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Abstract. This is the forth and final paper of a series in which we investigate the
stationary solutions of the BBGKY equations. Herein we prove a lemma which
forms the basic step in the proof of our Main Theorem characterizing the
stationary solutions of these equations which was stated in the first of this series.
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0. Introduction

0.1. This is the final paper of a series, all bearing the same title (see [1-3]), devoted
to characterizing the stationary solutions of the BBGKY hierarchy equations. Our
Main Theorem, stated in [1], deals with states of an infinite system of classical
particles in R”, v = 1. It asserts that the set of those states (within a certain class of
states) which correspond to stationary solutions of the BBGKY hierarchy coincides
with the set of equilibrium states. As our class of states we take the Gibbs (DLR)
states which correspond to potentials (in our terminology, ““‘generating functions™)
of a general type (many-body and depending not only on coordinates but on
particle velocities as well) which satisfy conditions (G;,1)—(Ge,1)*. The
hypotheses of our Main Theorem require that the pair interaction potential in the
hierarchy satisfies conditions (/;,1) — ({4, 1). The condition (I, 1) restricts the
interaction potential to a finite range.

1 Instead of writing: condition (G,) from [1], formula (4.1) from [3], etc., we shall write: condition
(G, 1), formula (4.1,3), etc. This convention was adopted in [2] and [3]

0010-3616/82/0084/0333/$08.80



334 B.M. Gurevich and Y.M. Suhov

The proof of our Main Theorem was divided into two parts. In the first part we
showed that the generating function of a Gibbs state corresponding to a stationary
solution satisfies Eq. (2.8,1). This equation is the dual of the BBGKY hierarchy.
This part was presented in [1] (see, in particular, Theorem 1,1). In the second part of
the proof we show that any function satisfying Eq.(2.8,1) and conditions (G,, 1)
— (G, 1) is of the form (2.7,1), i.e., is the generating function of an equilibrium
state. This was asserted in Theorem 2,1.

The proof of Theorem2,1 was started in [2], continued in [3] and will be
completed in the present paper.

We will say a few words about the contents of [2] and [3] in order to make things
easier. In [2] we proved Theorem 2,2 from which a special case of Theorem 2,1
immediately follows. In this special case the number #, which appears in condition
(G3, 1) is equal to 2, i.e., the generating function of the Gibbs state vanishes for all
configurations consisting of more than two particles (for a configuration we write
both the coordinates and velocities of the particles). In addition, Theorem 2,2 is the
first step of an inductive process by which we prove Theorem 2,1 in the general case.

In [3] we show that the Theorem2,1 follows from Theorem2,2 and
Theorem 0.1,3. Theorem 0.1,3 asserts that if the generating function is 0 for all
“admissible” configurations with more than » particles (n = 3) it is 0 for all n-
particle admissible configurations.

The proof of Theorem 0.1,3 requires an additional inductive procedure which
concerns itself with the geometrical characteristics of configurations. To every
particle configuration we associate a graph in R” whose vertices coincide with the
positions of particles and whose edges correspond to pairs of interacting particles.
Associated with each graph is a triple of non-negative integers (n, m, k): the number,
n, of vertices, the number, m, of edges (both of which are positive), and the order, &,
of the graph (which may be 0). The order of the graph indicates, roughly speaking,
the common length of the one-dimensional “tails” with the possible exclusion of a
“chain” of maximal length (for a precise definition, see either [3] or a subsection 0.2
below).

We proved Theorem 0.1,3 by separately proving the assertion of the theorem for
the various subsets of configurations labeled by the triples (n, m, k). By this
procedure the proof of Theorem 0.1,3 is reduced to that of Theorem1.2,3. The
inductive procedure mentioned above tells us in which order we must take the
triples (n, m, k) in order to prove Theorem 1.2,3 (see [3, Sections 3—5]). The proof of
Theorem 1.2,3 is reduced in [3] to the proof of an auxiliary assertion — the Basic
Lemma (see [3, Sect. 2]). The present paper is devoted entirely to the proof of the
Basic Lemma.

Unfortunately, the Basic Lemma as stated in [3] needs to be modified. In this
section we reformulate our Basic Lemma and indicate the changes which must be
introduced into the proof of Theorem 1.2,3 and Lemma 4.1,3 which form the basis
of the inductive procedure mentioned above.

