ω - ω J 9 ί | | 1 / 2 . Since ωJ9l = ωv\% the
mapping Ax'^Av {Ae^K) extends to a partial isometry V in 9Γ with initial
space [5Rxr] and final space [SRi;]. If F' can be extended to an isometry W

2. Thus W'x will serve as u.
Now [Jlx'] and [9ίι;] are equivalent subspaces relative to 9Γ. If £' is the

projection (in 9Γ) with range [SRi;], from [17, Proposition 6.3.7], there is a (unique)
central projection P in 91' such that, P^CE,, PE' is either properly infinite or 0 (in
which case, P must be 0) and (I-P)Ef is finite. If either PE is 0 or both PE and
P(I—E) are properly infinite there is an isometric extension W of V with the
properties employed in the preceding paragraph. It remains to deal with the case
where PE is properly infinite and P(I — E) is not.

In any event, with PE properly infinite, there is a countable (orthogonal)
family {PE'n} of projections equivalent to PE with sum PE. (See the proof of [17,
Theorem 6.3.4] for the construction of {PE'n}.) Given a positive ε, we can choose ri
(Φl) such that \\PEn,υ\\<& whence \\v'-v\\ <ε, where υ' = {I-P)υ+( X PEλv.

The range of (/ - P)E + {PE - PE'n) ( = F) is [ W ] and CF, = C£,. Moreover, P is,
again, the (unique) central subprojection of CF such that (in this case) PF is
properly infinite and (/ — P)F is finite. In addition P(I — F) ( ^ PEn) is properly
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infinite. Thus we are in the situation in which we can assert the existence of a
vector u such that ωJ9l = ω and

\W-v\\ S \\u-υ'\\ + \\v'-v\\ S \\u-v'\\ ^ [ 2 | | | 9 ί | | ] 1 / 2

once we note that M V F is cyclic in % where F is the support of ωv,\^ϊ. To see this
last, note that E ( ^ ) = [SRV] and F(Jf) = [9tV] (from [17, Remark 7.2.6]); so that
(/ - P)E = (I- P)F. Since (/ - P)(F V M) = (/ - P)F V (/ - P)M = (I- P)(E V M)
and E V M is cyclic in 9ΐ, by hypothesis (I — P)(F V M) is cyclic. At the same time,
P(F V M) has PF and, hence, PE1 as subprojections, where PE1(3#') = [WPE'1v'].
Now P £ 1 is properly infinite with central carrier P relative to 9ΐ since the same is
true of PE\ relative to W and PE'ι{^) = lςϋPE'1v'\ (cf. [17, Proposition 9.1.2]). As
F and M are countably decomposable projections in % F V M and P(F V M) are
countably decomposable projections in 91. Thus, from [17, Theorem 6.3.4],
P{F V M)^PE1 and P(F V M) is cyclic. It follows that M V F is cyclic. Using

and (2), we have

when ε is chosen suitably small. •
If we use the stronger Theorem 4 (and "Remark" following it) of [1] in place of

our Proposition 2.2, we obtain the following stronger version of Theorem 2.3.

2.4. Theorem. If ω is a normal positive linear functional on a von Neumann algebra
9ί with cyclic support projection and α > l , there is a vector u in J f such that
ω = ωu\

<3l and

ω |9Ϊ | | 1 / 2 .

The proof of this strengthened version of Theorem 2.3 replaces the first
sentence of that proof by a direct application of [1, Theorem 4 and Remark] (the
inequality there replaces the factor "2" by "1"). When ωΦωJ9l, we have
| | ω - ω J 9 ϊ | | 1 / 2 < α | | ω - ω J 9 ϊ | | 1 / 2 . If V extends to an isometry \\W'xf-v\\
:§ ||ω — ωJ9ΐ| | 1 / 2. In (2), we replace the factor "2" by " 1 " , again, and apply [1,
Theorem 4 and Remark] so that there is no further need to prove that M V F is
cyclic in 9Ϊ. We may now proceed to the last sentence of that proof (and replace the
factors "2" of the last inequality by " 1 " and "α", respectively).

