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Abstract. This paper is a comment (written in a self-contained way) upon A.
Connes' noncommutative integration theory. A simple observation (Lemma 9)
allows the direct definition of transverse measures as functionals on the general
positive random functions. Connes' first definition is then recovered by
considering the transverse functions as a separating subset of the positive
random functions (to which they are related by explicit natural
transformations).

Introduction

The aim of this paper is to provide easier (at any rate more leisurely) access to the
notion of transverse measures on groupoids developed in [1 ], which we believe to be
connected with quantization (we hope to return to this later). Alain Connes was led
to his noncommutative integration theory in his generalization of the Index
Theorem to foliations on compact manifolds, by the need to integrate transversally
an everywhere infinite function (the dimension of the space of harmonic forms on
the generically noncompact leaves). The two major points of this theory are the
following: on the one hand, it allows integration over singular quotients (e.g., non
standard orbit spaces of ergodic actions), giving a precise meaning to a heuristic
situation where the space shrinks whilst the function becomes infinite (tiny space).
On the other, it provides the right (i.e., fully functorial) description of KMS states
of convolution algebras of groupoids, these being a possibly largely universal model
for noncommutative algebras, related with "geometry" via the groupoid.
Consideration of the tiny space in fact enforces noncommutativity — a feature
reflecting the incorporation to classical analysis of the non type I phenomena
encountered in operator algebras (and in the algebraic theory of infinite quantum
systems).

One of the basic ideas of Connes' integration theory is a generalization of the
notion of a (real- or integer-valued) numerical function. Instead of plotting a
number against the variable, one plots a standard Borel set with "cardinality"
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( = total measure) this number — possibly everywhere infinite — so as to build an
appropriate measurable bundle. The base of this bundle is the standard space to be
divided by a measurable, possibly nonregular equivalence relation (e.g. the orbit
space of a nonregular ergodic action). A measurable groupoid enters this picture by
means of a functor of bimeasurable bundle maps with associated maps, the
groupoid elements, acting on the base as its set of units. This procedure amounts to
integrating on the quotient space obtained from a well behaved "desingulari-
zation".

As in the case of groups, convolution of functions on a groupoid is obtained by
convolution of the measures products of functions by "Haar measure": this is the
object of Sects. 3 and 4 to follow. Section 5 aims only at motivating the concept of
^-symmetric measures: it can be skipped [but for the definition (30) of the latter].
Section 6 describes the generalized notion of functions. The central Sect. 7 can
either be read as it is, or alternatively, permuting Theorems 8 and 10. The
functorial properties of the transverse measures are described in Sect. 8. Appendix
A is technical. Appendix B describes examples and can be read after Sect. 1.

1. Measurable Groupoids

A groupoid Γ is a small category with inverses. Specifically: we have a set Γ ( 0 ) of
objects with, to each pair x, y e Γ ( 0 ) a (possibly void) set Γ£ of morphisms y.x^-y,1

Γ being the disjoint union of all Γ j!,x, yeΓ{0). Further, to each pair y:x-+y,
γ':y-+z, x,y,zeΓ{0\ there is a product y'y:x->z with the following properties:

(i) if y:x-+y9 y':y^>z, y":z-+u9 x, y, z, ueΓ{0\ we have y"(/y) = (/Y)y,
(ii) to each yeΓ{0) there is a unit ΊLy:y^>y with the properties ~Ryy = y and

y' Ίίy = y' whenever y: x->y and yf:y-> z, x, y, zeΓ{0) (from this it is follows that
such Hy is unique, which allows us to identify y and Ίly and consider Γ{0)czΓ as the
set of units in Γ),

(iii) to each y: x->y there is a y ~1:y -*• x with y~1y = x and yy~1 = y [from this

it follows that y " 1 is unique, and thus that (y~ί)~1 = y].

For y: x->y we set x = s(y) (source of y) and y = r(y) (range of y). We denote
Γ{2)= {(y,y')eΓ x Γ; s(y) = r(γ')} the set of multip liable pairs and, for yeΓ{0\ we
SQtry=r~1({y}).

A measurable groupoid Γ = (Γ, IB) is a groupoid Γ with a tribe IB of measurable
sets such that the maps y: Γ -> y ~1 GΓ, (y9 y')eΓ{2)^yfyeΓ and r,s:Γ-^Γ{0) are all
measurable (Γ x Γ is given the product, Γ(O)c:Γ and Γ{2)czΓxΓ the induced,
measurable structure).

2. Kernels

We shall need the following notion: given two measurable spaces, (Y, IB), (Y\ IB')
with respective sets of positive extended real valued2 measurable functions ^ + (Y),

1 We write indifferently γeΓ* or γ:x-+y

2 The positive extended real line is R+ = R+ u(+oo)
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W + (Y'\ a kernel from Y to Y' is a map A: F + (7)-> F + (7') 3 which is

(i) affine, i.e. λ(α/+j8g)=_αλ(/) + j8λ(g), α, βeR+,f ge^+(Y),

(ii) normal, i.e. fnsf, fne^+(Y) implies λ(fn) * λ(J).

Denoting 35ί + (7) the set of positive measures on Y, we note that the kernel A is
determined by the map y'^>λy'eWt+(Y), where λy'(S) = λ(Tls)(y'), SeJB with
characteristic function Ή5: one has namely

A(/)(/) = ̂ ( / ) = jdλy>(y) f{y\ yΈY\ feΨ+ (7). (1)

In fact, the kernels λ\Y-^Y' could be defined as maps (/, S) e Y' x IB -• λy> (S) such
that λy\ )eWt+(Y)9 y'eY', and λ-(S)eάF+(Y')9 SeJB, (unbounded generali-
zations of transition probabilities). Given kernels A: Y-> Y' and μ:Y'-> 7", it is
obvious that μλ = μo A is a kernel from Y to 7".

Given measurable spaces 7, 7', X with 7, 7' respectively fibered by π: 7->X
and π': 7' -> X (i.e. π and π' are measurable onto), a kernel /1: 7-> Y' is calledfibered
by π and π' whenever the restriction of λ (/), fe ^ + (7), to the fibre π' ~1 (x) of x,
x e l , depends only on the restriction of/ to the corresponding fibre π " 1 ^ ) . It is
easily seen that this is the case if and only if 4

λ (Op O π)/) = (φ o n') λ (/), fe F + (7), φ e Ψ+ (X). (2)

It follows that the product of fibered kernels are fibered kernels. A special case of
fibered kernels is obtained by considering measurable spaces 7, X, with 7fibered by
π: Y^>X, and X trivially fibered by its identity map idz: a kernel λ: 7-» X is then
fibered by π and \άx iff the measure λxeffll+ (7) is carried by the fibre π~x (x) for
each xeX.

