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Abstract. Let S(oo) be the group of finite permutations on countably many
symbols. We exhibit an embedding of S(oo) into a UHF-algebra 91 of Glimm
type n°° such that, if δ is a ^-derivation vanishing on S(co) and satisfying
τ°δ = 0, where τ is the unique trace on 91, then δ admits an extension which is
the generator of a C*-dynamics.

1. Introduction

In [4] Goodman showed that if G is a locally compact group, and δ is a closed
^-derivation on C0(G) commuting with the action of G as left translations on the
algebra, then δ is a generator of a strongly continuous one-parameter group of
^-automorphisms on C0(G). In a more recent paper, [5], Goodman and Jorgensen
consider closed *-derivations on a C*-algebra 91 commuting with a strongly
continuous representation aG of a compact group G on 9ί. They define a
^-derivation δ to be tangential to aG if it has the aforementioned property (i.e.,
δo(χg = oίg°δ, for all geG) and if 9Iα, the C*-algebra of fixed elements of 91, lies in the
kernel of the derivation. Under certain restrictions on the system (α, G, 9ί) (e.g., 91 is
abelian, or the action of G on 9ί is ergodic) they prove that a derivation tangential
to αG is, in fact, the infinitesimal generator of a strongly continuous one-parameter
group of automorphisms.

Suppose now that 91 is a UHF (uniformly hyperfinite) C*-algebra of Glimm

type n00: i.e., 91= (X) Bk, where each Bk is a full nxn matrix algebra over the

complex numbers (C. Define S(oo) to be the group of finite permutations on the
symbols ofN, the positive integers. Then there exists a natural embedding of S(co)
into 91 such that, if G is any compact group, and aG a strongly continuous
representation of product type, then S(oo) lies in the C*-algebra 9Iα of fixed points
of ocG (see [8]). Motivated by the results of [5], we show the following: if δ is a
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symmetric ^-derivation vanishing on S(cc) and satisfying τ°<5 = 0, where τ is the
(normalized) trace on 91, then δ extends to a generator δ on 91 whose associated
one-parameter group is of product type.

2. Derivations Vanishing on S(co)

We shall make use of the following notation throughout. For n a fixed positive
integer, let B1,B2,... be a sequence of nxn matrix algebras over (C, where Bk has
identity Ik and matrix units {e^Ά^ίJ^n} satisfying e1ϊje

k

pq = δjpe
Ilq. Let 91 be the

UHF-algebra formed as the infinite tensor product 91= (X) Bk. We write I for the

identity of 91. For finite subsets A of IN, there exists a canonical embedding

Lyl:(X)J5fc->9I which carries (χ)yfc into /(X) ̂  ® ί (X) /*), and extends by
keΛ \keΛ j \keN\Λ

linearity. Denote the image of LΛ by 91^. /Whenever there is no danger of

confusion we shall identify (X) Bk with its image 91^ in 91. In particular, we regard
keΛ

the algebras Bk as embedded in 3I.\ For finite disjoint subsets A, A' of N, 91^ and
91^, are commuting subalgebras. For m a positive integer, let Am denote the subset
{1,2, ...,m} of IN, and denote 9l^m by 9ίm. Then clearly 9I 1 c9I 2 C ..., and the

oo

union 9 ί o = (J 9Im is a uniformly dense subalgebra of 91. We call 9ί0 the
m = 1

subalgebra of /oca/ elements of 91. We refer the reader to [6] for the general theory
of infinite tensor products of C*-algebras.

Let τ be the unique normalized trace on 91, i.e., τ is the unique state on 9ί
satisfying τ(xy) = τ(yx), x,j;e2l. If e\j is a matrix unit of Bk, then τ(e^ ) = (5̂ /n
furthermore, for xe9ίy4, ye2ϊΛ,5 and /I, A' disjoint, τ(xy) = τ(x)τ(y). τ is a product
state /τ = (X) τfc, where τk is the normalized trace on Bk\, hence [7, Theorem 2.5], a

factor state, i.e., πτ(9l)" is a factor in the associated GNS representation (πτ,Hτ9 Ωτ).
For convenience we shall write πτ = π, Hτ = H, Ωτ = Ω. That π is a faithful
representation follows from the fact [3, Theorem 5.1] that 91 is simple.

