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Abstract. A "quasi-linear" regression formula is derived by an expansion
around quasi-static equilibrium. It relates the relaxation of thermodynamic
"forces" to the regression of correlations of thermodynamic "coordinates" in
quasi-static equilibrium. Correlation functions and memory kernels can be
introduced in almost complete analogy to linear response theory. A non-linear,
non-Markovian kinetic equation is derived. The kinetic coefficients are given
in terms of correlation functions of stochastic forces in quasi-static equilibrium
similar to the linear theory.

1. Introduction

Since the historical work of Langevin (1908) [1] on Brownian motion a vast
amount of literature on nonequilibrium statistical mechanics has accumulated in
which kinetic coefficients are expressed as limiting values of correlation functions.
Let us mention only a small selection of important papers [2-7] and a few review
papers and books [8-11] for further references. The aim of nonequilibrium
statistical mechanics in general is to study the evolution in time of expectation
values

() (1)

of a set of operators qk(t) in an ensemble described by the statistical operator ρ(0).
We are going to use the Heisenberg picture throughout with the equations of
motion

dqk(t)/dt=^H,qk(t)-]. (2)

The evaluation of the right hand side of (1) for qk(t) a solution of (2) so far has
only been possible in case ρ(0) is sufficiently close to equilibrium. Usually one
considers ensembles in "quasi-static" equilibrium described by the operators

(3)

where

(4)
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is the enthalpy operator and K(t) the Gibbs free enthalpy, q* is the hermitian
conjugate of qk and I(t) = I*(t) is supposed to be hermitian. ρ according to (3)
describes a state of maximum entropy under the subsidiary conditions that
tracQ(qk(ήρ) = (qk(φ and the total energy trace(iϊρ) = <//> have certain given
values. We are going to choose the Lagrange multipliers β and fk(t) so that
(qk(φ = Qk(t) and (H} = E. The initial condition most widely used [5,8,10]
assumes that at time t = 0 the ensemble is prepared in quasistatic equilibrium (for
instance by external manipulations)

ρ(0) = exp[-j8(/(0)-iC(0))], (5)

and from thereon evolves according to its own internal dynamics (1) and (2).
Even for the simple initial condition (5) the right hand side of (1) in general can

not be expressed in terms of tractable quantities. Two further approximations
have been considered: The deviations Qk(t) from their equilibrium values are
assumed to be either small or slowly varying. In the first case the right hand side of
(1) is expanded in powers of fk. To first order in fk one then obtains the so-called
linear response theory which forms the basis of a large part of modern non-
equilibrium theory (compare for instance [5, 6, 8-10]). In the second case one can
expect at all times (not only at ί = 0) the ensemble to be close to quasi-static
equilibrium, i.e. ρ(0) can approximately be replaced by ρ according to (3). The
equations of motion for Qk(t) then are approximately Markovian.

A microscopic basis for both cases can be obtained by a suitable expansion of
ρ(0) in terms of ρ. Such an expansion around quasi-static equilibrium has been
attempted frequently in the literature but the results in most cases have been less
tractable than the corresponding ones of linear response theory. Perhaps the most
advanced technique in this respect has been proposed in [7]. It has in fact initiated
the investigations presented in this paper.

In contrast to [7] we use the initial condition (5) in order to have a direct and
straightforward connection to linear response theory [5, 6]. We then derive a
quasi-linear regression formula which relates the relaxation of the Lagrange
parameters to the regression of correlations in quasi-static equilibrium. The
retarded correlation functions then can be handled in almost complete analogy to
the linear theory. In particular, memory kernels can be introduced similar to linear
theory. The time integrals of these memory kernels govern the low frequency
(long-time) behavior of the correlation functions and can be identified as
generalized kinetic coefficients. This way a nonlinear generalization of Onsager's
nonequilibrium theory is obtained. On the other hand, expanding the quasi-static
equilibrium around the static equilibrium, one recovers the results of linear
response theory including all memory effects of this theory.

2. A "Quasi-Linear" Regression Formula

The starting point of quasi-linear response theory is an expansion of ρ(0) in (5) to
first order in the quantity

A(ή = AI(t)- AI(0) = Σ lMt(t)fk(t)- Δq*{ϋ)fkm . (6)
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We indicate averages with ρ(0) by a bar ( ) and (quasi-static) averages with ρ by
brackets « » and use the notation AA = A — (A} for the deviation of operators
from their quasi-static equilibrium values. The expansion of ρ(0) then reads

ρ (0)= ( l + $e-amΔ(t)em)da+ ...jρ. (7)

This expansion now can be used to calculate the difference A A between exact and
quasi-static averages to first order in A(t). One finds