A kernel A: 7-> 7' is called σ-finite (respectively proper) whenever there is a
sequence {Bn} of measurable subsets of 7 such that \J Bn = 7 and A (Ίl^) is finite

«
(respectively bounded). One easily sees that the existence of a nowhere vanishing
/ e # ' + ( 7 ) with λ(f) finite (respectively bounded) entails that λ is σ-fmite
(respectively means that λ is proper): consider indeed Bn= [y eY\ f {y) > 2~n) and

00

/ = Σ 2"n 11^(^)11^ H^. Note also that / can always be chosen bounded, and
« = l

the Bn nondecreasing.

3. Convolution on Measurable Groupoids

A groupoid Γ is analogous to a group in that it possesses an associative product for
which each element is invertible, but the product is not everywhere defined: for γ,
yfeΓ, γyf exists iffs(y) = r(yf). This suggests the following formal extension to
groupoids of the notion of convolution of functions on a discrete group:

(f*g)(y)= Σ / ( / U i / " 1 ? ) . (3 a)
γ'eΓ, r{y') = r{y)

3 We shall use the shorthand: λ: Y-+ Y'
4 In the case where the points of X are measurable. Otherwise condition (2) is stronger and should be
taken as defining kernels: X-> Y fibered by π and π'
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For discrete groupoids (isomorphic to IN as measurable spaces) (3 a) is a suitable
definition of convolution. In the general case however, it has to be replaced by

(ffg)(y) = $dλ^\y')f(y>)g(y>-1y), f geF+(Γ), (3b)

where λr{y) (or, for that matter, fλr{y)) is a positive measure on Γ carried by
Γr{y) = r~1(r{y}). We see that convolution as defined by (3b) is relative to
the specification of what we shall call a Γ-kernel λ, i.e. a kernel λ: Γ -• Γ ( 0 ) fibered
by r and idΓ«>, (cf. end of preceding section)5. Definition (3b) then amounts to

λ Γ ) , (3c)

where we define as follows the convolution of a Γ-kernel λ and a function

1y), yeΓ, (4)

and where fλ is the kernel: Γ^>Γ° defined by:

=fλy, yeΓ™

(equivalent^ (fλ) (g) = λ (fg\ ge^+(Γ)) f ( 5 )

In order however that the function λ * / i n (4) be measurable, we need to assume
σ-fmiteness of λ (or equivalently properness see Lemma 2 below). We then have

Proposition 1. Let, for λ a Γ-kernel and for fe J^+ (Γ)

(4a)

(6)

If λ is σ-finite these formulae define kernels Lλ9 Rλ from Γ to Γ related by

LJ={RJ)~, feW+{Γ), (6a)
where

/ ω = / ( y " 1 ) , yer. (7)

Moreover one has the following properties

f Γ), (8)

(9)

, J
f) &+Γ), (11)

where λ and μ arc any σ-finite T-kernels.

Property (9) suggests the notation6

5 Γ-kernels are thus kernels λ: Γ->Γ(0) such that λ{{φ o r)f) = φλ (/), / e i^ + (Γ), φ e J^ + (Γ ( 0 ))
6 Note that λRμ is a Γ-kernel since Rμ is fibered by r and r, and λ by r and id Γ ( 0 ). The third equation in
(12) g e n e r a l i z e s t o (λΛ*λ2* ... *KY<J) = \dλ\ (y1)dλs

2^\γ2)dλs^\yn)f(y1y2 . . . yn), λ l 9 . . . , λ n

σ-fmite Γ-kernels, / + ( 0 )
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The proof that Lλf (or, for that matter i ^ / ) is measurable as a consequence of the
fact that λ is σ-fϊnite is somewhat technical and deferred to Appendix A. Properties
(6a) through (11) follow from easy computations. If y = xeΓ{0) in (4) one has
r(y) = x and yf ~1y = y' ~1, whence (8). Equation (9) is checked as follows:

(Lλ Lμf) (y) = j dλ'M(y') J d^'^Kl") f(f ~ V " ' ?)

1 •)> = (LλRJ)(y). (13)

Equation (10) is immediate from the definitions (4a) and (6). As for (11) we have

, (14)

whence the result, since interchange of integrations is licit by the σ-fmiteness
assumption for λ and μΊ.

Lemma 2. Let Γ be a measurable groupoid and let λbe a Γ-kernel. The following are

equivalent:

(i) λ is σ-finite,

(ii) there is a nowhere vanishing fe 1F+ (Γ) with λf finite,

(iii) there is a nowhere vanishing fe ^ + (Γ) with λf bounded,

(iv) λ is proper, i.e. there is a sequence {Bn} of measurable subsets of Γ such
that (J Bn = Γ and λ (Bn) is bounded for all n.

n

Further, if λ is σ-finite, the functions f in (ii) and (ίii) can be chosen bounded;
and there is a ge&+ (Γ) with*

λ{g) = %λ, Sλ={xeΓW; λ*Φ0}. (15)

Proof We noted at the end of Sect. 2 the implications (iv)o(iii)=>(ii)=>(i) for
general kernels λ. We thus need only to check that (i)=>(iii).
(i) =>(iϋ): for n, m eIN consider Amn = {y eΓ ( 0 ) ; λy(Bn) < m}. For a fixed n the Amn

are increasing towards Γ ( 0 ), thus the r~1(Amn) are increasing towards Γ. Thus the
B'mn = Bnnr~1(Amn) are measurable sets of Γ covering Γ and such that
λ(B'mn) < m. The function / = X m " x 2~{n+m) %nm then fulfills (iii).

ntn

We now show the existence of g fulfilling (15). Let / be as in (ii) and take
g = (φo r)f with φ{g) = λy{f)~1 for yeSλ and φ = 1 for y$Sλ (observe that for
y eSλ, λy(f) > 0 since λy φ 0 and / is nowhere vanishing). Our conclusion follows

(16)

7 Note that Eqs. (8) and (10) hold without σ-fmiteness assumption
8 We denoted by 1 5 the characteristic function of the set S and call a function finite whenever all its
values are finite

Note that (since the proof of Lemma 2 makes no use of the fact that Γ is a groupoid with set of units
Γ ( 0 )) the result in fact holds for any kernel λ: Y-> X fibered by r and \άx, with r a measurable surjection
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4. Transverse Functions

Our next question is whether groupoids give rise to *-algebras in the same
manner as groups9. Specifically, given a σ-ίinite Γ-kernel λ, we want to know
when the convolution * which it defines is associative and symmetric (in the
sense that (f*g)~ = gff) so as to yield a *-algebra with the product * and
the adjoint operation/* = / We do not expect that this is the case for a general
Γ-kernel λ, since in the group case convolution is generally neither associative nor
symmetric (unless the measure at hand is the Haar measure).

Proposition 3. Let Γ be a measurable groupoid and let v be a Γ-kernel. The following
are equivalent

(i) vr(y) = yvs(y), γeΓ(left invariance, y denotes multiplication to the left by y),

(ii) V*/=v(/)oJ,/6r(Γ),

(iϋ) (f*g)~=g*f,f, ge^+(Γ) (--symmetry),

(iv) λ */v = (λ */) v, fe F + (Γ), λ any σ-finite Γ-kernel

Further, in this case, and if v is σ-finite, the convolution * is associative.