We now describe an embedding ρ of the group 5(oo) of finite permutations on
the symbols of N into the group of unitary elements of 91. We write e for the
identity element of S(oo), and define ρ(e) = I. Let ί = (fc/)eS(oo) be a transposition

n

(k Φ Z, fe, ZeN), and define ρ(t) to be the operator ρ(ί) = ^ β^ ®β^ . Note that ρ(ί) is

self-adjoint and that [ρ(f)]2 = / = ρ(t2\ hence ρ(t) is unitary. Moreover, suppose
xe9I 0, then x is a linear combination of elements of the form ep^h®... ®ep^jr. A
straightforward calculation gives, for t = (kϊ),

where ί(p) is the image of peN under the permutation ί. In particular, Eq. (1)
indicates that the mapping xieB^t-^ρiήxρit'1) is an isomorphism between Bp

and Bm.
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Let qeS(co), then q may be written as a product of transpositions q = tit2 ... ίs.
We define ρ(q) = ρ(t1) ...ρ{ts). To see that this is well-defined, suppose q = e
= tί...ts. Making repeated use of (1), we have, for u = ρ(ts)ρ{ts_1)...ρ(t1),

... ®eirjr}u* = ρ(ίs)... ρ(ί2){ρ(ί,) [e?χh ® ... ® e

= ρ(g. . .ρ(ί 2 ){^ l ) ®...®el^ ) }ρ(ί ί 1 ) .»

Hence for all XG 9ί0, Eq. (2) yields uxu* = x. By norm continuity, the same holds for
all XG 91. Since 91 has trivial center, however, and since u is unitary, u = λl, for some

n

AGC, \)\ — 1. But u is a product of operators of the form ρ(ί) = ρ((kΐ}) = ]Γ e\i®eι

 i,

hence clearly /l = τ(w)>0. Thus λ = l , u = I = ρ(e), and ρ is well-defined.
The faithfulness of ρ is apparent from Eq. (1), and thus we have

Lemma 1. The mapping ρ of S(oo) into the unitaries of 91 is a faithful group
representation.

In what follows, we shall identify 5(oo) with its embedding ρ(S(oo)) in 91 given
above. Under this identification, the map Ad: S(oo)-» Aut(9ί) defined by Ad(/?)(x)
= pxp~1,peS(co)i XG9Ϊ, forms a group of inner automorphisms of 91. Moreover, if
x is local, i.e., XG9IZ for some ίeM, and p(k) = ik, 1 ̂ k^l, an application of Eq. (1)
yields pxp~1G9ίyl, where Λ={iί,i2,...,iz}. By [9, Lemma 2.1], 91 is asymptot-
ically abelian with respect to this group action.

If G is a compact group, and g^oig£Aut(M) is a strongly continuous
representation of G as ^-automorphisms on an n x n matrix algebra M, then define
corresponding representations g^>ak

geAut(Bk) as follows: if {etj: 1 ̂ i , jgn} are

matrix units for M, and if α^(eι7)= ]Γ βijstest, define α^(β^)= ^ βijSt
e*t We may

s , ί = l s , ί = l

then construct a strongly continuous group of product automorphisms {otg '.gεG}

of 91 by forming the tensor product ag = (X) α*. Let ί G S(OO) and let g e G then it is

clear, using (1), that a,g(txt~1) = tag(x)t~1, all XG9X. Thus ( f " 1 ) ^ ^ ) ) is a central
unitary element of 9ί, and since 91 has trivial center, we must have ag(t) = λt, some
λe(C, \λ\ = l. But τ = τoα0, by the uniqueness of the trace on 91, and a slight
modification of the argument preceding Lemma 1 shows that τ(ί)>0, so that τ(ί)
= τ(oίg(ή) = λτ(t\ or λ = ί. Thus αp(ί) = ί, all teS(oo\ and therefore 1S(oo)c9ία, the
subalgebra of 91 of fixed elements of αG. Hence if δ is any derivation vanishing on
9ία, then certainly <5p = O5 all peS(oo), and thus we are led by [5] to consider
symmetric ^-derivations δ on 9ί [i.e., D((5) is a dense *-subalgebra of 91, and δ(x*)
= (δx)*9 all XGD((5)] which vanish on S(co). If we impose the restriction τ°(5 = 0,
then it follows (Theorem 6) that δ has an extension δ which is a generator.
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As a preliminary to proving this we make a definition and establish some
results on strong convergence in π($I)/;.