(8)

where we have used the notation

β

β(A B} = j (Ae-«mB*eaI{t))da. (9)
o

The quantities introduced this way have the symmetry, linearity and positivity
properties of a scalar product [5,6] with, for instance, (A Ay^.0, a Schwartz
inequality and all that. (8) becomes particularly simple if A is taken to be one of the
operators qk(t). Since the fk(t) are chosen so as to make the quasi-static averages
(qk(φ equal to the exact averages Qk(t\ the left hand side of (8) vanishes:

0 = (Aqk(t);A(φ. (10)

Inserting the right hand side of (6) leads to

Σ <Δqk(t)

This formula relates the relaxation of fk(t) to the regression of correlations of the
qk(t) with their initial values qk(0) in quasi-static equilibrium. (11) is only
apparently linear in fk(t) since the expectation values on both sides of (11) depend
on the fk(t) via (3).

Equation (11) obviously becomes exact for ί->0 independent of the magnitude
°f Λ(0) ft a ' s o becomes exact in the linear regime when the expectation values on
both sides of (11) can be replaced by equilibrium expectation values, replacing I(t)
in (3) and (9) by H. Then using

Qk(t) = Σβ<Aqk(t)lAqι(Φofι(t), (12)
i

which is valid in the linear regime « >0 indicating equilibrium expectation values)
(11) becomes identical to the regression formula

Qk(t) = Σ β<Λqk(t) ^β«(O)>o/,(O) (13)

of linear response theory [5].
For arbitrary times and arbitrary magnitude of/k(0) (11) can only be expected

to be valid if the system is sufficiently close to quasi-static equilibrium, more
precisely, if variables different from the qk (in particular their time derivatives qk)
which are initially not in quasi-static equilibrium relax to their quasi-static
equilibrium values sufficiently fast. Let, for instance, τ m i c r o be the corresponding
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(so-called "microscopic") relaxation time then (11) can be expected to be valid for
£>τ m i c r o . Of course (11) then is only interesting, if the (so-called "macroscopic")
relaxation time τ m a c r o of the fk(t) themselves is sufficiently large compared to τ m i c r o .
Otherwise (11) would only be valid when the/fe(ί) have relaxed to their equilibrium
values which (for ergodic systems) are/fc(oo) = 0.

The discussion so far may suffice to indicate that (11) can be a basis for a theory
which contains the nonlinearities of systems far away from equilibrium as well as
the short time (high frequency) and memory effects which are known from linear
response theory.

3. Retarded Correlation Functions and Memory Kernels

In this section we are going to demonstrate that apart from a few additional
precautions, the theory of correlation functions in the linear regime can be directly
generalized to the quasi-linear regime. The main aim of that theory is (i) to cast the
correlation functions into a form from which their behavior at small times t <̂  τ m i c r o

as well as at large times t > τ m i c r o can be easily read off and be parametrized in
terms of certain numbers (sum rule values, kinetic coefficients) and (ii) to derive
"microscopic" expressions for these numbers which are convenient for practical
calculation.

For times ί ̂  0 it is sufficient to consider retarded functions. In order to have a
quantity more symmetric in initial and final times than the right hand side of (11)
we replace the time t in (3) by some fixed value tQ anywhere between t and 0. We
also replaced the initial time t = 0 by some arbitrary value t' and define the relaxa-
tion function

φkl(t, t') = iβ(Δqk(t) ;Aqι(φθ(t-t') (14)

in analogy to the linear case [5]. The averages, however, are taken with a quasi-
static equilibrium ensemble (3) at some time t0. The correlation functions
occurring at the right hand side of (11) are obtained from (14) by putting ί0 = t and
ί' = 0. In order to simplify some of the formal manipulations we introduce a
generalized matrix notation with

(AB)km(t, t') = Σ 1 Aι(t, t")Blm(t", tW (15)
I - o o

and define three matrices: The quasi-static (isothermal) susceptibility

χ£(ί, f) = β<Aqk(t) Aqι(t)}δ(t -1'), (16)

the differentiation with respect to time

zkl(t,t') = iδkldδ(t-t')/dt, (17)

and the socalled memory kernel R by

φ = χτ(R-zΓ1. (18)

It will turn out that R is of the form

Rkl(t, f) = R°kl(ήδ(t - ί') + Rtit, t')θ(t - f) (19)
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We now put to = t, tf = 0 and make use of (11), (18), (19) and the exact relation

QM=ΣxUΦ) (20)
I

to obtain
ί + 0

&(*)=-*Σ ί (χτRUt,m(t'w. (2i)
I 0

We have added the positive infinitesimal + 0 to the upper limit of the integral in
order not to lose the singular part JR° of (19). (21) is the kinetic equation, nonlinear
and non-Markovian, but of the same structure as in the linear Markovian regime.
The matrix elements of (χτR) may be considered as generalized kinetik coefficients.
Next we multiply (18) by z from the left and by (R — z) from the right. Then using
(14) one finds after some rearrangements [with Δqk(t) = qk(t) — Qk(t) and Δqk(t)

