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Abstract. Let (Jf9 τ, ω) denote a FF*-algebra Jί, a semigroup ί > 0 κ τ ( of linear
maps of Jί into Jί, and a faithful τ-invariant normal state ω over Jί. We
assume that τ is strongly positive in the sense that

τt(A*A)^τt{A)*τt(A)

for all AeJί and ί>0. Therefore one can define a contraction semigroup T on

= τt(A)Ω, AeJί,

where Ω is the cyclic and separating vector associated with ω. We prove
1. the fixed points Ji(τ) of τ are given by Jί(τ) = Jί'r\T' = Jί'c\E\ where E is

the orthogonal projection onto the subspace of T-invariant vectors,
2. the state ω has a unique decomposition into τ-ergodic states if, and only

if, Jί(τ) or {JiyjE}' is abelian or, equivalently, if (Jί, τ, ω) is R+-abelian,
3. the state ω is τ-ergodic if, and only if, MKJE is irreducible or if

inf | |ω"-ω | |=0
ω"eCoω'oτ

for all normal states ω' where Coω'°τ denotes the convex hull of {ω'°τf}ί>0.
Subsequently we assume that τ is 2-positive, T is normal, and
t+Ω<LJl+Ω, and then prove

4. there exists a strongly positive semigroup |τ| which commutes with τ and
is determined by

5. results similar to 1 and 2 apply to |τ| but the τ-invariant state ω is |τ
ergodic if, and only if,

lim \\ω'°τt — ω\\ = 0

for all normal states ω'.
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0. Preliminaries

The aims of this paper, and its notation are described in the abstract. Throughout
we adopt the assumptions outlined in the first paragraph of the abstract. Our
results are an extension of the well established theory of states invariant under a
group of *-automorphisms (see, for example [1, Chap. 4]) and also a generaliza-
tion of work by Frigerio [2] in the semigroup case. We begin with some
preliminary observations which are subsequently useful for characterizing the
fixed point set Jί(τ\

First note that as τ is positive it is automatically self-adjoint, i.e., τt(A)* = τt(A*)
for all Ae Jί. Further as τ is strongly positive, and ω is τ-in variant, the operators Tt

are well-defined linear contractions, and since ω is faithful τt(t) = 1.
Second define the ^-valued sesquilinear forms St by

St(A,B) = τt(A*B)-τt(A)*τt(B).

If BeJi{τ) it follows by τ-invariance of ω that

ω(St(B9B)) = 0.

Since St(B,B) is positive, and ω is faithful one concludes that St(B,B) = 0. It then
follows from the Cauchy-Schwarz inequality applied to St in an arbitrary state
over Ji that

for all AeJί. (These observations are taken from [2, 3].)
Third let Cλ{T) denote convex combinations of %

i=ί

and Cλ(τ(A)) the corresponding combinations of τ(A), i.e.,

It follows from the Alaoglu-Birkhoff version of the mean ergodic theorem (see [1,
Proposition 4.3.4]) that the net Cλ(T) converges strongly to E. It then follows from
the cyclicity of Ω for Jt' that the corresponding net Cλ(τ(A)) converges strongly to
an Mτ(A)eJί, for each AeJί. This mean value Mτ(A) of A then satisfies

Mτ(A)AΏ = ΆEAΩ (*)

for all A'eJί'. Moreover Mτ{A)eJί(τ). But conversely if AeJί(τ) then Mτ(A)
— Ae Ji(τ). Thus the fixed point set M(τ) is equal to the range R(Mτ) of the map
Mτ. Finally it follows from the action (*) that Ω is cyclic for Ji(τ) in

1. Invariant Elements

The first result describes a variety of properties of the fixed point set.

Theorem 1. It follows that

TtAE = τt(A)E
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for all AeJί and hence

M°re0Ver J

Proof. If A*eJ( and BeJί(τ) then St(A*,B) = 0 by the discussion in the pre-
liminary section. Hence applying St(A*,B) to Ω one has

τt(AB)Ω = τt{A)BΩ

or, equivalently , λ
4 y TtABΩ = τt(A)BΩ.

But BΩ = Mτ{B)Ω = EBΩ and Ω is cyclic for Jί(τ) in Ec/f. Therefore the first
statement of the theorem is valid. The second statement follows by taking mean
values.

