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Abstract. The asymptotic nature of motions, as time tends to infinity, is
investigated for classical point particles interacting by repulsive two-body

00

potentials Όir It is found that the conditions J U^irjdr < GO are necessary and
1

sufficient for asymptotically straight line uniform motion. In the case of equal
asymptotic velocities the proof depends only on a certain property of the
motion ("partial center of mass convexity") implied by the repulsivity of the
potentials.

1. Introduction and Results

This paper continues the previous work of the author [1, 7] and that of Vaserstein
[8], as well as Moser [2], Himchenko and Sinai [6] (see also related works of Sinai
[4, 5]). Moser [2] considered a system of two particles moving along a line under
the action of a strictly repulsive potential U, and he analyzed the connection
between the asymptotic properties of the motion in the limit as the time t-* oo, and
the potential U. Under certain conditions imposed on U and also supposing that
the asymptotic motion is of the form v^t + c -f 0(1) as ί-> oo, an explicit formula for
this connection was obtained. In [6] the concept of a reflectίonless potential is
introduced and investigated. This means that for a system of particles moving on a
line their motion is asymptotically uniform, i.e., of the form v^t + c + o(l), both
when ί-> + oo and when t-» — oo, and the set of asymptotic velocities is the same in
the two limits ί-> ± oo, even though the asymptotic velocity of any one particular
particle can be different at — oo and + oo. The theorem is proved that any
potential U{r) which satisifies (7(r)-C 0 r" α , U\r)~C1r~*~1, U"{r)~C2r~a~2 as
r-*oo for some α>2, cannot be reίlectionless.

* The original version of this paper was edited and re-written by A. Lenard from Indiana University.
The author expresses his gratitude to Professor Lenard for his work which has significantly improved
both the mathematical presentation and the style of the paper
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For a general system of point particles moving in JV-dimensional space, and
described by the position vectors r^ί), r2(ί),..., rn(ί), we say that the motion is
asymptotically uniform in the limit t-» + oo if vectors w/? cf exist such that

lim dr=yvi (1.1)

and

lim (iv-ίW - C H O (1.2)
+ί -

for i = l , 2 , ...,n, conditions briefly written vί(ί) = wί + o(l) and vi(t) = twi +
as ί-* + oo. The wf are called the asymptotic velocities and the cf the asymptotic
phases. The existence of the asymptotic velocities is insufficient, in general, to
assure the existence of the asymptotic phases. A simple example illustrates this. Let
n = 2, and let us discuss the motion of two particles in terms of the relative
separation τ(t) = τ1(t) — r2(ί), the reduced mass m = mίm2/(m1 + m2), and the poten-
tial taken to be U=U(\r\)=U(r) = r~1. For purely radial motion the differential
equation

d2r 1
(13)

possesses the energy constant E, and one finds

(1.4)

7*0 \ lll>ιJ/

i/2 r im\ι

2E)

as t and r—> + oo, and this is incompatible with an asymptotic behaviour of the
form r(t) = at + b + o(\) as ί-> + oo.

No previous study examined the conditions under which asymptotic motion is
in fact uniform. In the present paper we offer such a condition for repulsive
potentials. Roughly speaking, it is necessary and sufficient that the integral of the
potential function, extended over the radial variable shall be convergent (for a
precise statement see below). We consider n point particles of masses mί9 position
vectors r^ί), and denote the force acting on the particle i by ¥(. We assume the
forces to be of the two-body type, i.e. F f = Σ ¥ip where ¥tj= —¥jt is the force on

particle i due to the presence of particle j . Conservative forces are assumed, so that
— ¥tj is the gradient with respect to the variable r ; of a potential function U^
depending only on the separation ^. = 1̂  — ^.1. Finally, we assume repulsive forces:
Each Uijir) is a non-increasing function of r and Uij(co) = 0. We make the technical
assumption that the U^ have continuous derivatives U'ip About the behaviour for
r-^Owe assume either that C/̂ (r)-> + oo, in which case rtj remains bounded away
from zero for any motion, or else if (7fj-(0) < oo we assume 11^(0) = 0 so that the
equations of motion are unambiguous even when the coordinates r and x-
coincide.