(XTR)kl(t, t')= - iβ<Δqk(t) Aqι(φδ(t-t')-iβ<Aqk(t) Δq£φθ(t- f)

+ Σ fi ί <^ qk(t) Δ qm(t")}θ(t - t")Rml(t", t')df • (22)

From this one can identify R° as [compare (19)]

(XTR%(t) = - iβ<Δqk(t) • ΔUΦ (23)

For the remainder of R (22) yields an inhomogeneous linear integral equation. The
von Neumann series of this equation term by term is proportional to θ(t — t') which
proves (19). Equations (18) and (22) then can be written in a more transparent form
by introducing the quantity

-iYJ\ΔqJ,nRUt\t')dt'' for fet. (24)
m f

Then, first of all; one has

(25)

Secondly, multiplying (18) by (R — z) from the right one finds after some
rearrangements

ftiί
/) = 0, (26)

and thirdly (22) can be rewritten as

(XTR)kl(t, f) = - ίβ<Aqk(ή Λq^φδit -1>) - ίβ{Λqk(t) F z ( φ θ ( ί - f). (27)

Special approximate versions of the Eq. (25)-(27) appear already in Langevin's [1]
paper on Brownian motion, where F is the so-called "stochastic force." F has zero
average, zero correlation with the Δq whereas the correlations with Δq yield the
kinetic coefficients via the generalized Langevin-Kubo formula. In the Langevin
treatment and in its generalizations according to linear response theory the
stochastic forces are defined so as to make (25) identical with the kinetic equation
(21). In our nonlinear generalization (25) is a trivial consequence of the occurrence
of the deviations Δq and Δq from the averages Q and Q in (24). By a slightly more
elaborate definition than (24) one could make (25) identical with (21). Since,
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however we have a simple derivation of (21) from (18) and (11) we refrain from
such a definition. The main difference between the nonlinear kinetic coefficients
(27) and the ones given in [7, 9] is the occurrence of the second term on the right
hand side of (24). This subtraction term proportional to .R eliminates slowly
decaying correlations of the "velocities" q(t) from the kinetic coefficients, an effect
which is known from the linear regime, and taken into account already in
Langevin's treatment (although in some cases [12] it may not be necessary).

4. The Increase of Entropy

In linear response theory the "propagation" of Heisenberg operators in t as well as
statistical operators in β both are governed by the same operator H. As a
consequence the correlation functions obey the Kubo [5] symmetry relations
closely related to the detailed balance condition [4]. From this condition certain
positivity properties can be derived. For instance the spectral functions of
correlation function matrices are positive matrices and the matrix of the kinetic
coefficients, too, has a positive spectral function. This in turn is closely related to
the positivity of the rate of change of entropy S(t)= - <lnρ> for a closed system

dS(t)/dt = - /? Σfk(t)dQk(t)/dt. (28)

In quasi-linear theory the statistical operators (3), (5) propagate with the
enthalpy / rather than the energy H. Thus detailed balance does not hold.
Arguments for the positivity of the right hand side of (28) invoking detailed
balance (compare for instance [9, p. 334]) are not valid. However, one still has the
rigorous validity of the inequality

(29)

which implies S(t) ̂  5(0). Integrating the (rigorous) equation (28) from 0 to t one
finds using (21) the inequality

ί + 0

* Σ ί dt'dt"fk(t')(χτR)(t',t")fι(t")^O. (30)
ktl 0

Thus, at least this special "average" of the matrix of kinetic coefficients is positive.
Regarding the right hand side of (28) and the left hand side of (30), it may be
interesting to note that the singular part R° of R according to (23) contributes zero
in both cases and thus corresponds to the "reversible" part of Qk(t) just as in the
linear regime. This follows from

which can easily be verified for any operator A from (2) and (3). Now using (21),
(23), (28), and (31) one obtains

(dS(t)/dt)°=-βΣff(t)RUt)fι(t)

\ O, (32)
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since the two sums in the commutator are hermitian and thus identical. It may also
be interesting to mention that for ί = 0 the contribution of the regular part R1 to
(21) vanishes. Thus

Σ<[(0λΓ(0)]>/(0) (33)&(0) τ
n i

On the other hand one has the rigorous equation of motion

^ (34)
n i

following from (2) and (5) which agrees exactly with (33) at ί = 0. Our regression
formula (11) leading to (33) therefore not only reproduces the exact value of Qk(0)
but also of βfc(0).
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