Next one also has St(B*,A) — 0 and applying this to Ω gives

τt{BA)Ω = Bτt{A)Ω

or, equivalently

Therefore Be V and consequently Jΐ{τ)QJίnT. But JίnTgJίnE by the mean
ergodic theorem. Finally if BeMc\E' then

and Mτ(B) = B because Ω is separating. Thus BeJ({τ) and equality of the three sets
Jί(τ\ Jίr\Ί\ and JίnE' follows immediately.

Remark. It is not a priori evident that Jί(τ) is a l¥*-algebra. This was established
in the present context by Frigerio [2]. It is also not evident that Jίr\T is self-
adjoint, since T is not necessarily self-adjoint. This follows, however, from the
identification with JίnE.

2. Decomposition Theory

Next we describe criteria for ω to have a unique decomposition into τ-ergodic
states, i.e., states extremal in the convex subset EX

M of τ-invariant states. The
decomposition theory of states ω (see, for example, [1, Chap. 4]) has been
developed in two parts. First one constructs measures μ on the state space EM

which are maximal with respect to the Choquet order and which have ω as
barycentre. Second one derives conditions which ensure that μ is supported by the
extremal points of the appropriate convex set. For this latter point separability of
Jf is usually sufficient [1, Sect. 4.4]. Hence we concentrate on criteria for a unique
maximal measure.

First recall that the general theory of measures on EM with barycentre ω
establishes a one-to-one correspondence between orthogonal measures μ, abelian
von Neumann subalgebras MQJί', and orthogonal projections P such that
PΩ = Ω and PJίPQ{PJiP}'. This correspondence is then extended to states
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invariant under a group of ^-automorphisms [1, Sect. 4.3] by incorporation of
invariance properties into each of the sets. A similar generalization can be made
for states ω invariant under a strongly positive semigroup τ.

Proposition 1. There exists a one-to-one correspondence between the following
1. Orthogonal measures μ with barycentre ω satisfying

for all Av A2eM and t>0 where A is given by A; ω'eEJί^λ{ω') =
2. Abelian von Neumann subalgebras &Q{JίuE}\
3. Orthogonal projections P on Jf such that

Moreover the support of such μ is contained in the weak*-compact subset Eτ

M of
τ-invariant states. Finally there exists a unique maximal measure μ on Eτ

M with
barycentre ω if and only if {Ji^jE}' is abelian and in this case μ is the orthogonal
measure corresponding to {Jί\jE}'.

Remark. For this result it is not necessary to assume that ω is faithful.

Proof. The proof of correspondence is basically a rearrangement of the arguments
used in Sect. 4.3 of [1] for automorphism groups.

Let μ, &, P denote the orthogonal measure, abelian subalgebra of M\ and the
projection P — \βΩ\ which are associated with ω and which are in cor-
respondence through the correspondences described in Theorem 4.1.25 of [1].
Now consider the three conditions.

1=>3. From Condition 1 it follows that

2) = (Ω,A1PA2Ω).

Thus T*P = P and EP = P = PE.

3=>1. This follows from the above equation.

1=>2. Since μ is in correspondence with a P such that TtP = P it follows by
approximation that μ is supported by Eτ

M. Explicitly one chooses Jί Q J* to be any
finite-dimensional von Neumann algebra and denotes by μ^ and P^ the
corresponding orthogonal measure and projection. Since JίQ^it follows that P^
^P and hence P^^E. Therefore it follows from the proof of Proposition 4.3.2 of
[1] that μjr is supported by Eτ

M. Furthermore since Jί is finite-dimensional μ^ has
finite support.

One now calculates

(Ω, ATtκ (f)BΩ) = (Ω,τt(A)Bκ(f)Ω)

= \dμAω')f(ω')ω'(τt(A)B)
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where the invariance of ω' was used to introduce T and κ(f) is defined for
feE°(μjr) by

(β, Λκ(f)BΩ) = j dμjy(ω')f(ω')ω'(AB).