Our first result is simple, and we give its proof below.
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Theorem 1. Assuming the hypotheses above, if all possible motions in the two-body
00

problem are asymptotically uniform in the limit ί->oo then J U(r)dr< oo.

Proof We examine radial outward motion for the two-particle system for ί^O.
dr

Let r = |r1 —r2 |5 v=—, m the reduced mass and U=UR(r) the potential. Let

α = r(0)>0, so that t;(0)>0 and v(t) as well as r(t) are increasing functions for ί > 0 .

By assumption w= limt (ί) and lim[r(ί) — ίw] exist. Let T > 0 and R = r(T).
t—• oo t—> oo

Because of the conservation of energy U(r) = — w2 — — ι (ί)2 we may change

variable in the integral and write

\U{r)dr=-\\w2-υ{t)2-\υ(f)dt (1-5)

Since ι (ί) ̂  w for all ί Ξ> 0, we obtain the inequality

R T

J U
0

= mw2(Tw + α - # ) . (1.6)

But the right hand side has a limit as T and, with it, R-> oo, so it remains and the
desired conclusion follows.

Our second result is more complicated and requires a few words of expla-
nation. We recall that in Vaserstein's paper [8] and in the author's paper [7] it was
shown that from the repulsivity of the potential it follows that asymptotic
velocities exist. In fact, this conclusion depends only on a very general "repulsivity
condition" which does not require for its formulation a conservative dynamical
system and, indeed, not even Newtonian equations of motion. At any rate, here we
can take the existence of the asymptotic velocities for granted and the task is to
show that, under suitable conditions, the asymptotic phases (see above) also exist,
i.e., the motion is asymptotically uniform. This condition is suggested by

oo

Theorem 1, namely the convergence of all the integrals J U^iήdr. Since this
1

involves only the behaviour of the two-body potentials at large separation r ; ->oo,
it is natural that the desired conclusion is easiest reached if we restrict ourselves to
motions for which all interparticle separations r^ -^oo as ί-> 4- oo. This will be the
case if the n asymptotic velocities wf are all distinct, a type of motion which, for
obvious reasons, we shall call generic. A type of motion which is not generic will be
called exceptional, thus in the exceptional case w^w^ for at least one pair zφj.

Theorem 2. Assuming the hypotheses above, if j U^dr < oo for l^i<j^n, then
1

all possible generic motions for the n-particle system are asymptotically uniform in
the limits ί-» + oo.
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The proof will be given in Sect. 2 of this paper. The main idea is that on
account of wf φ Wj the separation r^t) grows roughly linearly with time, and this
makes possible sufficiently good estimates on certain integrals to assure their
finiteness. From these in turn one demonstrates that the Cauchy condition holds for
the functions r.(ί) — ίwf in the limit ί-^oo yielding the asymptotic phases cf.

The further question arises about the exceptional motions. In such a motion
some of the ru remain bounded, and the corresponding particles have, so to speak,
exactly the right amount of energy to "run up a potential hill" and come to rest
where the potential has vanishing gradient. This is analogous to the behaviour of a
pendulum so set in motion that it comes to a stop exactly at the upper unstable
equilibrium position. To deal with this case ideas quite different from the generic
case are required. We do not even need to use the differential equations of motion,
only a particular property of motions implied by the repulsivity of the forces. This
property may be stated as follows: Let p be a hyper plane in N-dimensional space,
and let d = d(t) denote the distance of the center of mass, from p, of those particles
that are at time t strictly inside one of the half-spaces determined by p. Then for any
τ there is an interval τ — ε<t<τ + e such that in it d{t) is a convex function. Indeed,
for the interval we may take ε so small that the chosen particles remain separated
from the others by a plane parallel to p. Take a coordinate axis perpendicular to p
and positive towards the chosen half-space. Then d{t) is the coordinate of the
center of mass of the chosen particles. It satisfies the differential equation Md"(t)
= F(t\ where M is the total mass of the particles in the chosen half-space and F(t)
is the component of the total force acting on those particles. But F(t) is the sum of
terms, all of them non-negative, since interparticle forces between particles on
different sides of the separating plane are only relevant, and the components of
these the coordinate axis are non-negative (repulsivity). Let us call the property
just enunciated PCMC ("partial center of mass convexity"). In Sect. 3 the following
will be proved.