Definition ί. Let r>m be non-negative integers, then define Sr mCS(co) to be the
subgroup [of order (r —m)!] of permutations which fix the symbols of
N \ { m + l r }

Lemma 2. Let x be a fixed element of 31. Define, for r > 0 ,

Σ

Let (π, H, Ω) be the GNS construction for τ. 77ιen ί/ie sequence {π(xr)} has a strong

limit in π(3l)", and st-lim π(xr) = τ(x)π(7).
r-* GO

Proof. Without loss of generality we may assume x to be self-adjoint. Furthermore,
we may assume x to be local, i.e., xe3ί 0. For suppose xe2ί, and st-lim π(x'r) exists

r-> oo

for all x'e3ί0. If X ' G ^ 1 0 is chosen such that ||x —x'|| < ε

? f° r given ε>0, then one
easily checks that ||π(xr) —π(xj.)|| <ε, and the strong convergence of {n(xr)} will
follow by continuity. So assume x = x*e$I ;, for some /eN.

We begin by showing that {π{xr)Ω} is a Cauchy sequence. Let r ^ s , then, since
xr, xs are self-adjoint,

τ(x r

2 )-2τ(x Λ ) + τ(x2).

Let N(r /) be the set of those peSr0 which permute all of the symbols of Λι into
the set {l+l, ...,r}. For such p, p x p ' ^ ^ + i , . . . , , . } , and therefore, since xe? !^ ,
τ(pxp~1x) = τ(pxp"1) τ(x) = τ(x)2. Furthermore, one may check by a counting
argument that lim [ # N(r l)/r!] = 1. Then

r > o o

= (l/r!) Σ Σ
peN(r;l) peSr,o\N(r;l)

= (#JV(r;/)/r!)[τ(x)]2+(l/r!) Σ

The sum (l/r!) Σ τ^xp"^) is bounded in absolute value by
peSr,o\N(r;l)

\\x\\2 [r!— # N ( r ; /)]/r!, hence it tends to 0 as r->oo, and therefore lim φc 2 )

= τ(x)2. Similarly, lim τ(x2) = τ(x)2 = lim τ(xrxs), thus lim
s>αo »"s>oo rs->co
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Let y, ze 2ί0, then employing a convergence argument similar to the one above,
one shows that the sequences {π(xr)π(y)π(z)Ω: ΓG3N} and {π(y)π(xr)π(z)Ω: reN} are
Cauchy in H and that their limits coincide. Letting y = I in the first sequence, one
sees that the uniformly bounded (by ||x||) sequence of operators {π(x,.)} converges
on all vectors in the dense subset π(9I0)Ω of H, and therefore has a strong limit in
π(2I)". Again using uniform boundedness, we have lim π(y)π(xr)ξ = lim π(xr)π{y)ξ,
all ξeH, ye$l0, hence

st-lim π(xΓ)eπ(9I0)'nπ(2I)'' = π(3l)'nπ(3l)" = {λπ(I):
r —> oo

Thus

st- lim π(xr) = lim (π(xr)Ω, Ω} π(/)
r—> oo r—*- oo

= lim τ(xΓ) π(7)

= τ(x)-π(J).

This completes the proof of the lemma.
We describe a generalization of the "averaging map" defined in Lemma 2. Let

%c

m be the commutant of %m relative to 91 (i.e., 21^ = {ye SΆ: xy = yx, all xe 9Im}). In
particular, if teSrm, then ίxί~x = x, for all matrix units xe$lm, by Eq. (1), so that
teWm. Hence Srm lies in 91^. Let yeWm, and for r>m, form the operator

J>r,m = [ l / ( r - m ) ! ] . Σ PyP" 1-

Then clearly y r5me9ί^, and the sequence {yr^m'.r>m} is uniformly bounded in
norm by ||y||. Arguing as in Lemma 2, one shows that the sequence {n(yr m) :r>m}
converges strongly to an operator j/eπ(2l)", and for all ze9ion9X^, yπ(z) = π(z)y,
hence yeπ(MonSΆcJ = π(SΆcJ. Clearly, yGπ(9Im)' (since y, meSΆc

m9 all r>m), so that
j;eπ(9I^)'nπ(&J'nπ(9I)". Since 91 is generated by 9ί^'and 2Tm, πίSΪ^ 'nπίaiJ '
= π(2ty, thus j/eπ(9l)/nπ(9ί)// = {/ίπ(/)}. Arguing as before, one now shows that