3. Supports of States

3.1. Lemma. // 9ΐ is a von Neumann algebra acting on the Hίlbert space ffl and {xn}
is a sequence of unit vectors in J4? tending in norm to x0 then {EnE0} and {PnP0}
tend in the strong-operator topology to Eo and P o , respectively, where En and Pn are
the support and central support projections of ωxj9ί, respectively.
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Proof. The set consisting of vectors of the form A'x0 with A in 9Γ and vectors y
orthogonal to the range of Eo is a total set. Of course EnEoy = 0->0 = Eoy. Now
E0A'x0 = A'x0 and EnΆxn = A'xn, so that

\\EnEoΆxo-EoA'xo\\ = \\EnA
fx0-A'x0\\ = \\(I-En)A'x0\\

= \\(I-En)(Afxn-A'x0)\\^\\A'\\ \\xn-x0\\^>0.

Similarly, with A in % P0AA'x0 = AA'x0 and PnAA'xn = AA'xn\ so that

\\PnPoAA'xo-PoAAfxo\\ = I K P ^ ' - ^ X I I

= \\(I-PJ{AA'xn-AA'xo)\\£\\AA'\\\\xn-xo\\^0.

Thus {EnE0} and {PnP0}
 a r e strong-operator convergent to E o and P o ,

respectively. •
As an immediate application of Theorem 2.4 and the preceding lemma, we

have:

3.2. Theorem. // 5R is a von Neumann algebra acting on a Hilbert space J4? and {ωn}
is a sequence of vector states (not normalized) of 91 converging in norm to ω0 then
{EnE0} and {PnP0} are strong-operator convergent to Eo and P o , respectively, where
En is the support and Pn is the central support of ωn.

Proof. From Theorem 2.4, we can choose vectors xn in ffl such that ωXn\
(3l = ωXn

and \\xn — xo\\-^0 as n->oo. Our theorem follows, now, from Lemma 3.1. Q
For the proof of the theorem that follows, we can apply the theorem above;

however the simpler Theorem 2.3 is applicable in this case.

3.3. Theorem. // {ρn} is a sequence of states of a C*-algebra 91 tending in norm to
the state ρ0 then {PnP0} is strong-operator convergent to P o , where Pn is the
universal central support of ρn, n = 0,1,2,....

Proof. Let ψ be the universal representation of 91 on Jfu. From [17, Proposition
10.1.1], ρ^oφ"1 has a (unique) normal extension ρn from ψ>(21) to ip(9ί)~ and
\\Qn-Qo\\ = \\Qn0Ψ~1-Qo0Ψ~ί\\ = \\Qn-Qo\\^0' Choose x0 in 3t?u so that
ρo = ωXQ\\p(<Ά)~. Since each normal state of tp(9ί)~ is a vector state, it follows from
Proposition 2.1 that each countably-decomposable projection in yj(2I)~ is cyclic;
and Theorem 2.3 applies. For each n, there is a (unit) vector xn in J»fu such that

and

The central support of ρn is Pn. From Lemma 3.1, {PnP0} is strong-operator
convergent to P o . •

In [10, Theorem 1] DelΓAntonio shows that each weak* convergent sequence
of states of a type / von Neumann algebra with totally-atomic center (that is, a von
Neumann algebra generated by its minimal projections) is norm convergent. By
combining this result with Theorem 3.3, we have:

3.4. Corollary. // {ωn} is a sequence of normal states of a type I von Neumann
algebra $i with totally-atomic center that is weak* convergent to ω0 then {EnE0} and
{PnP0} are strong-operator convergent to Eo and P o , respectively, where En is the
support and Pn is the central support of ω.
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In [10, Theorems 2 and 3] DelΓAntonio shows that for von Neumann algebras
with a "continuous" center and for factors of type // there is a weak* convergent
sequence of states that is not norm convergent. He conjectures the same for factors
of type III, and this was proved recently in [9, Corollary 9].

4. Properties of Limit States

4.1. Theorem. // ψ is the universal representation of a C*-algebra 91 and Pn, PC i,
PCoo? P ^ are the central projections corresponding to the summands of V>(2Ϊ)~ of
types In, II x, II^ and III, respectively, then a state ρ of 91 is of type In, II 1? II ^ or
III, if and only if ρ°ψ~x has a (unique) ultraweakly-continuous (normal) extension
ρ to y;(2l)~ such that, respectively, ρ(PB), ρ(PCl), Q{PCJ> or Q(POO) ί S l The set of
states of 91 of a given type is a norm-closed convex subset of 91*.