Theorem 3. Suppose that a motion has PCMC, and suppose that all asymptotic
velocities exist and are equal Then all asymptotic phases exist as well.

2. Proof of Theorem 2

The Newtonian equations of motion are

^ S Σ%K> (2 i)
aτ jΦi

where ω f J is the vector of unit length in the direction of rt — τr Incorporating the
initial conditions

we integrate (2.1) twice

1
itAJή-BJt)'], (2.3)
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where

Aij(t)=-\uf

ίj(rίj(τ))ωίj(τ)dτ (2.4)

o
and

Bf/ί) = - } τt/;/ro.(τ))ω ί/τ)Jτ. (2.5)
o

Lemma 1. // the derivative of a vector valued function r(ί) has a non-zero limit as
ί-> -f oo, then the derivative of its absolute value is bounded away from zero on some
interval [7^ oo).

Proof Let w= lim — , then r(ί) = r(0) + ίw+ f( — w)dτ shows that
ί-> + oo at o\dτ J

lim I^L = ™ and therefore lim j - \r(ή\ = lim *% ^ = |w| > 0.
t - + oo|r(ί)| |w| t-^ + ̂ dt f-> + o o | r ( ί ) | dί

Q.E.D.

Since it follows from our hypotheses (see [7, 8]) that the particles have
asymptotic velocities, and we are considering the generic case, we may apply
Lemma 1 to the function r.(ί) — Tj(t)9 and conclude that

% α > 0 (2.6)
dt

for some constant a and all sufficiently large t which, without restriction of
generality, we may take ί^O. Let 0 ^ ί 1 < ί 2 > and consider the difference of two
values of (2.4) for t = t2 and t — tv By changing variable of integration, noting (2.6)
and the fact that 1/^0, we obtain the estimate

^-υ^a,), (2.7)

where a1 = r ^ ί j , α2 = rίj(t2). As t1 -> + oo the right hand side has the limit zero, and
so by the Cauchy convergence criterion

A i/oo)=limA i j(ί) (2.8)
3 ί->00

exists. Now replace t1 by t in (2.7) and let ί2-^ + oo. Since r j (ί)^αί + β with
β = rij(O) on account of (2.6), we obtain

^ (2.9)

Lemma 2. Suppose f(r) is a non-increasing non-negative function such that
CO / J \

f/(r)dr< oo. Then f(r) = o[-\ as r-*+ co.
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Proof. Let ε > 0 be arbitrary and R so large that J f(r)dr^e. If x^2R then
R

OO X -j

ε ̂  J /(r)dr ^ j /(r)dr ^ (x - JR) f{x) ^ - x/(x). This shows lim χ/(x) = 0, as

required.
Applying Lemma 2 to (2.9) we now have

^j (2.10)

as t-» + oo. The integrals (2.5) are treated similarly, the extra factor τ being

bounded from above by -{r^ — β). Thus for O^t1<t2

= \L1-β)Uij(aι)-(a2-β)Uij(a2)+ ] U^ήdr). (2.11)

00

As ίj-^ + oo we have aλ-> + oo and α2-^ + oo, and since j Uij(r)dr< oo and

Lemma 2 applies, the right hand side of (2.11) tends to zero. This shows that

By(oo)= lim B,./ί) (2.12)

exists. Substitute (2.10) into (2.3) and make use of (2.12). This yields

(2.13)

where

and

c = a - — Σ l

Furthermore, upon differentiating (2.3) one obtains

:b + — Σ A i / 0 (2-16)

This shows that the

w = lim y.(t) (2.17)
ί-> + OO

are the asymptotic velocities, and the cί the asymptotic phases.
This completes the proof of Theorem 2.
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3. Proof of Theorem 3

By making use of Gallilean invariance of the mechanical problem, it is no
restriction of generality to assume, as we shall, that the asymptotic velocities are
zero. Therefore we must prove in this case that the limits

c f = lim φ) (3.1)
t-> + oo

exist. We choose an arbitrary directed line as a coordinate axis, denoting the
component of r.(ί) along it by χ.(ί), so that the existence of limχ.(ί) as ί-> + oo has
to be shown.