0.2. New Formulation of the Basic Lemma. Assuming the notation of Sect. 1,1 (see
also Sect. 1,2), we first state conditions on the interaction potential U which we
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assume to hold throughout. In addition we will use (with few changes) the definiti
ons put forth in [3]2.

The interaction potential U is assumed to be a real-valued function on the half-
line (d,, + o0) where d, = 0. Assume that

(I7) UeC3(dy, + ).
Assume further that there exists d; > d,, such that

(I5) U£0 on (d,—0d,d;) forany 6€(0,d,—d,),
(I3) U=0 on [d;, +0).

As usual, H will denote the Hamiltonian of a system of particles interacting via the
pair potential U (the particle mass is set equal to 1):

H(X)=1/2Y (v, + Y, U(lg—4q'l), xeD°. 0.1)
vex 9.9'€X,9%¢q

The closure of the convex hull of a set K= R" will be denoted Conv (K).

For any xeD° let §(x)={qeR":(¢q,v)ex for some veR'}. We say that
x =(g,v)€Xis an external point in x (or, g is an external point in X) if ¢ is an extremal
point in Conv (g (X)).

Assume that g is an external point in X, n(x) 2 2. Let By = B (X) be:

for v =2 — the open cone in R consisting of the open halflines originated at ¢
which are normal to those supporting hyperplanes, P, of Conv (g (X)) for which
PnConv(q(X)) =g,

for v =1 - the open half-line which does not intersect §(x) and has g as a limit
point.

It is not difficult to check that

1) 1¢=4l>lqg—4ql forall q'eBg jex,j*q,

2) every point g'e By, for which |g'—¢|> d,, is an external point in xuUx’
where x' =(q',v"), v'eR".

We say that x = (g, v) €X is an accessible point in X (or ¢ is an accessible point
in X) if there exists a non-empty open set By = Bj(X)< R" such that §e Bj implies
M 1§—ql>dy, D U'(1§—q)*0,and 3) |§—¢'| >d, forall g'eX, ¢'+q.

The set By is not uniquely defined. We assume that it is fixed once and for all for
all configurations x and all accessible points g € x.

Further, we assume that Bj is chosen in such a way that if ¢ is an external point,
then By consists of the points g € B for which conditions (1)-(3) above hold. Notice
that in this case there is a point ¢ B4 such that?

U'a-ql)

~ 2 nevs 0
i=q1>d V2, U'(1G-qh+ 0+

2 Inconformity with [1, 2] we will denote the conditions on U by (I}), (I3), (I3) and the conditions on
the generating function f by (G7Y), (G3), (G%) (see 0.4)

3 This assertion follows from conditions (I7)~(73) on U and is proven in fact in the course of the proof
of Proposition 2.2,2
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We say that the point x = (g, v) is an endpoint in X (or ¢ is an endpoint in x) if there
exists a unique point §eX, § % g, for which |g—§|=d,.

We define a chain in X to be a collection of pairwise distinct points x,, ..
where x;=(q;,v;), i=1,...,5, 522, such that

@ lg—gjl=d;, fli—jIS1L 12078

®d) lg;—ql>d, foralli=1,...,s gex\(x;uU...UXy).

., X EX,

The points x,, x, (or ¢,,q,) are called the ends of the chain x, ..., x,.

We say that x € D° has order 0 with respect to g € x if one of the following three
conditions hold

1° there are no endpoints in ¥,

2° g is the only endpoint in %,

3° x contains two endpoints both being the ends of a single chain and g is one of
these endpoints.

We say that xeD° has order k =1 with respect to gex, if

(a) the configuration X\ x’ has order <k — 1 with respect to ¢ for any point
x'=(q',v")exsuchthati) g’ = g;ii) ¢’ is an endpoint of x; iii) if ¢ is an endpoint of a
chain in X, then ¢’ does not coincide with the other end of this chain;

(b) there exists x’ = (¢', v’) e X with properties i)-iii) such that the configuration
X\ x" has order k — 1 with respect to g.

We denote the order of a configuration X with respect to gex by k (%, q). The
order, k(x), of a configuration x is defined by & (X¥) =mink (X, q), where the
minimum is taken over all external points g€ x.