Proof. From the definition of ψ, there is a projection E in ^(91)' such that
\pE,: A-+\p(A)E' (AeSK) is unitarily equivalent to πρ. Now ψ(A)E'->ψ(A)CE, extends
to a * isomorphism of φ(9ϊ)"E' onto ip(9ί)~C£, (cf. [17, Proposition 5.5.5]). It
follows that ρ is of a given type if and only if CE, is a subprojection of the central
projection corresponding to the summand of y>(9l)~ of that type. There is a unit
vector yQ in the range of E' (corresponding to xρ through the unitary equivalence
of πρ and \pE) such that ρ°ψ~1=ωy |φ(9I). Hence ρ = ωy |φ(9I)~ and l=ρ(E')
tίQ(CE) = Q(Pb)> where b is one oϊ n,cί,co0, or co. Conversely, if ρ(Pb) = 1, for b one
of n, cί9 c^, or oo, then Pbye = yQ and [ t / W ψ ^ Γ ) ^ ] , the range of CE. (see [17,
Proposition 5.5.2]), is contained in the range of Pb. Consequently the type of ρ
corresponds to that of ψ(SΆ)~Pb.

The mapping η^>η, where η is a continuous linear functional on 91 and η is the
(unique) ultraweakly-continuous extension of ηoψ~x from φ(9I) to t/;(9I)~, is a
linear isometry of the (continuous) dual of 91 onto the space of ultraweakly-
continuous linear functional on ip(2ί)~ (see [17, Proposition 10.1.1]), the predual
of φ(9I)~. Since the mapping η^η carries states onto states and the set of normal
states of φ(9I)~ taking the value 1 at Pb is convex and norm closed, the set of states
of 9ί of a given type (In, Πv 11^, or ///) is a norm-closed convex subset
of ^(91). •

4.2. Remark. The situation described in the preceding theorem is markedly
different from that which obtains in the case where the weak* topology is used. If
9ί is a norm-separable C*-algebra the weak* topology on the unit ball of the norm
dual of 91 is metrizable so that weak* convergence of states is equivalent to weak*
sequential convergence. In [16, Definition (2.1)] a full family of states of 91 is
defined as a convex set So of states such that A ^ 0 if ρ(A) ̂  0 for each ρ in So, when
,4E9I. In [16, Theorem (2.2)] it is proved that a convex set of states is full if and
only if it is weak* dense in the set of all states; and it is noted that the weak-
operator continuous states of 91 in each faithful representation of 91 is full. If P is
the central projection corresponding to the type / summand of φ(9I)~, then the
universal central support of each pure state of 91 is contained in P. Since the pure
states separate 9ί, ψp is a faithful representation of 9ί. Thus' the normal states of
ΨPCΆ) form a full family. Each such normal state is a vector state arising from a
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vector in P(JΊ?U) and is, therefore, a type / state of 91. It follows that the type /
states of 91 form a full family - and (with 91 norm separable) each state is a weak*
limit of a sequence of type I states. In particular the (unique) tracial state of the
CAR algebra, a type II\ state, is such a limit. •

4.3. Proposition. // ρ1 and ρ2 are states of a C*-algebra 91, ψ is the universal
representation of 91 and Ef

v E'2 are projections in y)(2l)' such that π ρ i and πQ2 are
quasi-equivalent to φ £ i and ψE<2, respectively, then Qι^qQ2 if and only if CE>ί ^CE^
The set β(9I) of quasi-equivalence classes of states of 91 is partially ordered by the
relation ^q. The quasi-equivalence classes corresponding to the factor states are the
minimal elements of β(9I).

Proof. By definition, Q1<.qQ2 if and only if there is a subprojection E'o of E'2 in
ψ(9ϊ)' such that ψE^ is quasi-equivalent to ψE^ and, from [17, Theorem 10.3.3(ii)],
this is the case if and only if C £ ό = CEί for some such subprojection E'o of £'2, that is,
if and only if CE[ ^ CEi.