Now since μ^ has finite support one obtains

(Ω, AEK (f)BΩ) = J dμjω')f{ω') (Ω\ AE'BΩ')

by taking mean values of (*). Similarly

(Ω, AK (/) TtBΩ) = f dμ>/)/(

and by mean values

(Ω, Aκ(f)EBΩ) = Jdμjr(ω')f(ω') (Ω/, AE'

Thus κ(f)2E' and as Λr={κ(f); feE°{μ^)} it follows that ΛQ ί^^E}' . Finally
it follows by limiting (see Lemma 4.1.26 of [1]) that &D {JiκjE\.

2=>3. This is evident.

Since μ^ has finite support in EX

M and since μ^μ vaguely as one takes the
limit over the net of finite-dimensional matrix subalgebras of (% (see Lemma 4.1.26
of [1]) it follows that the support of μ is contained in EX

M.
The final statement concerning maximal measures and maximal abelian

algebras follows by the argument used to prove Proposition 4.3.3 of [1] modified
as in the above proof that 1=>2.

Although Proposition 1 is valid for any invariant ω more elaborate criteria for
uniqueness are obtained if ω is also faithful.

Theorem 2. The following conditions are equivalent
1. There exists a unique maximal measure μ on E1^ with barycentre ω,
2. The commutant {JfuE}' is abelian,
3. The fixed point algebra Jt{τ) is abelian,
4. The set EJiE is abelian,
5. inf |ω'([A',B])| = 0

A'eCoτ(A)

for all A,BeJi and all τ-invariant vector states ω' of ω, where Coτ(A) denotes the
convex hull of {τt(A);t>0}.

If these conditions are satisfied, μ is the orthogonal measure corresponding to E
and {Jί\jE}'.

Proof Io2. This is the general criterion stated above.
2o3. Let J be the modular conjugation associated with the pair (Ji, Ω). It follows
from Lemma 2 of [4] that J and E commute. Thus JEJ = E and

!vE}'J = {Jί'vE}' = Mc\E' = Jί(τ)

and Conditions 2 and 3 are simultaneously valid.

2=>4. The general correspondence theorem for orthogonal measures places the
abelian algebra {Jί^jE}' in correspondence with the projection P = \\JίκjΈ)'Ω~\
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and this projection then has the property that PJίP is abelian. But Ω is cyclic for
JίnE' in £ j f and J commutes with E. Thus Ω is cyclic for Jί'c\ΈI in Effl and
hence P = E.

4=>2. This follows from the general correspondence theorem for orthogonal
measures.

4<=>5. This follows by repetition of the argument used to prove the analogous
statement in Proposition 4.3.7 of [1]. This argument has two essential ingredients,
the mean ergodic theorem, and the relation

TtAE = τt(A)E.

But the latter is valid by Theorem 1.

Remark. Condition 5 corresponds to R+-abelianness of (Jί,τ,ω) in the termi-
nology used for automorphism groups. It is implied by the condition

]imωf([τt(A)9B2) = O
ί->00

of asymptotic abelianness. This latter condition should correspond to a form of
dispersion of the dynamical system (Jί, τ) in the state ω.

The foregoing arguments also provide characterizations of faithful τ-ergodic
states. If ω is τ-ergodic then there is certainly a unique maximal measure μ with
barycentre ω and μ = δω. But the point measure δω is an orthogonal measure in
correspondence with the projection EΩ on Ω and the abelian algebra (Ci. Thus
E = EΩ and {JίuE}' = (£ί. by the last statement of Theorem 2. Consequently
one has the following;

Theorem 3. The following conditions are equivalent
1. ω is τ-ergodίc,
2. Jί\jE is irreducible,
3. Jί(τ) = <L%
4. E has rank one.

The equivalences I o 3 o 4 have previously been given by Frigerio [2] with
some extraneous continuity assumptions on τ. Frigerio also discusses other
criteria of irreducibility. A similar result with faithfulness of ω replaced by a
condition of asymptotic abelianness has been given in [5].

3. Cluster Properties

It follows from the mean ergodic theorem and the definition of the mean values

Mτ(A) that i n f |ω/μ/j _ ω'{Mτ(A))\ = 0
Λ'eCoφl)

for all normal states ω'. Moreover ω' °Mτ = ω for all normal ω' if, and only if, E has
rank one. Thus ω is τ-ergodic if, and only if,

inf \ω'(A')-ω(A)\=0
A'eCoτ(A)

for aΆAeJί and all normal ω'. But these statements are also true in the uniform
topology.
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Theorem 4. For every normal state d one has

inf ||ω"-ω'°MJ=0.
ω'ΈCoωΌΐ

λ(7£-£)Ψ,AΩ

Σ W-£ φ

Thus ω is τ-ergodic if and only if

inf ||ω"-ω||=0
ω"eCoω'oτ

jor all normal ω.