We shall adopt the convention that the ξ.(t) (i = 1,2,..., n) are the χ.(ί) arranged
in increasing numerical order

and for the whole configuration we just write ξ(t) without a subscript. We also use
ζ = (ξv ξ2, • •-, ζn)

 a s a symbol for a general ordered configuration independently of
any motion. The masses mi are associated with the coordinates x , and let μ. be the
rearrangement of the mί such that μ. corresponds to the position ξ.. m or μ without
subscript refers to the assembly of all masses.

For any system μ = (μ l s μ 2 , ...,μj of masses and corresponding ordered
positions ζ = (ζ1Sζ2= •-• = ζn)> w e define a function f(σ) for σ > 0 as follows

(3.2)
ξ3 μ+μ<σ^μ+μ+μ

and define

F{σ)=] f(r')dr • (3.3)
0

Thus if we write M — μ{ + ... + μ} we have

F(M j) = μ 1 ξ 1 + ... + μJ.ξJ , (3.4)

and for other arguments F is defined by piecewise linear interpolation. When we
consider motions x(ί) and the corresponding ordered configurations ξ(t) we shall
write ft(σ) respectively Ft(σ) to indicate the time dependence. Note that (3.4) is a
positive multiple by the factor M of the center of mass coordinate of the j left-most
particles in the configuration. Thus if the motion has the PCMC property (see
Sect. 1) then from ζj(t0)<ξj+1(t0) we can conclude that Ft(Mj) is a concave
function of t for some interval surrounding ί0, indeed for an interval throughout
which the strict inequality ξj(t)<ξj+1(t) holds.

Lemma 3. Suppose x(t) is a motion having the PCMC property. Then Ft(σ) is a
concave function of t for all σ>0.

Before proving this we make some preliminary remarks.
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A function is concave if and only if through any point on its graph one can pass
a line segment such that in some neighborhood of the point the graph of the
function does not rise above the segment. We shall use this to show that a function
φ(t) is concave by the following device: For each t0 we exhibit a function xp(t\
defined and concave in some neighborhood of t0, and such that φ(t0) = ψ(t0) and
Φ(ή ̂  ψ{t) for t in that neighborhood.

We shall use a simple inequality obtained as follws. Let φ(s) be non-decreasing

and Φ(s)= jφ'(s')dsf. Let a<c and a^b^c. Then

b

Φ(b) = Φ(a)+ $φ'{s)ds
a

£Φ{a) + (b-a)φ{b), (3.4)

and similarly

Φ{b)SΦ{c)-(c-b)φ{b). (3.5)

Taking the appropriate convex combination of these inequalities we obtain

Φ(b) ^ C—^ Φ(a) + — Φ(c). (3.6)
c — a c — a

The necessary and sufficient condition for equality in (3.6) is that a = b or b = c or
that φ(s) remains constant for both a<s<b and b<s<c (there can be a jump at b).

Proof of Lemma 3. Let σ > 0 and ί0 be chosen arbitrarily. Let; and k be defined by

/ίo(σ) = ^ +i( ίo)= = ^+k(ίo) a n d </(ίo)<£/+i('oX ξj+k(to)<ξj+k+ι(to)- τ h e n

Mj<σ^Mj+k. We apply inequality (3.6) to a = Mp b = σ, c = Mj+k, φ(s) = ft{s),
Φ(σ) = Ft{σ). Thus

This holds for t in some neighborhoods of ί0, namely under the condition that the
strict inequalities ^.(ί) < ξj+ t(ί) and ξj+k(ή <ξj+k+ x(ί) still hold. On the right hand
side of (3.7) we see the convex combination of two functions of t which are concave
on the interval considered, moreover equality holds for t = t0 because ftQ(s) remains
a constant for Mj<s<Mj+k. Thus Ft(σ) is concave with respect to the variation
ofί. Q.E.D.