Statement (i) makes sense as follows: left multiplication by y maps Γs{y\ which
carries vsiy), onto Γr(y), which carries vr(y).

Note that the ~ -symmetry (iii) is equivalent to the left invariance (i) and suffices
to insure associativity.

The σ-fmite Γ-kernels v fulfilling (i) through (iv) above are called the transverse
functions (or Haar systems) on Γ. Their set is denoted $+.

Proof. Condition (i) means that

J * ' < » ( / ) / ( / ) = jdv°M(y') f(yy'\ fe F + (Γ), yeΓ, (17)

and can be written formally

dvHy\y') = dvs{y)(y-1y'), y, y'eΓ. (18)

Condition (ii) then amounts to writing (17) for the function f(y ~1 ). Owing to the
definition (3b)? condition (iii) reads

\dv^\y')f(y')g(y'-1y-1) = \dv^y\y')g(y'-')f(y-1y'), (19)

which amounts to writing (17) for the function /(y" 1 •) g: thus (iii) is obviously
equivalent to (i). To prove the equivalence (iv)<=> (iii), we notice that the latter is
equivalent to

^ ((/* I) 1 = λ (g * f), f, g e F + (Γ), λ any Γ-kernel. (20)

Now using (8) twice, the left hand side reads

whilst the right handside equals [using (11) and (6)]:

9 And, more trivially, as spaces. For these special examples of groupoids, see Appendix 2 below
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Now (iv) entails immediately the associativity of *:

(/ * g) * h = (fv * g) v * h = fv * gv * h = f * (g * h). (21)

Proposition 4. Let v0 e S+ be faithful in the sense that vy

0 φ Ofor allyeΓi0) (in other
terms Sv = Γ{0)). Then each vsS+ is of the form v0 * λ, λ a T-kernel. Specifically

v = v o ^ v , g e ? + ( Γ ) , v o ( g ) = V ) . (22)

Proof. Since Sγ = Γ{0\ there is a ge^+(Γ) with vo(g) = llΓ<o> (cf. Lemma 2).
Thus v * g = ΉΓ(O) o s=TίΓ. Thus v0 * ̂ v = (v0 * g) v = v (we used (ii) and (iv) in
Proposition 3).

5. KMS Weights and δ-Symmetric Measures on Γ10

Now that we have a *-algebraic structure, we would like to define interesting states
or weights, e.g. traces or KMS weights. As we know, the latter can be defined by
left Hubert algebras. We are thus led to look for scalar products on
(appropriate subsets) of ^+(Γ). In order to define a positive definite scalar
product, it is natural to try an expression of the form

(f,g) = m(fg), (23)

where m is a measure on Γ. Furthermore, it is natural to choose m as obtained from
a "desintegration"

m = M oy (24)

with respect to a faithful vε<f+,Mameasure on Γ ( 0 ). Now the scalar product (23)
with m given by (24) has already the "right Hubert algebra property"

(f*h,g) = (f,g*h*)> (25)

we have namely, using (5) and (8):

(/,g) = M(v(fg)) = M(gv(/)) = M{(g*/*) \rm}. (26)

The same calculation performed "on the left" yields

<J,g) = M(Uv)(g)) = M{Ur*g)\rm}. (27)

Therefore we see that we have the "left Hubert algebra property"

(J,h**g), (28)

(thus a Hubert algebra yielding a trace) if the measure m = Mo v is "symmetric" in
the sense _ _

+Π (29)
This is what is needed to obtain a trace. We can generalize that in order to
define KMS weights. For this we first define a modular function on Γ to be a

10 This section is not a prerequisite for the sections to follow on noncommutative integration. We
inserted it for motivating the notion of ^-symmetric measures on Γ. The hurried reader can skip it,
retaining only the definition of modular functions. For the notion of KMS weights, see [2]
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function δ:Γ^>R+ such that δ(y'~ίy) = δ(y')~x δ(y), whenever y, y'eΓ are such
that r(y') = r(y)11. Given such a δ we now consider measures Mov which are
δ-symmetrίc in the following sense

(30)

We now have

Proposition 5. Let Γ be a measurable groupoid, with v a faithful transverse function
on Γ. Let M be a positive measure on Γ ( 0 ) fulfilling (30), and let m = Mo v.

Define, on the set ^ (Γ) of finite measurable functions on Γ9

(31)

and let

V={fe?(Γ);f,f*eL2(Γ,m); \\f\\ <oo}, (32)

where

| | / | | = Sup{v(|JΓ/|), v(|//f)}, fe^(Γ) (33)

with

Jf= δ f* = δ f. (34)

Then <€ with the multiplication *, the left involution jfc, and the scalar product (23), is a
left Hilbert algebra with corresponding modular involution J, right involution * and
modular operator A given by

Af=δf feV. (35)

Since this theorem is quoted only for motivating the introduction of (5-symmetric
measures, we merely sketch the proof. First note that the operations -, ~ and * on
measurable functions mutually commute; and that one has S= JA1/2 = A~1/2J,
F= JA~112 = Aί/2J, S2=F2=J2=H (we set Asf= δsf fe&{Γ\ selR). Let ^
be the set of fe&+ (Γ) such that | | / | | < oo and let s/— Jst*\ these are topological
*-algebras under the operations (*,#) respectively (*,*); and J is an antilinear
bijection J/#<->J3/ reversing the product * and exchanging # and *, moreover
antiunitary for the scalar product (23)1 2. For checking those facts one notices that
for fge^(Γ), veS+, and λ a Γ-kernel, ||(gvl)(/)||oo = II^IL' m(/)lloo a n d
v (/?<?)= t(v * 8)v] (/)• The third fact we need is the boundedness of π (/): π (/) ξ
= / * ξ, ξeL2(Γ, m), / G J / 5 as a Hilbert space operator. Via /this follows from the
boundedness of π (/): π (/) ξ = ξ*ffe<srf. Now since

(36)π{f)=\π*{f)dM{y),

11 R* denote the set of strictly positive real numbers. Modular functions on groupoίds are the
analogue of a positive characters of groups. As such they enjoy the properties δ (λ */) = δλ* of,
δ(λ*μ) = δλ* δμ, λ, μ Γ-kernels, fe ^ + (Γ)

12 The preclosedness of Son ^/easily follows from the fact that S is the restriction of JΔ1/2 with A self-
adjoint positive and / antiunitary
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with
{ W ) ξ} (7) = ί dvy(f) ξ (/) f(yy'), (37)

it follows from known facts about norms of Hubert space operators defined by
kernels that | | π ( / ) | | ^ || Jf\\v.

6. Positive Random Variables (Γ-<5-Functions)

We now describe the generalization of the notion of positive measurable function
announced in the Introduction.

Let Γ be a measurable groupoid with Γ ( 0 ) the corresponding set of units and δ a
modular function on Γ. We denote by 5£ the category of measurable spaces
isomorphic either to [0,1], or to IN, with the bimeasurable13 maps as morphisms
(these two cases correspond respectively to real-, respectively integer-valued
"functions").