Proof. Each normal d can be uniformly approximated by a finite linear
combination of vector states (φ,Aφ). But since ω is faithful each φ can be strongly
approximated by a vector of the form AΏ with AΈJί'. It follows that each normal
d can be uniformly approximated by a state lψ(A) = (ψ,AΩ) with ψsJί'^Ω. But

and hence

The first statement of the theorem now follows from the mean ergodic theorem
and the second statement follows from the first.

Remark. Theorem 4 is also valid for a group of ^-automorphisms and it has an
analogue for non-faithful states (see [6, Proposition 4]). Let ω be a general
τ-invariant state and suppose ω'^λω for some λ>0. Thus d(A) = (BΏ,AΩ) for
some B'eJί'+. One can define the mean ω'°Mτ of d by d °Mτ(A) = (BΏ, EAΩ) and
then

inf || ω" — d°Mτ\\ = 0
ω"eCoω'oτ

by the argument used to prove Theorem 4. This result then extends to all states in
the norm closure Sω of the set {d ω'^λω}. But Sω is equal to the set of normal
states if and only if ω is faithful.

Theorem 4 demonstrates that for the convergence of means of normal states
there is no distinction between strongly positive semigroups and groups of
^-automorphisms, or between weak*-convergence and uniform convergence.
Distinctions arise, however, if one considers pointwise limits as ί-»oo. For example
if τ extends to a group of *-automorρhisms then it is automatically isometric and

\\lψoτt-l oMτ\\= sup \lψ(τt(A)-lψ(Mτ(A))\= sup \{(ί-E)ψ9AΩ)\.
\\A\\ = 1 Ψ Ψ \\A\\ = 1

Thus ||ω/oτί —ωΌMτ | | is independent of t for all normal states d and pointwise
convergence occurs only in trivial cases. Non-trivial results are possible, however,
for semigroups. The following gives a simple illustration which is subsequently
useful.

Proposition 2. Assume that the semigroup T associated with τ is self-adjoint. It
follows that

lim \\ωΌτt — d°Mτ\\ =0
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for all normal states ω' and hence ω is τ-ergodic if and only if

lim \\ωΌτt — ω\\ = 0
ί->oo

for all ω'.

Proof If one approximates ω' by / as in the proof of Theorem 4 one then obtains
the estimate

\\lψ

But for AeJi and s<t

τt-lψoMτ\\2S\\(Tt-E)ψ\\2.

Thus by standard monotonicity and density arguments Tt converges strongly to E
and the first statement of the proposition is valid. Again the second statement
follows from the first.

Proposition 2 is based upon Frigerio's observation [2] that the condition
\\(T* — E)ψ\\-+09 as ί->oo, for all ψeJt? is sufficient to ensure that \\ω'°τt

— ω'°M τ | | -»0 as ί-»oo for all normal ω'. Next we derive a generalization of
Frigerio's necessary conditions.

First define the sets

N(τ) = {A τt(A*A) = τt(A)*τt(A), t > 0},

Jf(τ) = N(τ)nN+(τ).

Clearly Jί{τ) is self-adjoint. Moreover if AeN(τ) then

τt+s(A*A) = τt{τs{A))*τt{τs{A))

ύφs{A)*τs{A))

= τt(τs(A*A)) = τt+s(A*A).

Hence τs(.4)eJV(τ) for all s>0. Applying a similar argument to N+{τ) one
concludes that N(τ), N+(τ), and Jί{τ\ are all τ-invariant sets. Next by application
of the Cauchy-Schwarz inequality to the form St{A,B) = τt(A*B)-τt(A)*τt{B),
evaluated in a state, one finds that

N(τ) = {A τt(BA) = τt(B)τt(A), t>0,BeJί}.