It follows from the above that ρx ~qρ2 when ρί^qρ2 and Q2<,qQv Hence ^ q is
a partial ordering of Q(9l).

If ρ is a state of 91 and E' is a projection in ψ(2I)' such that πρ is quasi-
equivalent to ψE, then ρ is a factor state of 91 if and only if ιp^Ά)~ E' and, hence,
\p(W)~CE, are factors. The center of φ(2I)~C£, is ^ C £ , , where # is the center of
y>(9l)". Thus ρ is a factor state of 91 if and only if ^CE, = {λCE,}. From [17,
Proposition 6.4.3] this last is the case if and only if CE, is a minimal projection in cβ.
The preceding identification of the partial ordering relation -^q with the (usual)
ordering of central support projections makes it clear, now, that (the quasi-
equivalence class of) ρ is a minimal element of β(9X) if and only if CE, is a minimal
projection in ^ so that the quasi-equivalence classes of the factor states of 91 are
precisely the minimal elements of Q(9I) relative to <^q. •

4.4. Corollary. // {ρj is a sequence of states of a C*-algebra 91, ρn+1<.qρn for
n = l,2,..., and {ρn} tends in norm to ρ0, then ρo^qQn for fl" n

Proof From Theorem 3.3, {PnP0} converges to P o in the strong-operator
topology, where Pn is the universal central support of ρn. By assumption and
Proposition 4.3, Pn+1 ^Pn so that {Pn} converges in the strong-operator topology
to f]Pn ( = P). Thus {PnP0} converges to PP0 and P0 = PP0. It follows that
P0SP^Pn f° r all n- From Proposition 4.3, ρo^qρn. D

E. StΘrmer remarked to us that the preceding corollary can also be proved,
without (indirect) reference to Theorem 2.3, as follows. As in the proof of Theorem
3.3, let ρn be the (unique) normal extension of ρ^tp" 1 from φ(9l) to tp(9I)~ with
lift,-SoII = 11 ft,-GoHO. As above Pn+1ύPn; so that ρ n ( P m ) ^ ρ n ( P J - l , when

^m, and ρΠ(PJ-^l as n->oo. But ρ n (PJ-^ρ 0 (PJ. Thus ρ o ( P J = l, E'^P^ and
P 0 ^ P m , for all m.

We noted in Proposition 4.3, that the factor states of 91 correspond to the
minimal elements in Q(9I). If we assume, in the preceding corollary, that ρn is a
factor state when n = l, 2, ...,the condition " ρ Π + 1 ^ g ρ n " becomes "(?„ +1 ~ g ρ w " and
the conclusion becomes "Q0~qQn" for all n. In particular, ρ 0 is a factor state. Of
course each convex combination of quasi-equivalent factor states has as its central
support [in tp(9I)~] the same (minimal) central projection as each of the states of
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which it is a combination - and is, therefore, a factor state quasi-equivalent to each
of these states. Combining these observations, we have a result of Combes [7,
Corollaire 2.3]: each minimal element of Q(9I) is a norm-closed, convex subset of
the (continuous) dual of 91. Corollary 4.4 is, in reality, a (partial) generalization of
the result just quoted. Note that it is not difficult to give a direct proof for [7,
Corollaire 2.3]. It is apparent that a norm limit of normal states of tp(9I)~, each of
which has a given minimal central projection as its central support has that
minimal central projection as its central support; so that, from [17, Theorem
10.3.3(ii)], the limit is a factor state quasi-equivalent to each of the others. If we
add the information just noted to one of the basic observations of [12] (see, also,
[17, Corollary 10.3.6]): if πρ and πτ are disjoint, for states ρ and τ of 9ί, then
||ρ —τ|| = 2 ; we can state the following stronger result.

4.5. Proposition. // {ρn} is a sequence of factor states of the C*-algebra 91
converging in norm to the state ρ, then all but a finite number of states of {ρn} are
quasi-equivalent to ρ.