A measurable T-functor F = (Z, π, F) is the specification of

(i) a functor F\ Γ-> J£?, i.e. assignments xeΓ ( 0 )-> Fx, Fx a measurable space as
above; yeF->F(y), F(y) a bimeasurable map: Fsiγ)^Γr{y), with the properties
F(x) = idFχ, and F{y'~1y) = F(yf) ~1 F(y) whenever r(y') = r (y),

(ii) a standard measurable space (Z, JBZ) (the total space of F) with a
measurable surjection π:Z-»Γ ( 0 ) such that

(a) for each xeΓ{0\ π " 1 ^ ) is a measurable subspace of Z isomorphic to Fx,
(b) the map (γ, z) -• F(y) z is measurable from {(y, z)eΓ x Z; s(y) = π (z)} to Z.

We henceforth write for shortness F(y)z = yz, zeZ, yeΓ.
A positive random variable on Γ with modular function δ (or, for shortness a

Γ-δ-function) α = (IF, α) = (Z, π, F, α) is the specification of

(i) a measurable Γ-functor F = (Z, π, F) in the above sense,
(ii) a σ-fmite kernel α:Z->Γ ( 0 ) fibered by π and idΓ(0) and δ-equivariant,

i.e. one has

Γ ( 0 )), (38)

and

α ' ^ δ ^ G O y α ' W , yeΓ. (39)

We will in fact concentrate attention to the proper Γ-(5-functions α = (F, α), that is
those whose functor F = (Z, π, F) is proper in the sense that to each faithful v e <ί+,
there should be a we J^+ (Z) with v * u = Tlz where we define14

(A * M) (Z) = jdλ π { z\y) M(y"Az),
α Γ-kernel

zeZ.
(40)

13 I.e. measurable invertible with measurable inverse
14 We will alternatively write λ * u = î w in analogy with (4a), hereby obtaining a kernel F λ : Z -> Z in
the case of a σ-finite λ: for this and alternative characterizations of proper functions, see Proposition 7
below
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Given two Γ-functors F = (Z, π, F), F ' = (Z', π', F') a natural transformation ρ
from F to F ' is a kernel ρ\Z' ^>Z which is

(i) fibered by π' and π:

ρ ( ( φ o π > ' ) = ( φ o π ) ρ ( ι 0 , w ' e ^ + ( Z ' ) , φ G # + ( Γ ( 0 ) ) 5 (41)

(ii) equivariant:

Qyz = yρ\ yeΓ, Z E Z , r(y) = π(z), (42)

(iii) unital:15

β(HzO = Hz. (43)

Accordingly we have the property

λ * β do = β (A *O, 1 , e F + ( z o A a Γ _ k e r n e l ( 4 4 )

i e. Fλoρ = ρoFλ j

indeed, from (i) and (ii)

{λ * ρ («')} (z) = J rfλ"w(y) j rfρ^'^Cz') u'(z')

= J J/lπ ( z ) (y) j rfρz (z;) M' (y ~x z')
/ )(y)« /(y"1^ /). (45)

Amongst other things (44) implies, together with (i), that if there is a natural
transformation ρ from F to F r and F ' is proper, so is F .

The generalization of the notion of function afforded by the above definitions is
two-fold:

1) As announced in the Introduction, the entity plotted against the variable is
not a number but a "set with cardinality that number" where the "cardinality" of
the set Fχf xeΓ{0) is <x*(Fx) (possibly +oo).

2) The variable ranges in fact in the quotient Γ(0)/ - of the "base" Γ ( 0 ) of Z by
the equivalence relation ~ defined by

x~y<$> y = r(γ) and x = s(y) for some yeΓ. (46)

Accordingly the "values" (Fχ9 ax) and (Fy9 <xy), for x9yeΓ{0) related as in (42), are
not independent but connected by the bimeasurable F(y): Fx-+ Fy fulfilling the
above definition properties.

The preceding definitions become indispensable in the case of a standard
measurable Γ ( 0 ) with an equivalence relation ~ which is not smooth, so that the
quotient Γ ( 0 )/^ is not standard (not even countably separated!). The quotient
measurable structure is in that case totally worthless16, and in order to integrate
over Γ(0)/ ~ , one has in fact to work with a "desingularization" Γ(0), keeping track
of the necessary compatibility conditions by means of the maps Fy9 yeΓ.

The next Proposition gives a description of the simplest and most useful
Γ-(5-functions: those arising from the transverse functions v on Γ.

15 Note that with a = (F, α) a Γ-ό-function, α' = (IF', α ° ρ) is a Γ-^-function
16 For instance, in the case of a groupoid Γ arising from a group action ergodic and nontransitive (cf.
Appendix B, 4) the only measurable functions for the quotient measurable structure are the constants
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Proposition 6. Let Γ be a standard measurable groupoid and consider the triple
ψΓ = (Γ, r, L), with Lx = Γx = r~1 ({r}(x)}), andL(y) :Γx^Γythe left multiplication
by y:x->y. ΨΓ is a measurable Γ-functor. Further, with δ a modular function on Γ,
and veS> +, ( F Γ , δ~ι v) = (Γ, r,L,δ~ιv) is a Γ-δ-function; and for each σ-finite
T-kernel λ such that λ{\) = 1Γ«», Rλ: Γ -> Γ is a natural transformation from F Γ

to itself. Finally, given a measurable Γ-functor F = (Z, π, F), the kernel Q\Γ^Z
given by _

Q{f)j=fv*u,fe^{Γ), I
Z) such that v * w = l z ? j

is a natural transformation from IF to ΨΓ.

Proof. The fact that ΨΓ is a measurable functor readily follows from the
definitions; and ( F Γ , δ~λv) is a Γ-^-function5 since the Γ-kernel δ~1 v is fibered by r
and idΓ(0)5 and we have

d[(δ-1vγ^(yf)] = δ-ί(y/)dvr{y\γ') = δ-ί(y)δ-1(y-1yf)dvs{y)(y-1γ/). (48)

We noted in (10) that Rλ:Γ^>Γ is fibered by r and r; Rλ is unital since Rλ(TίΓ)
= λ (Ί1Γ(O)) o s; and equivariance immediately follows from (6)

) (49)

The kernel ρ: Γ -> Z is fibered by r and π since, for φ e F + (Γ<0))

^((<P^)/) = ί^π(z)ω/ωcp(rω)M(r-^) = φ(π(z))ρz(/); (50)

it is unital since v * u = Ήz and equivariant, since

f « ( / ~ 1 z ) (51)

Proposition 7. Le/IF = (Z,π, F)beameasurableΓ-functor.DefiningFλu = λ* ufor
λ a Γ-kernel and ue #"+ (Z) owe obtains, if λ is σ-finite, a kernel Γλ\Z^Z with the
properties

(Fλu)(yz) = (Fλu)(z), zeZ, yeΓ such that s(y) = π(z), (52)

Fλ° Fμ = Fλ*μ, Kμ o-finite T-kernels. (53)

Furthermore, the following properties of IF are equivalent:

(i) For each faithful veS+ the kernel FV\Z^Z is proper.