Thus N(τ) is a subspace of Jl. Similarly N+(τ) and Jί{τ) are subspaces. But if
Aί,A2eN{τ) then
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and hence Λ1Λ2eN(τ). Similarly N+(τ) and Jί(τ) are algebras. Finally if ΛneN(τ)
is a sequence which converges strongly to A then

ω(St(A,A))= lim {(AnΩ,AnΩ)-(AaΩ, T*TtAnΩ)}

= limω(St(An,An)) = 0,
n —• o o

and by faithfulness St(A, A) = 0. Thus the sets JV(τ), AΓ+(τ), and Λ^τ) are strongly
closed. But in Sect. 1 we observed that Jί(τ) Q Jί(τ) and hence jV(τ) is a τ-ίnvariant
W*-subalgebra of Jt which contains the fixed point algebra Jί(τ).

Next let σ denote the restriction of τ to Jί(τ). Clearly σ is α*-morphism but it is
faithful because if σt(A) = 0 then

co(A*A) = ω(σt(A*A)) = ω(σt(A)*σt(A)) = 0,

and this is equivalent to A = 0. Hence by a standard argument, σ extends to a
group of ^-automorphisms of ^V(τ), which is automatically isometric. It follows
immediately that Jf(τ) is the largest τ-invariant W*-subalgebra of Jί on which τ is
egual to a group of *-automorphisms.

The following result gives both necessary and sufficient conditions for uniform
convergence. Note that lψ denotes the normal linear functional lψ(A) = (ψ, AΩ) and
lψ is positive if, and only if, ψeJf'+Ω.

Theorem 5. Consider the following conditions

2. lim||/voTf_z oMJ=0,
ί->oo

3. (F-E)ψ = O,
where F = lJT(τ)Ωl

It follows that 1=>2=>3.
Conversely if T is normal and Jί is abelian, or, more generally if T is normal

and T*Jί+Ω~DJί+Ω for all t>0 then 3=>1.

Proof 1=>2. This follows from the straightforward estimate

2=>3. One has

| |/φoτ t-/ voMJ|=sup{|/ v(τ fμ))-/φ(M τ(τ fU)))U

^sup{\lψ(σt(Λ))-lψ(MMΛ)))\\AeJί(τ\ \\A\\ = 1}

= sup{|/v,U)- lψ(Mτ(A))\ \Ae^{τ\ \\A\\ = 1}

= sup{\{ψ9{l-E)AΩ)\'9AejV(τ)\\A\\ = ί}9

where the third step uses the isometric property of σ. Thus Condition 2 implies that
F(t-E)ψ = 0. But since JKτ)QJf(τ) and E = {_Jt(τ)Ω~\ one has FE = E. Hence
Condition 3 is valid.

Next note that it follows from [4, Lemmas 2 and 4], T*J(f

+ΩQJ(f

+Ω and
T*Ji+ΩQJί^Ω that T*Ji + ΩDJi + Ω. If, however, Jί is abelian Jί^Jί1.
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Hence in both cases TfJi+ΩQJi+Ω. Consequently there exists a semigroup of
positive, identity preserving, hence contractive, maps τ* of Jί into Ji such that

τ?(A)Ω=T*AΩ.

The assumed normality of T then ensures that ττ* = τ*τ, i.e., τ is normal with
respect to ω in the sense of Frigerio [2]. (The converse is also true; Frigerio's
condition implies that T is normal and T*Jί+ΩQJί+Ω)

Next consider the converse statement.

3=>1. If s<ί
(AΩ,TtT*ΆΩ) = ω(τt(A)*τt(A))

ύω(τt_s(τs(A)\(A))) = (AΩ, TST*AΩ),

where we have used the normality of T. Hence ί-> TtT* is monotonically decreasing
and its strong limit G exists. Since T is normal, G is an orthogonal projection. But
for AeJί(τ) and BeJi one has St(B,A) = 0 and hence

(BΩ,AΩ) = (τt(B)Ω,τt(A)Ω),

or, equivalently

{BΩ, AΩ) = (BΩ, T*TtAΩ) = (BΩ, TtT*AΩ).

It follows immediately that F = GF and hence G^F^E.
Next remark that TtT*J(+ΩQJ(+Ω. Hence GJi+ΩQJLji and then

GJi+ΩQJt+Ω by [4]. Thus there exists a positive map g of Ji into M such that

f 11 A M p + g(A)Ω = GAΩ

for all ^ E ^ # . But

and since ω is faithful g(A)e N(τ). But conversely if AeN(τ) then

t)(A - g(A))Ω\\2 = (AΩ, AΩ)- {AΩ, GAΩ)

and hence A = g(A). Thus g maps Jt onto JV(τ). This implies N(τ) = N+(τ) = Jf(τ)
and G^F. Since we have already established that F^G, this gives F = G.
Consequently Condition 3 implies Condition 1.