We say that x = (¢, v) € X is an isolated point in X (or g is an isolated point in x) if
lg—q'|>d, for all ¢’ex, q¢' +gq.

Below, an important role will be played by configurations containing a chain,
with ends consisting of an external and an accessible point. For this reason we give
the following definition:

Let (n, m, k) be an admissible triple, n = 1. Denote by #(n, m, k, 5), s = 1, the set
of sequences of the form (x4, ..., x,, 7), where x;=(g,,0,)e R* X R*, i=1, ..., s,
yeD°, such that

(@) x,u...ux,UJ is a configuration from D° of type (n, m, k);

(®) xq,...,xisachaininx; U... ux,uy fors=2and ¢, is an isolated point in
x,uy for s=1.

We call the points of #(n, m, k, s) ordered (n, m, k, s)-configurations or simply
configurations when there is no danger of confusion. #(n, m, k, s) is endowed with
the topology induced by the Euclidian topology in (RY x R*)* x (R” x R")*”*under
the “partial” symmetrization map S, ,_ 1 (X1, ...y X Y1y evvs Ynog) = (X1 000 X D),
where y =y, U... Uy,_,. By % (n, m,k,s) (respectively, P4 (n, m, k, s)) we denote
the subset of #(n, m, k, s) consisting of such (x,, ..., x,, 7) that |g — ¢'| # d; for
any ¢,q'€x,u...ux,uy (respectively, |g—q'|=d, for at least one pair
q.9'€x;U...ux,UY). Points of SB(n, m, k,s) [respectively, 2% (n, m, k,s)] are
called internal (respectively, boundary) configurations. For any € = Z(n, m, k, s) we
set SE=€Cn IB(n,mk,s), D94 =€n DB, mk,s).

Using themap S, ,_ we can introduce in a natural way the notion of a function
of class C' (with valuesin R*, u=1,2, ...)atapoint (x,, ..., X, y) € IB(n, m, k, s).
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Further, we can define the gradients 0, f, 0, f, i=1,...,s,and d,f, 9, f, (¢, v) €Y,
where feC!. Let f, ge C! at a point (x,, ..., x,, V)€ IB(n, m, k,s). We set

{f(xla . ~7xs9J7)a g(xls LR} Xs,_);)}
= Z (<aqf; avg> _<avf; aqg>)(xl> XN xs’y)'

(g, V)EX U... UX,UP
A function f on %#(n, m, k,s) is called symmetric if

Sy, X ) =F(Xgs oo s X0, 9, (Xq5..., X5, V)EB(N, M, K,5).
Denote by #(n, m, k, 5), s = 1, the set of sequences (x,, ..., x,, ) e B(n, m, k, s)
satisfying the following conditions:
(c) q, is an external and ¢, an accessible point in X,
@ k(xqu...ux,uy, q1)=k.
The quadruple (n, m, k,s), s=1, is said to be admissible if the set (n, m,k,s)
[or, equivalently, the set Z(n, m, k, s)] is non-empty.
Notice that if (x4, ..., x,, y)e B (n,m,k,s), s= 2, then for j=1, ..., s—1:
(1) (xi’ cees Xg—js )j)Ef,@(n —Jj,m—J, k,S—j),
() (Xjpq5 0005 X, V) EIB(N—J,m~], k', 5 —j) for some k'.
We are now ready to reformulate our Basic Lemma.
Basic Lemma. Let (n, m, k, s) be an admissible quadruple withn = 3, s = 2. Suppose
that functions, f, and f,_ , are defined on %(n, m, k, s) and U IBm—1,m—1,k,,
k

s—1) respectively, and that for s =3 a function, f,_,, is defined on U s8(n-2,
m—2,k,,s—2) and that these functions satisfy the conditions: ka

(1) f. is symmetric and continuous on B(n, m,k,s), f,€C? on SRB(n,m,k,s)
and f,=0 on D4 (n, m, k,s),

@) fio,eC*on U sB(—1,m—1,k,,s—1),
kl
(3) for s=3, fii,eC?*on U 5B(n—2,m—2,k,,s—2),
k,
(4) for s=2, lim f,((q,v), 7)=0 for any veR*, yeD°.
lgl— o0