We examine a single example that illustrates several phenomena related to the
preceding results:

There is a sequence {ρj of normal states of a von Neumann algebra 9Ϊ tending
in norm to the (normal) state ρ, and

(i) the sequence of support projections of {ρj does not converge to the
support projection of ρ in the strong-operator topology; - cf. Lemma 3.1.

(ii) The sequence of central support projections of {ρj does not converge to
the central support projection of ρ in the strong-operator topology; - cf.
Lemma 3.1.

(iii) There is a strong-operator-dense C*-subalgebra 91 of 9ί such that the
restrictions ρJ9I are quasi-equivalent (indeed, they give rise to unitarily equivalent
representations of 91), but ρ|9ϊ is quasi-equivalent to none of them; - cf.
Corollary 4.4.

4.6. Example. Let 9Ϊ be the (maximal abelian) algebra of operators on the Hubert
space Jf whose matrix representation relative to a fixed orthonormal basis {en} for

00

34? consists of bounded diagonal matrices. Let xn be ]Γ amnem, where
m = l

amn= γl(nmn)~ι when m = 2,3,... and aίn = ((n2- l)π2 + 6)ll2(πn)~λ. With these
choices, {xn} is a sequence of unit vectors converging in norm to ex and each xn is
generating for 9ί (since amn + 0 for all m and n). The C*-subalgebra 91 of 9Ϊ
consisting of all A in 5R for which {(Aen,en}} converges is a strong-operator-dense
subalgebra of 9ΐ. If ρn is coXn\% both the support and central support (since 5R is
abelian) projections of ρn have range [9focJ ( = 3tf). But {ρj converges in norm to
ωej9ϊ ( = ρ 0); and the support and central support projections of ρ 0 have range
[SReJ, which is [ e j . Of course the sequence of projections each of which is / does
not converge in the strong-operator topology to the projection E1 with one-
dimensional range [ e j - which illustrates (i) and (ii).

Each of the representations π ρ i , π ^ , . . . is unitarily equivalent to the given
representation of 91 on Jf, where ρ̂  = ωxj9l, since each xn is generating for 9Ϊ (cf.
[17, Proposition 4.5.3]); but πρ>0 is one-dimensional, where ρ'o is the multiplicative
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linear functional, ωβl |2I, and ρ'o is quasi-equivalent to none of {ρ'n} - which
illustrates (iii). •

4.7. Proposition. The norm limit of a sequence of equivalent states of a C*-algebra
is subequivalent to these states.

Proof If $ϊ is the C*-algebra, {ρn} the sequence of equivalent states of $ϊ, and ρ 0 is
the norm limit of {ρn}, then ρ 0 annihilates the (common) kernel of πQn. With π a
representation of 21 on J-f unitarily equivalent to each πρ n, there are unit vectors xn

in ffl such that ρn = ωXn°π, and there is a linear functional ρ on π(9I) such that
Qo^Q071- Since π maps the unit ball and the set of positive operators in 91 onto the
corresponding sets in π(2ί); ρ is a state of π(3I) and | |ρ 0 — Qn\\ = ||ρ — ωxjπ(91)||.
From [15, Theorem D], ρ is a vector state, ωjπ(21), of π(2I). If £' is the projection
in π(2l)' with range [π(2I)x], then π£, is unitarily equivalent to the representation of
91 arising from the GNS construction applied to ω / π ( = ρo)> that is, to πρo. Thus
ρ 0 is subequivalent to each ρn. •

4.8. Corollary. A norm limit of a sequence of pure states of a C*-algebra is a pure
state unitarily equivalent to all but a finite number of them.

Proof If 9ί is the C*-algebra and {ρj is the sequence of pure states of 91
converging in norm to ρ0, there is an n0 such that ||ρn — ρ j | < 2 when no^n and
no^m. It follows from [12, Corollary 9] that all ρn are equivalent when no^n.
Proposition 4.7 applies, and ρ 0 is subequivalent to each ρn when no^n. Since each
πQn is irreducible, πρo is equivalent to πQn when n0 ^ n so that πQo is irreducible and
ρ 0 is pure. Π

The formula (1) of Sect. 2 can be used to give a proof of the preceding corollary
without appeal to Proposition 4.7 (and [15, Theorem D]).
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