Lemma 4. Suppose x(t) is a motion having the PCMC property and asymptotic

velocities zero. Then lim Ft(σ) exist for all σ>0.
t~* + 00

Proof Suppose that ξ1(t0)= ... = ξj(to)<ξj+1(to). Then ξ1{t)S- . ύξJ(t)<ξj+1{t)
for t in some neighborhood of ί0. Hence Mjξ1(t)^μ1ξ1(t)+ ... + μjξj(t)
= Fμ ^(Mj). But this is a concave function of t coinciding for t = ί0 with the left
hand side. This shows that ξ t(ί) is a concave function of ί. We claim that ^(ί) is
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also non-decreasing. For suppose the contrary, say ξ1(b)<ξ1(β) for some b>a.
Then if t, t + At>b we have

< Qb-a

Now let T p T2,... be an infinite sequence of intervals tending to -f oo such that for
some j and all k ξί(t) = Xj(t) for teTk. Then the difference quotients

At

are bounded away from zero for t in the Tk and this makes lim v^ή = 0 impossible,
f->00

contrary to hypothesis. Thus ξ^t) is concave non-decreasing. Similarly ξn(t) is
convex non-increasing. Now

MMt)^F,,ξ{t)^)^Mnξn(t), (3.10)

where Mπ is the total mass of the particles. This shows that as t increases the value
Fμ ^(σ) remains inside a non-increasing family of intervals. For a concave
function (see Lemma 3) this is only possible if it is non-decreasing. Thus it has a
limit as t-> + oo, proving Lemma 4.

Let us partition the interval (0,M], where M = mι

Jr ...+mn, into smaller
intervals A open on the low and closed on the high end, by considering all possible
sums of the type ^ m j? where J ranges through non-empty subsets of {1,2,..., n},

JeJ

and taking these numbers as the endpoints of the A. There are only a finite number
< 2" of them we denote the set of all the A by D. It is evident that if σ < σf are both
in A then f{o) — f{σ'\ independently of the xvx2, • ••,*„ used in the definition,
provided only that the m1,m2, ...,mn are fixed. Therefore, we may actually write
f(σ) = f(A) (with a slight abuse of notation which should, however, not lead to
misunderstanding).

Suppose now that we consider a motion x^t),..., xn(t) satisfying the hypotheses
of Lemma 4. We claim that then lim ft(A) exist for all AeD. Indeed, we can write

(3.11)
σ — σ

with σ>σ' both in A, and use the conclusion of Lemma 4.

Proof of Theorem 3. As explained at the beginning of Sect. 3, the asymptotic
velocities are taken zero, and we examine the component x^t), ...,xΛ(ί) of the
motion along the arbitrarily chosen x-axis. We note that, for each i and each
instant of time t, xjίt) equals ft(A) for some AeD. Let St denote the set of numbers 3;
such that if ε > 0 and T are given arbitrarily then t ̂  T exists with |x (ί) — y\ < ε.
Every number in St must be one of the limits lim ft{Δ\ for if y is not one of these

ί-> + 00

then we can enclose y in the interval (y — ε, y + ε) so small that it contains none of
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those limits, in which case some T exists for which t^T and ΔeD implies
\ft(Δ) — y\>& and so also \xi(t) — y\>ε. Clearly liminfx^ί) and limsupx (ί) belong

ί-> + oo ί-> + oo

to Sf. But the continuity of x (ί) implies that <S is a connected set, i.e., if α, βe S then
all numbers between α and /? also belong to S . But, as we just saw, Sf is a finite set,
and this shows that it contains only one number, liminfxi(i) = limsupx i(i).

Q.E.D.
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