For every point (x4, ..., X, )€ I (n, m, k,s) we assume that
a) the following equations hold

{fs(xlv "‘)xs7.}7): H(xh "‘7xs’)7)}+{fs—l(x2’ "'axs’j})’ U("h"‘hl)}

+{fs—-1(x1’~-~5xs—l’.);)a U(Iq.s-l_QSl)}:O’ (02)
{f;—l(xl’ "'5xs—1=.j})s H(xl’ "'axs—l’j;)}_i_{f;—Z(XZB“',xs—laj;)’ U(|Q1“‘12|)}
+{fs—2(xla ey X5, )7)5 U('qs—-l_qs-ll)}=0 (03)

(if s=2, Eq.(0.3) reduces to {f,(xy,¥), H(xy,y)} =0), where H(xy, ..., X;,¥)
=H(x u...ux;up);

b) for any xo=(qo,v0) €By, X R, Xs41 = (qs+1,V5+1) EBy, x R the following
equations hold
{.fs(xl’ D] xsa J;)a U(‘qO - ql |)} + {.fs(xo, cety xs—l’ f)’ U(lqs— 1 qsl)} = O’ (04)

{f;(xb "'s-xss_);)a U(lqs—qs+1i)}+{f;(x2’ <o X541 )7)9 U(Wx"‘]z')}=0 (05)
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Then f,=0 on A(n,m,k,s).

Apart from some technical details, this formulation of the Basic Lemma differs
from that given in [3] at two essential points. Firstly, the number of equations has
been reduced by 1 [Eq. (2.1,d,3) has been dropped]. Secondly, we now require that
the equations for f,, f._ ;, f,_ , are satisfied on S.(n, m, k, s), whereas in [3] we only
required that these equations hold at some point xeD°. Correspondingly, our
present conclusion is that f, = 0 on (n, m, k, 5), whereas in [3] we concluded only
that f=0 atx.

In the following we will call f, f,_,, f;—, higher, middle and lower functions
respectively. Correspondingly, Egs. (0.4), (0.5) are called higher equations, (0.2)
and (0.3) middle and lower equations respectively.

0.3. We now make the necessary modifications in the proofs of Lemmas 3.1,3 and
4.1,3. We first deal with the auxiliary propositions from Sect. 2,3. We will assume
that the function f: D® - R! appearing in the statements of these propositions is of
class C? at every point xeD°.

Proposition 0.1. (Corresponds to Proposition 2.1,3). Let xeD° and n(x)=2.
Assume that there are points, x; = (q;, v;)€X, i =1, 2, x, ¥ x,, and that there is a non-
empty open set, Bc R", such that for any q,€B, vER":

a) U'(lgo—¢:1) #0,

b) {/((GF\x) u(g1,v), U(lg0—4:D} =0, (0.6)
{f((\xD)U(g1, ), H((E\xp) Ulgs, o)} + {f(E\x1), Ullgr — gD} =0. (0.7

Then 0, f(X)=0.
Proof. Equation (0.6) may be written as

U'(l90— 44 1)
lg0— g1l
Due to condition a),
0, f(¥\x1) U(41,)), 40— 41> =0, ¢o€B, veR".
Since B is a non-empty open set, we conclude that
0, f((X\x) u(q(,v)) =0, veER".
Taking this into account, we apply the operator d, to (0.7). As a result, we find:
0, f((x\xy)U(gy,v))=0, veR*. L[]

Proposition 0.2 (Corresponds to Proposition 2.2.3). Let zeD° and n(z)=1.
Assume that there are two points, z" = (¢®,v") ez, i =1, 2, and that there is a non-
empty open set, B R", such that for any z,=(q,,09)€B X R*, veR":

@) U'(lgo—q""D*0,
(b) there exists a point, ge(Z2 Uzy)\ 2P, such that:

{F(ENZ?) U@, v), Ullgo— gD} +{/(Fuze)\2?), U(lg— ¢ D} =0. (0.8)

<6uf((i\x1) U(qbv))a do— q1> = 09 qOEB’ vER".
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Then 63(1., pel f(Z—) =0.
Proof. When zV =z, the result of applying 8, to (0.8) is:

U'(lgo—q'"))

o 08w, [ (2\2?) U(@®, 1)) (g0 — ¢") =0,
lg0—q""|

zo=1(q9,00)€EBXR', vER".
When zV = z? the result is:

U'(1g0—4q"))

) afsvf((z_\z‘z))u(q(z’, ) (g0 —q") =0,
lg0—q'"|

2o=1(qo,V9)EB X R*, vER".