(ii) There a faithful ve$+ with Fv proper.

(iii) There are veS+ and W G F + (Z) with v*u=Hz.

(iv) F is proper.

Proof. The verification of (52) and (53) is immediate from the definitions.
(iii) <=> (iv): <= is obvious (assuming as we do the existence of a faithful v e $+) =>: if
v * u = ΐ z , v G S+, u e F + (Z), and if v' e S+ is faithful, there is a Γ-kernel A such that
v = v ' * λ (cf. Proposition4): then V*u' — ~ΆZ for u' = λ*u. _
(ii)=>(iii): Fv is proper whenever there is a never vanishing ve^+(Z) with v*t;
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bounded: the latter accordingly never vanishes, and neither does u = (v * v) ~1 v: one
has v * u = (v * v)~1 (v * υ) = Ήz, as one sees from (40), using (52).
(iii) => (i): let v and u be as in (iii): there is a k e #"*" (Γ) never vanishing and such that
v*fe = v(£)o,s=Tl f. From the fact that v*u = l z one sees that uί = kv*u never
\ anishes since k never vanishes. But v*w1 = v*&v*w = (v*A;)v*w = v * ι / = l l z (cf.
Proposition 3). The fact that Fλu is measurable as a consequence of the σ-fmiteness
of λ is proven in Appendix A.

7. Transverse Measures on a Measurable Groupoid

We now describe the way in which the Γ-(S-functions described above are
integrated. With Γ a measurable groupoid and δ a modular function on Γ as above,
we say that A is a transverse Γ-δ-measure \ΪA is a map from the /"-^-functions to R +

which is

(i) affme, i.e. A{ca-\- e'en') = cA(μ) + c'A(ocf), c, c'eR + , α, α' Γ-(5-functions
with the same measurable functor F 1 7 ,

(ii) normal, i.e. A (an) <* A (α) if αn <» α, an any ascending sequence of Γ-δ-
functions with the same F 1 8 ,

(iii) natural, i.e. A(a) = A (α') whenever a' = αo ρ5 α, a' proper Γ-(5-functions
with respective measurable functors F , F ' ρ a natural transformation from F to F ' .

The following theorem indicates how one obtains transverse Γ-^-measures.

Theorem 8. Let The a measurable groupoid with δ a modular function on Γ. Let v0 be
a faithful transverse function on Γ and let M be a positive measure on Γ ( 0 ) such that
Mo v0 is δ-symmetric.

M(vo(δ-ίf)) = M(vo(f)), feF+{Γ). (54)

Then, defining, for the Γ-δ-function a = (Z, π, F, α):

Λ(α) = Sup{M(α(«)); z e F + ( Z ) , v o * M ^ I z } , (55)

we obtain a transverse Γ-δ-measure in the above sense. Furthermore one obtains M
back from A as M= AVo with19

AVΰ(φ) = A(δ-1(φos)v0l φe^+(Γ^). (56)

For proper Γ-δ-functions α, A can be defined by

A (α) = M(oc («)), any ue^+ (Z) such that v0 * u = I z . (57)

The key device for our proof is the following

17 One could equivalently require Λ(oί®a') = Λ (α) + A (α') for general Γ-<S-functions α, α', with an
obvious definition of the direct sum

18

19 We know (Proposition 6) that (Γ, r, L, (5 ~1 v0) is a Γ-<5-function. It is readily verified that the same
holds with δ~1v0 replaced by δ~λ (φo s) v0
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Lemma 9. Let Γ, δ, v0 and M be as in Theorem 7, and let a = (Z, π, F9 α) be a
Γ-δ-functίon. We have that

(Z). (58)

Proof. We have, for yeΓ(0):

l { y - l z ) , (59)

i.e.
a{u(vo*υ))} = vo(uXv), (60)

where

(uXv)(y) = ld^y\z)u(z)v(y~1z),uiVE^+(Z). (61)
α

But
κ χ ί ; = ^- 1 ( ί ;χ w )~, u,ve&+(Z), (62)

α α

as immediately follows from (39):

(z). (63)

Now (58) immediately follows from (60) and (62), via (54).

Proof of Theorem 8. Let ve&+ (Z) be such that vo*v = l z if w, w' e # " + (Z) are
such that vo*w:gvo*ι/, one has M(a(v(vo*u))SM(oc(v(vo*u')y), hence from
Lemma 7 M(α (M)) ^ M(α (t/')) This shows that A is given by (57) for proper Γ-δ-
functions α. For the latter we could define A in this way, Lemma 7 making it
obvious that the expression on the right-hand side of (57) does not depend from u
subject to v 0 *v u = Ήz. The facts that A is affϊne and normal follow from these
properties for the map α->M(α(w)) for a fixed u. And naturality follows readily
from (57) and (44): let α and α' = α o ρ be proper Γ-<5-functions related by the natural
transformation ρ and let u' e # ' + (Z') be such that v0 * u' = Hz' we have

(64)

since ρ (uf) is such that

v0 * ρ (u1) = ρ (v0 * u') = v ( l z ,) = l z . (65)

Next, the fact that M=ΛV follows from (57) applied to α = δ ~1 (φ o Λ) V0 using the
(5-symmetry of Mo v0:

such that v o * / = l Γ

= M(vo((<p o r)/)) = M(φv0(/)) = M(φ). (66)

We now prove the related facts that Γ-(S-measures are determined by their
restrictions to the Γ-^-functions δ'1 v of Proposition 6; and that the construction
method of Theorem 8 yields in fact the most general A, whereby v0 can be taken as
any faithful transverse function.
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Theorem 10. Fix a modular function δ on the measurable groupoid Γ and set20

(67)

one thus gets a bijectίon between the Γ-δ-measures A and the maps A': S+ -*R+

which are

(i) affine,
(ii) normal,

(iii) fulfilling one of the two equivalent following conditions (68) or (69):

Λ'{y *λ) = A'(v) for all ve£+ and σ-fmite

Γ-kernels λ with λ (δ " x ) = lΓ(o,,

Λ'(v*λ1) = Λ'(v*λ2) for all veS+ and σ-fmite)
Γ-kernels λl9 λ2 with A1( (5-1) = /ί2((5-1). j ( }

Fix furthermore an arbitrary faithful v o e ^ + and define AVo as in (56): this
establishes a bijection between the Γ-δ-measures A and the positive measures AVQ on
Γ ( 0 ) δ-symmetric in the sense of (30). One has

σ-fmite Γ-kernel, {

and A is obtained back from AVo as in (55) and (57) with M= AVo. In particular

A'(v) = AVo(v(δ-1f)), any / e f + ( Γ ) with v o * / = l Γ . (71)

Proof Remembering (12) and the fact (cf. Proposition 6) that Rr, λ' (ΉΓ) = IΓ(0) is a
natural transformation from H to itself, we have that