Remarks. 1. The equivalence of Condition 2 and 3 is a local version of Frigerio's
Theorem 4.2 in [2]. Note that Condition 3 is valid for all ψe j f if, and only if, Jί(τ)
= Jί(τ).

2. In the foregoing proof we established that Jr(τ) = JV(τ) = N+(τ) whenever T
is normal and Tf*^?+Ω£^ίr+Ω, ί>0.

3. It follows from [4] that T*^+ΩQJ^Ώ9 ί>0, if and only if, T commutes
with the modular conjugation J associated with the pair (Ji, Ω), or, alternatively if,
and only if, τ commutes with the modular automorphism group associated with
(Ji, Ω).
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4. The Modulus Semigroup

Theorem 5 gives a characterization of pointwise uniformly clustering states when
Jί(τ) = Jί(τ). In this section we analyze the situation when Jf(τ) φ Jί(τ).

First note that iϊAeJ^(τ) and Be Jί then St(A, B) = 0. Applying this relation to
Ω and appealing to cyclicity one deduces that

TtΛ = τt(Λ)Tt.

If A is self-adjoint it follows by conjugation that A and \Tt\
2 commute.

Consequently one concludes that Jf(τ)QJίc\\T\'. Next we analyze conditions
under which equality occurs and, moreover, Jί(τ) can be identified as the fixed
points of a semigroup, the modulus semigroup.

Throughout the remainder of this section we make the following assumptions,
forallί>0.

1. T*Jΐ+ΩQJΪ+Ω9

2. Tt is normal.
It follows, as in the previous section, that there exists a positive identity

preserving semigroup τ* of maps of Jί into Jί such that

τ*(A)Ω=T*AΩ,

and τ* commutes with τ. We now define the modulus semigroup by

ITI — T * r
\τ\t — τt/2τt/2

and note that
\τ\t(A)Ω=1*2Tt/2AΩ

= \Ttl2\
2AΩ = \Tt\AΩ.

Again |τ| is positive and identity preserving. Moreover it follows from the proof of
3=>1 in Theorem 5 that the strong limit

G= lim|Tf|
ί->OO

exists and G = F where F = [^Γ(τ)Ω]. But the mean M|τ|(^4) of A with respect to the
semigroup |τ| is determined by the relation

M{τ{(A)Ω =

Thus R{M\A) = JT(τ) and Jί(τ) is the fixed point set of |τ|, i.e., Jf(τ) = J4i\τ\). But if
AeMc\G then

AΩ = GAΩ = FAΩ

and hence AεJf(τ). Combining these conclusions one has

Next it is tempting to apply the results of Sects. 2, 3, and 4, to the pair (Jί, |τ|).
The only problem is that it is not evident that |τ| satisfies the condition of strong
positivity. To circumvent this difficulty we assume that τ is 2-positive. By this we
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mean that τt(AfAj), i, 7 = 1,2, is a positive ^-valued 2 x 2 matrix for all t >0. We
recall that a 2-positive semigroup is automatically strongly positive [7] (but there
exist strongly positive operators which are not 2-positive [8]).

Proposition 3. // τ is 2-posίtίve then τ* is 2-posίtίve and \τ\ is strongly positive.

Proof. Since Ω is cyclic for Jί' the 2-positivity of τ is equivalent to

i = l 7 = 1

for all ί>0, At, A^eJi, and B't, B^eJi'. This can be reexpressed as

Σ Σ(β^ί*B}^
ί = l 7 = 1

Now if y4e^#? B'eJί', and J is the modular conjugation, then A' = JAJeJί'
and B = JB'JeJi. Moreover J commutes with T by [4]. Thus

(Ω, J B ' ^ Ω ) = (Ω, JBJTtJΆJΩ)

= (Ω,JBTtAΏ)

The 2-positivity of τ* follows immediately from combination of these obser-
vations. Consequently τ* is strongly positive and |τ| is strongly positive, because it
is the product of the two strongly positive maps τ and τ*.