Because of (a) the scalar factor is non-zero. Since B is a non-empty open set, we
conclude that for z() = z®

Ogo o f(A\2P)U(g?,v) =0, veR",
and for z(V =z

05,0 f(E\2P) U(@?,0)) =0, veR".
Setting v=1v®, we obtain the required equality. [J

Proposition 0.3 (Corresponds to Proposition 2.3,3). Let xeD° and n(x)=2.
Assume that there are points, x,=(q,v)ex, xP=(qg",0vV)ex, i=1,2,
X, # x; = x® £ x, and that there is a non-empty open set, B— R, such that for any
qo€B, veR”,

@ U'(Ig0—q:) *0,
(b) the following equations hold:

{F((\x) u(g1,0), U(lgo— ¢, D} =0, 0.9)

{f(GN\x1) U(g,0), H((GN\x1) U(ge, o)} + {f(E\x1), Ulgy — g2}
+ {(EN Gy uxP) Ulgr, ), Ulg™h = ¢PD} =0, (0.10)
02 o0 f((EN (¢, UX®)) U (g1, v)) = 0. 0.11)

Then 8, f(%)=0.

Proof. As in the proof of Proposition 0.1, we deduce from condition (a) and
Eg. (0.9) that

0,/ (A\x)u(gs,v) =0, veR".

On account of this equality and Eq. (0.11), we obtain the required result by applying
d, to both sides of (0.10). [J

0.4. We now turn to the proofs of Lemmas 3.1,3 and 4.1,3. Since Lemma 3.1,3is a
particular case of Lemma 4.1,3, we only consider the latter. Assume that /: D° — R!
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is such that:
(GY) feC?,
(G%) there exists n, such that f(x) =0 for xeD° and n(x) > n,,
(G%) for all xeD® with n(x)=1 and veR®

|11im f(xu(g,v)=0.
q|— 0

Let (n, m, k) be an admissible triple with » =3 for which the conditions of
Lemma4.1,3 hold. Let D°(n, m, k) be the set of configurations xeD° of type
(n,m, k). We now define four subsets, D°(n, m, k)= D°(n, m, k), -=a,b,c,d.
A configuration xeD° (n, m, k) is an element of:

a) D2 (n, m, k) if there exists an external, isolated point, x = (g, v) e X.

b) DY (n, m, k) if there exists an external point, x = (g, v) € X, which is neither an
isolated nor an endpoint in X,

c) D?(n, m, k)if there exists an external point x = (¢, v) € X which is an endpoint
but is not an end of a chain in x,

d) DY (n, m, k) if there exists an external point x = (g, v) € X which is an end of a
chain in x.

The sets D° (n, m, k), -=a, b, ¢, d, cover D°(n, m, k).

The assertion of Lemma 4.1,3 is that f(X) =0 for xeD° (n, m, k). Because of
condition (G'%) it is enough to prove this equality for internal configurations X of
type (n, m, k), i.e., for xe D°(n, m, k) such that |¢ —q'| =+ d, for all ¢, ¢'ex. For
xeD°(n, m, k), = a, b, c, the proof in [3] holds (see Sects. 3,3 and 4,3). Therefore,
we have to show that f(X) =0 for all internal xeD$ (n, m, k).

For every s =2 we introduce the set D9 (n, m, k,s) consisting of configura-
tions, xeD9(n, m, k), which satisfy the following condition: there exists a
chain, x,, ..., x,, in X with ends ¢,, ¢, such that (i) ¢, is an external point in X,
(ii) k(% g,)=k. Clearly, \U D (n, m,k,s)=DS(n, m,k). From DS(n, m k) we

extract the subset D°(n, m, k) consisting of those internal configurations X which
contain a chain x,, ..., x, with ends ¢,, ¢, satisfying conditions (i), (ii) above and
such that (iii) ¢, is an accessible point in X. We first show that f=0on D°(n, m, k, 5)
for all s = 2.