>.c-i «„ ,r 1 x Γ/I'a σ-fmite Γ-kernel with ^ Λ N

Λ(δ-1v*λr) = Λ(δ-1v)9 < v / - λ - _ , + (72)

The transcription of this for the notation (67) yields property (68) taking account of
the straightforward facts that each modular function δ on Γ fulfills

f) = δλ*δf,\
(73)

δ(λ*μ) = δλ*δμ,$ λ, μσ-fϊnite Γ-kernels. r

For the rest of our proof we need

Lemma 11. Setting

(eφy = φ (jμ) βyi yeΓ{0\ εy the Dirac measure at y, (74)

yields a linear map φ->sφ from the finite elements φ of ^ + (Γ{0)) to σ-finite
Γ-kernels εφ. This map turns the pointwise product into convolution and one has

(0 sφ*f=(φor)f9 fe^+(Γ),

> * a a-finite Γ-kernel,

(iii) each Γ-kernel λ with λ(δ~ ̂ finite can be written as ε^-i) * μ, μ a Γ-kernel
with μ(δ~1) = HΓ(0).

20 Our A' is the A in [1], whilst j otdA there is our A(ά)
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Proof of Lemma, (i) follows straightforwardly from (74) and (4); (ii) follows from
the fact that, for each / e F + (Γ)

(βφ* X)(/) = Bφ*λ */\rm = [(φo r)(A */)] |Γto, = φλ(f) = λ((φo f)f)9

For φ, φ ' e F ( Γ ( 0 ) ) finite the fact that εφφ. = εφ*εφ, then results from

εφ*εφ,*f=εφ*((φ'°r)f) = (φor)(φΌr)f=(φφΌr)f fe^+(Γ). (76)

We now prove (iii): consider a σ-fmite Γ-kernel A with λ(δ~1) finite and let Sλ9

with complement S'λ, be as defined in (15). Define φ e F + ( Γ ( 0 ) )
by φ (y) = λ{y)(δ~x)~1, j /e5 λ and φ (3;) = 0, j e S ^ and let μ = εφ * λ + ε ^ : we have
/£(δ-1) = φA(δ-1) + l 5 . = Tl S A+Tl 5 :==V);and6A ( O*^ = εA ( rχ ) φ*

Proof of End of Theorem. Proof of (6 8 ) 0 (69) :<= follows from taking λί — λ and 22

= 8 (̂0, in (69); >̂ follows from the relation

Λ'(v *λ) = Λf(v* eA(5-i)) = A ((λ(δ-ί)oS)v), ve <f+ (77)

resulting from Lemma 11 (iii) and (68) in the case of a finite λζδ"1) (observe that
ελ(δ-i)(δ~1) = λ(δ~1)); and persisting for general σ-finite kernels λ as one sees
approximating the latter by ascending sequences {λn} for which the λn(δ~1) are
finite. Note that with (77) we proved (70). The <5-symmetry of ΛVQO V0 now readily
follows: one has since (v0(/) o s) v = (v0 */) v0 = v0 */v0?

Λo(vo(/)) = ^ ( ( v o ( / ) ^ ) v ) = /t/(vo*/vo) = /lv((5-1vo(/)). (78)

It remains to show (57) with M = AVQ. For this we recall that/e &+(Γ) -• v 0 /* M,
M 6 ̂ + (Z) with v0 * u = 11Z, is a natural transformation from IF to F Γ . Let v = α o ρ:
by the naturality of Λ, we have A{μ) = A(v). We calculate v using the fact that we
have, for each Γ-<5-function α = (Z, π, i7, α)

α (A * M) = (ί " ! A) (α (w) oj)), « e F + (Z), A a Γ-kernel, (79)

indeed:

ay(λ^ u) = \day{z)\dλπ{z\y) uiy-1 z) = \dλy{y)\dar{y\z) u{y-χz)

= ί dAy(y) (5" x (y) J Jα s ( y ) (z) w (z). (80)

Now

thus

S)v0) = AVo(a(u)). (82)

8. Transport of Transverse Measures by Groupoid Homomorphisms

Let Γ and Γ' be measurable groupoids. A homomorphism from Γ to Γ' is a
measurable map h:Γ-+Γ' such that

A(y-1/) = A(y)- 1A(y'),y,/eΓ,r(y) = r ( / ) . (83)

It follows immediately that h conserves products and inverses; that h (Γ ( 0 ) )cΓ / ( 0 ) ;
and that ho r = rΌ h, ho s = sΌ h: in other terms y: x-+y implies h(y):h(x)->h(y).
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Note that the groupoid homomorphisms are the endofunctors of the category of
measurable groupoids. Two homomorphisms A, A': Γ -»Γ" are called conjugate (or
similar) if they are connected by a natural transformation, i.e., if there is a
measurable map #:Γ ( 0 ) ->Γ' such that one has

Θ ( X ) : A ( X ) ^ A ' ( X ) , X E Γ < ° \

With A: Γ -• Γ' a groupoid homomorphism, and respective modular functions
(5, (5' on Γ, F ' such that δΌ A = (5, we shall now define the transport by A of transverse
Γ-<S-measures. This is effected, analogously to the case of usual measures, by first
defining the pull-back of Γ-(5-functions. Since naturality is part of the definition of
transverse measures, we shall also need to define the pull-back of natural
transformations.

Let thus a' = (JF\A') = (Z\π\F\a') be a Γ-δ-function: its pull-back
A*α' = α = (F, α) = (Z, π, F, α) is defined as follows: the measurable Γ-functor F is
given by

Z = { ( z ' , x ) e Z / x Γ ( 0 ) ; π'(z') = A(x)}, (85)

with

π(z',x) = x, x, yeΓ{0\

^x— Fh(X)> z'eZ', π(z') = h(x), • (86)

F(y)(z',x) = (h(y)z',y), yer,y:x^y,

whilst the kernel α = A*α': Z - » Γ ( 0 ) is given by

(A α ) (w) = α (w( ,x)) T F r ( 0 ) /O^Λ

= ίrfα/fcW(z')M(z;

9x)' l Λ * V ;

Let now ρ ' :Zi->Z' be a natural transformation from F ' to F' 1 ? FΊ
= (Zi, πi, Fi). With F, F i the pull-backs of F ' , FΊ defined as above, the pull-back
ρ = A* ρ' of ρ' is defined as

= Jί/ρ {u1)uι{z1,x)
i.e.