Thus if τ is 2-positive one can apply the results of the previous sections to the
pair (Jί, |τ|). Since the τ-invariant state ω is automatically |τ|-invariant one
concludes that Theorems ί—3, are valid with the replacements τ-»|τ|, E^F,
Jt{τ)^Jί(τ\

It is of some interest to examine the condition of R + -abelianness of (Jί, |τ|,ω)
in more detail. This condition, which ensures the uniqueness of the barycentric
decomposition of ω into |τ|-ergodic states can be written

0 = IFAF, FBF~] = lim Σ X?{FA T* TtiBF - FB T* TtAF}
α ί

= limΣ^T ί*F[τ I i(A),τ t ί(B)]FT,,
α i

where the limit is over the net of finite convex combinations. [Here we have used
the identity TtAF = τt(A)FTt which follows from noting that St(A,B)Ω = 0 for all
AeJi and BeJί(τ)/\ In particular it is necessary that

for all A, BeJi. This should be contrasted with the condition

0, (**)
α i

which is both necessary and sufficient to ensure that ω has a unique barycentric
decomposition into τ-ergodic states. Both these conditions reflect a form of
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asymptotic abelianness but (*) could be described as a "local dissipation"
condition whilst (**) is a property of escape to infinity.

Finally the τ-invariant, |τ|-ergodic states can be characterized by pointwise
uniform clustering with respect to τ.

Theorem 6. // τ is 2-posίtίve it follows that

lim ||a/o|T|t —o/°M|T||| = 0 ,
ί-> oo

for all normal states ωf of the τ-ίnvariant state ω. Hence the following conditions are
equivalent

1. ω is \τ\-ergodίc,

2. lim ω(τt(A)τt(B)) = ω{A)ω(B) for all A.BeJί,
ί->oo

3. lim Hω'oTj —ω|| = 0 for all normal states ω'.
ί-κ»

Proof Since |τ| is determined by the self-adjoint contraction semigroup ί->|7J| the
first statement follows from Proposition 1 applied to \τ\.

Next consider the equivalences between the three conditions I o 2 . Since

Condition 2 is equivalent to F = EΩ. But this is equivalent to Condition 1 by
Theorem 3, applied to |τ|.

1<=>3. Condition 1 is equivalent to

lim ||ω'°|τ| t — ω|| = 0
ί-*oo

for all normal states by Proposition 2 applied to |τ|. But this implies that ω'°M|τ |
= ω for all ω' and this is equivalent to F = EΩ. This is in turn equivalent to
Condition 3 by Theorem 5.

Davies [9] has emphasized the significance of pointwise uniform clustering in
the context of "return to equilibrium" and given specific examples.

5. Concluding Remarks

The foregoing results do not require any assumption of continuity of τ or T as
function of t. If, however, τ is weak* continuous then T is weakly, hence strongly,
continuous and the results based upon the mean ergodic theorem can be
strengthened. In the absence of continuity we defined mean values of T and
elements τ(A) as infinima over convex combinations, but in the continuous case
one can use any of the usual averaging processes, Abel means, Cesaro means, etc.

Next we remark that although Theorem 2 gives necessary and sufficient
conditions for the existence of a unique maximal measure on EX

M with barycentre
ω, these conditions do not ensure that the measure is subcentral, i.e., that the
abelian subalgebra of Jί' which corresponds to μ is contained in the centre

ί' of Jί. It is evident that μ is subcentral if, and only if,
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and this inclusion is certainly assured by a suitable hypothesis of asymptotic
abelianness. If, however, τ is replaced by a group of *-automorphism then the
equality

J()

can in fact be characterized by an asymptotic abelianness property, G-centrality,
(see [1, Chap. 4]). It is unclear whether a similar characterization is true in the
semigroup setting.

Finally we note that the assumption of normality of T is a weakness of the
results in Sect. 4. If one drops this hypothesis one can deduce, nevertheless, that
Jί(τ) = Jίrn\T\'' = Jt'nG', where G is now the largest orthogonal projection such
that GS \Tt\ for all t. It is difficult, however, to identity Jί(τ) as the fixed point set of
a positive semigroup. The natural candidate would of course be given by τt

= lim(τ^τί/n)", if this limit exists.
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