Let {fij: 1 S ij ^ nm} be matrix units for the nm x nw-dimensional matrix

algebra 9ίm. By [2], any xe9l may be written uniquely in the form x= ]Γ ^ J ^ ,

where the yi} lie in 91^. For r>m define xr>m = [ l/(r-m)!] Σ PXP~X T n e n

n m

st-lim π(xrm) = st-lim [l/(r —m)!] Σ Σ

= sMim[l/(r-m)!] _Σ K/y)
\~^ ί r \ ( \

ί Y f t
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By [2, Lemma 2], ]Γ ffiy^ = φm{x), where </>m is the conditional expectation of
i, J = 1

the trace τ onto 9Im. Hence st-lim π(xr>m) = π(φm(x)). Thus we have

Lemma 3. Let xe9I, and /or /ϊxed m de/me xrm as above. Then the sequence
{π(xr m):r>m} has a strong limit in π(9I)"9 and there exists a unique element
φm(x)etyίm such that

TTze mapping φm :9l->9ίw is ί/ie conditional expectation of the trace onto 2Im.

Proof. The above argument shows that the conditional expectation φ m has the
required properties. Uniqueness follows from the faithfulness of π.

Lemma 4. Let A be a dense linear subset of 91. Then φm maps A onto 9Im.

Proof Let xe9ίm, and for given ε>0, choose ye A such that ||x —j/||<fi. Since

| | 0 J | = 1, by [2, Lemma 2], ||x-0mG>)ll = ll^mW" Φm(y)li ^ ll*-3>l|. H e n c e < U ^ 0 i s

dense in 9Xm. But since φm is linear and 9ίm is finite-dimensional, φm{A) = $lm.

Lemma 5. Let δ be a *-derivation with dense domain D(δ) C 91 which satisfies TO<5ΞO.
Let Θ be the *-subalgebra of 9ί consisting of all elements AeW such that there
exists a sequence {An:nelN]QD(δ) satisfying:

(i) {Λn} and {δAn} are uniformly bounded sequences in 91.
(ii) {π(An)} and {π(δAn)} are strongly convergent sequences in π(9ί)".

(iii) π(A) = st- lim n(A)9 and there exists an Άe$l such that π(A') = st- lim
n—> oo n-> oo

π(όAn).
Define a linear operator Sf:£)-±tyL by δ'A = A', then δf is a well-defined

^-derivation on 91 extending δ and satisfying τ°δ' = O.

Proof Clearly, 3) is a linear set containing D(δ). Suppose A and B are elements of
9Ϊ with corresponding sequences {An}, {Bn} satisfying the conditions of the lemma.
Then by (iii) and the faithfulness of π there exist unique elements A\ B! of 91 such
that π(A') = st-lim π{δAn) f respectively, π(B') = st-lim π(δBn)\. Using (i) one verifies

easily that the sequences {AnBn}, {AnδBn}, {{δAn)Bn} are uniformly bounded, hence

so is {δ(AnBn)}9 since δ(AnBn) = (δAn)Bn + An(δBn). Let M = sup {\\An\\}, and suppose
n

that feHτ. Then applying the strong convergence of the sequences {π(An)},
{π(βn)}, one has

lim \\[π(AB)-π(AnBnm\^ lim {|| [π(AB)-π(AnB)lf\\ + II MAnB)-n{AnBn)f\\}
n—* oo «-> oo

^ lim {!|[π(A)-πUΠ)](π(β)/)||+M||[π(β)-π(Sn)]/[|}
n-> oo

so that st-limπ{AnBn) = π{AB). Similarly, one verifies that the sequence
n-> oo

{π{δΛn'Bn)} [respectively, {π(An-δBn)}'] converges strongly to π(A'B) [respectively,
%{AB)~\ and therefore the sequence {π{δ{AnBn))} = {π(δAn Bn) + π{An'δBn)} con-
verges strongly to π(A'B + AB'\ Thus
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Now suppose AeΘ with corresponding sequence {An}QD(δ). Then the

sequences {̂ 4*} and {δ(A*)} (={(δAn)*}) are uniformly bounded. To see that

{π(A*)} converges strongly to π(A*) it suffices to check, by the uniform bounded-

ness of {/4*}, that lim π(A*)f = π(A*)f for all / in the dense subspace π(9I)Ωτ of