(A* ρ') K ) ( , x) = ρ' (M l ( , x)), W l G F + (Zλ). (89)

Finally, the image by A of the transverse Γ-^-measure A is the Γ'-δ '-measure HA
defined as

(A/1)(α') = A(A*α')? α' any Γ'-<5'-function. (90)

We check the legitimacy of the above definitions. Z is measurable in Z' x Γ ( 0 )

(thus standard) as the preimage of the diagonal in Γ ( 0 ) x Γ ( 0 ) for the map π' x A.
Fx = F'h(x) is isomorphic to π - 1 ( x ) ~ π ' - 1(A(x)); and F(y):Γ x Z->Z, clearly
measurable, is such that
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Further a = h*a', clearly a kernel: Z-*Γm, is fibered by π and idΓ<°>:

x'hM([(φ° π)u]( ,x)) = φ(x) a'hM( ,x)), φe^+(Γm); (92)

and equivariant: writing as usual Γ(γ) = γ for shortness

whence yax = δ (γ) αy, γ: x -> j , since (5' (/; (}>)) =
We now check that ρ = A* ρ' is a natural transformation: ρ is clearly a kernel:

Zι ->Z, it is fibered by 7^ and π:

Γ<0)), (94)

equivariant:

yβ(*' x)(«i) = e(z''x)(«i ° y) = e ' 2 ' ^ ! » y ) (•, *))

= ρ"'ω z '(Mi( ,j)) = ρ y ( z ' x>(«i), (95)

and unital:

(ρI Z ι )( ,x)=ρ'( l l Z i ( ,x)) = ( ρ ' I Z i ) ( )=llz.( ) (96)

We note that with the preceding definitions we have, as expected, the fact that

A*(α'ρ') = (**α /)(/ι sy) J (97)
indeed

'r(« 1 ) = (α'ρ/) fc(x)(«i( ^ ) ) = α/fc(x)(β/(«i( ^ ) ) ) . (98)

We now check that (90) yields a transverse Γ'-δ'-function. The fact that hΛ is
affine and normal is straightforward. In order to check naturality we need

Lemma 12. Let the homomorphίsm h\Γ ->Γ' be proper in the sense that the functor
h*ψΓ, is proper (JFΓ, = (Γ',r\L') cf. Proposition 6). Then h * IF' is proper for every
proper IF'. Consequently, the composition of proper homomorphisms is proper.

Proof of the Lemma. Properness of h*ψΓ,, respectively IF' is the existence of
functions geF+{Γ' x Γ ( 0 )), respectively w ' e P ( Z ' ) such that

f | ^ ( / ) ^ ω ? (99)

respectively

(v' * u') (z') = j dv' π(z'>(y') M'(y' " x z') = 1, z 'eZ', (100)

for some faithful ve<f+, v ' e ^ ' + . We need to exhibit a function UE^+(Z) with
v * u = I z . Let
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we have, using the invariance of v\ by (99) and (100)

(102)

We proved that h * F ' is proper. Now ifh:Γ->Γ' and h': Γ' -• Γ" are proper, A * F Γ

is proper, and so is QiΌ h) * F Γ = h(h'* FΓ«) by what precedes.
We now check naturality ofhΛ. For a' a proper Γ '-^-function and ρ' a natural

transformation as above, we have by (97), since h * α' is proper

(/L4) (α' ρ') = A (λ*(α' ρ')) = A ((λ*α') h*ρf)

= Λ ( λ V ) = (λΛ)(α'). (103)

We proved

Theorem 13. Let h\Γ-*Γ' be a proper groupoίd homomorphίsm such that
δΌ h = δ,δ,δ' respective modular functions on Γ and Γr. For each transverse
Γ-δ-measure A (90) defines a transverse Γ'-δ'-measure hΛ.

Appendix A

This appendix supplies the proof of the claim in Proposition 7 that Fλ is a kernel
from Z to Z. The fact claimed in Proposition 1 that Lλ [and consequently Rλ, cf. (6)]
are kernels from Γ to Γ is a special case. The missing fact which we have to prove is
that for λ a σ-flnite Γ-kernel and uetF+ (Z) the function λ*u defined in (40) is
measurable. For the proof we need

Theorem Al. Let X{ = (Xu IB;), X[ = (X[, IBJ) be measurable spaces with respective
tribes of measurable setsJBi,JBt and let λt: Xt -• X[ be a σ-finite kernel, i = 1,2. Let
X1 x X2 andX[ x X'2 be given the product measurable structures21: there is a unique
kernel λ1 ® λ2: Xx x X2 -> X[ x X2 such that

l9 B2eJB2. (Al)

Furthermore λ1®λ2 is σ-finite.

The proof is a modification of the proof of the usual Fubini Theorem. Since λt is
σ-finite, the measure λf = ^(Λ:', •) is in particular σ-fmite for each x'eX(,ί=l,2:
the Fubini Theorem thus entails the existence of a σ-finite measure λx^®λ2'^ on
Xx x X2 for all xi e ^ i , x'2 eX2. It follows from (Al) that one must have

(λ1®λ2)((x'l9x'2),S) = (λϊ®λx

2>)(S), SeJB1xJB2, (A2)

and all we have to check is that the right hand side defines a measurable function on
X[ x X'2 for all S e l ^ x B 2 . Let Ω be set of S for which this is the case. Taking

21 We recall that the tribe ΊB1 x B2 of measurable sets of X1 x X2 is defined as the smallest tribe

containing all rectangles B1 x B2, B1eJBί, i? 2eIB 2
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account of the fact that

(λϊ®λϊή(S) = Sdλx

1>(x1)λx

2>(SXι), (A3)

where SXι = {x 2 e l 2 ; (x1,x2)eS}, one has that

(a) Ω contains all measurable rectangles Bxx B2, B1GJB1, B2eJB2.
(b) Ω is closed for finite disjoint unions.
(c) Ω is closed for increasing sequences.
(d) Ω is closed for countable disjoint unions.
(e) Ω is closed for decreasing sequences dominated by measurable rectangles

Aγ x A2 such that λf(At) < oo, x je i ; , i = 1,2.

Properties (a)-(c) are immediate from (A3); (b) and (c) imply (d); and
(e) follows from the dominated convergence theorem: if the sequence {Sk}eΩ
is such that Sk^S with SksA1xA2 for all k, one has for all X2GX2, x1eXί

λX2*(Siχ)^λ?(SXι) S 1A(xi)W(B). Hence

Jdλϊ( X l ) λ*2>(Sίχ) ̂ $dλϊ(x,) λx

2>(SXι), (A4)

which is thus measurable as a point-wise limit. Let 50ί be the set of Q e JB1 x ΊB2 such
that Qc\(A\ x AfyeΩ for all «, where [A1^ are increasing sequences in IB; with
(J A\ = X{ and λ (A\) bounded for all n9 ί = 1,2. One has that

i

α) SPΐ contains all measurable rectangles, by (a).
β) 9JΪ is closed for finite disjoint unions, by (b).
y) 501 is a monotone class, by (c) and (e).

Since every intersection of measurable rectangles is a union of such, it follows
from α), β), y) that Wl = JB1 x IB2. But 9Ήcz Ω: thus Ω = ^ x IB2.

We need also the following obvious

Lemma A2. Let 7, Y', Yί9 Y[ be measurable spaces with XeY measurable and
φ:7->Γ l 5 ψ\Y[-+Y' measurable. Given a kernel λ:Y->Y', we get kernels
λ\x: Y-+ F , φ*λ: Y1 -> Y' and ψ*λ\Y[ -> Y' by setting

f\ ft ^ + {X), (A5)

^ (Y1), (A6)

J ) . (A7)

Now the result we seek follows from the formula

9 (A8)

where τ:yeΓ^y~1eΓ, s is the identity kernel: Z^Z, S= {(y,z)eΓ x Z;
s(γ) = π(z)} and φ: (y,z)eS-

Appendix B. Examples

1. Group

A (measurable) groupoid is a group iff Γ ( 0 ) has a single element e. The Γ-kernels are
in this case the positive measures on Γ, with the convolution of Γ-kernels the usual
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convolution of measures on a group. The transverse functions are the left-invariant
measures, i.e., the multiples of the left Haar measure v in the locally compact group
case. The convolution * is then the usual convolution of functions on a group, and
there is up to a constant a unique transverse //-^-measure A, with Λvo v = v and
δ = A, the modular function on the group.

2. Space

If Γ = Γ(O) = X, i.e. if all elements of Γ are idempotent the Γ-kernels λ coincide
with the transverse functions and are, as follows, one-to-one with the measurable
functions/on X: one has λx =fεx, εx the Dirac measure atxeX. Convolution in this
case coincides with pointwise multiplication. The transverse measures are the
positive measures on X. Physically this case corresponds to the classical limit of
quantum mechanics.

3. Space x Space

If the measurable groupoid Γ is both transitive (i.e., there is a y: x->y to each pair x,
yeΓi0) and unicursal (i.e., y, / : x-+y implies that y' = y), then Γ = X x X (as a measure
space), where X= Γ{0). One has r(y,x) = y, s(y,x) = x, (y, x)'1 = (χ,y) and (.y, x)
(x? {) — (y, t), x, y,teX. The Γ-kernels λ are as follows: one-to-one with the kernels
λ:X-*X9 one has λy = εy® λy, yεX. The convolution of Γ-kernels λ is obtained
from the product of the corresponding kernels λ: λ* μ — λ° μ. A is σ-finite iff λ is
σ-fmite. For a transverse measure v one has vy — v (independent of y), S+ thus
consists of the positive measures v on X, with v faithful iff v + 0. Convolution of
functions is given by

(f*gKy,χ) = !Άy,t)g(t,χ)dv(t). (Bi)

The modular functions δ of the form δ (y, x) = e v(y) e - v(x\ V a measurable function
on X: one has thus v(δ~1) = v(ev)e~v. There is up to a constant a unique transverse
measure: indeed with va defined by va = εa, aeX, one has vα*v = v for all vε^ + ,
hence by (70)

Λ'(v) = Λ'(va*v) = ΛVa(v(δ-1)) = kv(ev), (B2)

where k = Av{e~v). Since, for φe^+(X), (φos)v = φv_ one has ΛVQ V = k(evv)® v.

4. Groupoid of a Group Action

With (gx x)eGx X^gxeX a measurable action of a measurable group G on a
locally compact space X, Γ = X x G is given the structure of a measurable groupoid
as follows: one sets Γ(0) = X, r(y9g) = y, s(y,g) = g~1y, (y,g)~1 = (g~1y,g~ί),
(y> g) (g~1y> Ό = ( j , gh), yeX,g,heG. The Γ-kernels λ are one-to-one with kernels
λ:G-+X: one has λy = εy®λy, σ-fmiteness corresponding to σ-fmiteness. The
transverse functions thus correspond to the σ-fmite kernels vsx = svx, xeX, seG.
The convolution of functions on Γ is given by

y,Γ1s)dvy(t). (B3)
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If G is locally compact with left Haar measure σ, one obtains a v0 e $ + by setting
(v)y = σ, yeX. In that case and that of a continuous action of G on a locally
compact X, (A3) is the multiplication of the twisted product (convolution algebra)
C(X)XG where (*tf)(y)=f(Γ1y), feC(X) and one sets ft(y)=f{y,t\

a

yeX, teG. The modular functions δ on Γ are characterized by the "cocycle
condition"

δ(y,st) = δ(y,s) δ(s-'y, t),yeX,s,teG. (B4)

The transverse Γ-δ measures are then characterized as follows for a locally compact
group G\ a positive measure M on X is of the form M = Λσ iff it fulfills

)9 x e l , seG, (B5)

where A is the modular function of G: if m = ΛVQov0 one has indeed, for
+

= $δ(x,g)A(gy
1f(x,g)dM(g-1x)dσ(g). (B6)

5. Graph of an Equivalence Relation

This case is that of a unicursal measurable groupoid Γ(iίX=Γ(0), Γc^Xx Xis then
the graph of the equivalence relation). We assume that X is a standard measurable
space within which Γ, as well as the diagonal i n l x l , are measurable; and denote
Ω the set of equivalence classes in X. One obtains a measurable groupoid structure
on Γ by considering Γ as a subgroupoid of the groupoid I x l a s defined in
Example3 above (we denote the latter Γ'). With / the injection: ΓcΓ', π the
canonical map: X-+Ω, fe^ + (Γ) and λ a kernel: Γ->Xthe definitions

/ ' (x, O = lΓ(x, JO /(*, JO x,yeXΛ

λ'{g) =λ{gϊ) geΓ + (Γ) j l ^

yield bijections / - > / ' , λ-+λ' onto the measurable functions on Γ' vanishing outside
Γ, respectively the kernels: Γ'->X carried by Γ' (whereby (σ-fmite) Γ-kernels are
turned into σ-fmite Γ '-kernels). Using these bijections the operations f-*f,
(λ,f)^>λ*f,(λί,λ2)->λ1*λ2 can then be performed either within Γ or within Γ'
for the corresponding primed objects. Given a (σ-fmite) Γ-kernel λ, we then define
the kernel >l:Z->Z by

FX), (B8)

thus getting a bijection λ -• λ onto the kernels λ: X^> Zsuch that ^ ? y e Z, is carried
by the equivalence class of y (the inverse map is given by λy = (εy® λy) \Γ). Then
v = (ε ® v) IΓ is a transverse function on Γ iff v̂  = vx whenever π(y) = π (x). These
transverse functions are one-to-one with the kernels v: X^> Ω fibered by π and idΩ,
with the bijection vλ = vπ(x)J xeX.

The easiest (so-called smooth) case of equivalence relations is that where the
quotient measurable structure on Ω is countably separated (for that matter,
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standard), also characterized by the existence of kernels σ: Ω -+ X with σq

bounded nonvanishing for all qeΩ. Let then δ = (ev® e~v) | Γ , Ve^+{X)
(so that λ{δ) = ev λ{e~v) for the Γ-kernels λ). There is then a bijection
Λ^ρΛ from the Γ-(5-functions onto the bounded measures on Ω given by
Λ(v) = (ρΛ,v(ev)y, ve<T\ One has QΛ = π(e-vΛVo) for any voe£+

with vo(ΉΓ) = Ίl^. For ve<f+ one has Λv= ρvo (eFv), in other terms

e-vvq (B9)
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