H. Let f = π(z)Ωτ, z e S ; then

lim \\l(η(Ϊ)]f\\
H-> 00

= lim <π(z*)πU-^>U*-^*)π(z)Ω τ, Ωt>
n » o

= lim ||zz*|| ] | π ( A - 4 Π ) β J 2 = 0.
n-^-oo

Similarly, one verifies that st-lim π(<5,4*) = st-lim π((δAn)*) = π(A')*.
n-+oo n-*oo

To see that δf is well-defined, suppose st- lim π(A) = 0 and st- lim n(δA) — B. In
«->oo «->oo

particular, π(δ^4n) converges weakly to B, hence for all /, g in the dense subspace
π(D(δ))Ωτ of Hτ we have, letting f = π(z)Ωτ9 [respectively, gr = π(y*)Ωτ], z,

<B/,^>^ lim <π(δ^>(z)Ωτ,π();*)Ωt>

= lim τ{yiδAH]z)= lim τ(zy[<SΛJ)= lim - (
«->oo n—>-cc n-> oo

= lim -<πUn)Ω τ,π(δ[z3;])*Ω t>=0.
«->• oo

Thus 5 = 0, by continuity, and <5' is well-defined. Clearly, δ' extends δ.
Again let A,BeΘ, with corresponding sequences {An}, {Bn}. Then AB* has

corresponding sequence {AnB*}, and

π{δ'[AB*~\) = st-lim π
n-> oo

= st- lim
n~* oo

= st-lim

hence δ/(>4J5*) = (δ/^)J3* + ^(δ/J5)*, by the faithfulness of π, and therefore δ' is a
^-derivation. Finally, note that for

= lim (π(δAn)Ωτ, £λ>
n-^ oo

= lim(τo,5)μB) = 0,
n - > oo

so that τo^'^O. This completes the proof of the lemma.
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Corollary. Let δ be a ^-derivation on 21 vanishing on S(co) and satisfying τ(δx) = 0,
all xeD(δ). Then there exists a generator δ which extends δ, i.e., D(δ)cD(δ), and

Proof. Let δ' be the extension of δ given in the lemma above. We show 2ί0 C 3)
[ = D(δ')~]. To see this, let xeD(δ), let m be a positive integer, and form the sequence
of operators {xr m:r>m}, where xr m is defined as in Lemma 3. Clearly,
{xrm:r>m} is a uniformly bounded sequence contained in D(δ); moreover,

peSr,m

= {δx)r,m,

and it is immediate that the sequence {(δx)rm\r>m) is also uniformly bounded.

By Lemma 3, π(φm{x)) = st- lim π(xr m) [ respectively, π(φm(δx)) = st-\im π((δx)rm)

hence by the preceding lemma, φm(x)eD(δ') and δ'(φm(x)) = φm(δx). Since
φm\D(δ)^ςΆm is onto, by Lemma 4, the preceding equation implies <5':9Im-»2Im,
for all m. Thus 9ί0 is a dense set of analytic elements for δ'.

Since τ°<y = 0, δ' is closable, by [1, Theorem 6] : denote its closure by δ. Then
δ C δ' C <5, and <5 is a closed ^-derivation with a dense set of analytic elements, hence
[1, Theorem 6], δ is a generator.

Finally we can prove

Theorem 6. Let δ be a symmetric *-derivation on 21 which vanishes on S(co) and
satisfies τ°δ = 0. Then δ has an extension δ which is a generator of a strongly
continuous one-parameter group {βt:telR] of product automorphisms of the form

Proof. By the corollary to Lemma 5, δ has an extension to a generator δ. We have
only to show that the associated one-parameter group {βt} has the desired form.

First note that δ:B1^B1 (since <Ά1=Bί and δ : 2 ί ^ 2 ί w for all m), so that Bx

consists of analytic elements for δ. Let peS(co), then δp = δp = O. Hence for xeBv

peS(co), pxp'1 is entire analytic for δ and

βt(pxp~ι)= Σ^

= Σ (tVn

= pβt(x)p-1. (3)
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Letting p = I [ = ρ(e)]5 Eq. (3) gives βt:Bi-^Bί. Now suppose x = eljeB1 and βt{e\^
n

= Σ ttijrs(t)els- Letting p = (lfc)e S(oo) and applying both Eqs. (1) and (3), we have
r,s= 1

Hence βt:Bk-+Bk, all fe, and under the obvious identification BX=B2= . . ., we

have βt\B1

==βt\B2

= •" Thus βt= (x) β'v where βf

t = βt^Bi9 and the proof is complete.
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