For fixed s = 2, we define the functions, f;: #(n,m,k,s)— R, f._,: U IBn—1,

kl
m—1,k,,s—1)—~R", and (when s=3) f,_,:\U SB(—2,m—2,k,,s—2)>R!
k

generated by f under the symmetrization mapsz (X5 ooy X )P X1 UL UX, U,
t=s5—2,5—1,s. We should check that f,, f,_1, f;—, satisfy the conditions of the
Basic Lemma.

The continuity and smoothness of these functions follow from condition (G7).
Now let (x4, ..., x,, 7)€ D (n, m, k, s). We will show that f; (x,, ..., x,, ¥) =0. It
is enough to verify that f(x, U... U x, uy) = 0. But this follows from the continuity
of f and from the fact that we can approximate the configuration x; U... Ux,uy
with configurations of type (n, m’, k"), m' < m—1, for which f=0 by virtue of
Lemma 4.1,3. We still have to check that for all (x4, ..., x,, )€ £ (n, m, k, s),
conditions a) and b) of the Basic Lemma hold [i.e., Egs. (0.2)—(0.5) are valid]. This
can be done as in Sect. 4,3.
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According to the Basic Lemma, f;= 0 on #(n, m, k, s). Since the image of the set
&{(n m, k, s) under symmetrxza‘uon covers D9 (n, m, k, s), it follows that f=0 on
DS (n,m,k,s). Since DS (n,m,k,s) is open, all gradients of f vanish on
DS (n, m, k,s).

We now prove that f(x) = 0 for any internal configuration x€D§ (n, m, k, s),
s=2. Let X be an internal configuration from D¢ (n, m, k,s) and x,, ..., x, be a
chain in X figuring in the definition of DY (n, m, k, s). There are two possibilities:
DU (1g,-1—q,)=0and 2) U'(1g,_; — g,}) ¥ 0. It is not hard to check that in the
first case X satisfies the conditions of Proposition 0.1 and hence 0, f'(X) =0.

Consider the second case. Observe, that if x,=/(q,, vo)eB x R”, then
(¥\x,) Uxo€DY (n, m, k,s)and, as we proved above, the function f together with all
its gradients vanishes at the point (¥\ x,) Ux,. Using this fact, it is not hard to
check, that for z=x\x, zM=x,, z2P=x,_,, B= Bj, the conditions of
Proposition 0.2 (with g=¢,_,) are satlsﬁed Whence, 07 S\ x) =0.

Making use of the above results, we can verify that for x the assumptions of
Proposition 0.3 are satisfied with xV'=x,_,, x®=x,, B=Bj . Accordingly,
0q, f(x)=0.

We have therefore proved that 9, f(X)=0 for any internal configuration
xeD$ (n, m, k,s) containing a chain, xl, ..., X, where g, is an external point
in x and k(x,q,)=k. Notice that for any such configuration one can find a
continuous curve, ¢, (f), 0 <=1, with the following properties: (i) ¢, (0) =g,
(i) (F\x1) U(g, (1), v,) €D (n, m, k,s) for 0= ¢ <1, (i) (F\x;) U(gy (1), vy) is an
internal configuration for 0 < 7 <1 and a boundary configuration for = 1. By what
is proven above, f((¥\ x;) u(g, (),v,)) does not depend on ¢ for 0 < £ < 1. On the
other hand, f((*\ x{) u(g, (1), v,)) = 0 since the configuration (¥\ x;) u(g, (1), v,)
may be approximated by configurations, x’, of type (n,m—1,k") for which
f(x)=0 by virtue of Lemma 4.1,3. Consequently, f(¥)=0. This concludes the
proof of Lemma 4.1,3. [

0.5. The sections which follow are devoted to proving the Basic Lemma. We will
assume, but will not repeatedly mention, that the quadruple (n, m, k, s) and the
functions f;, f,_,, f,_, satisfy the conditions of the Basic Lemma. To lighten the
notation we will write # and </ for #(n, m, k, s) and A(n, m, k, s).

1. Analysis of the Upper Function (An Application of the
Upper and Middle Equations)

This section contains the first part of the proof of the Basic Lemma. Using
Egs. (0.2), (0.4), (0.5), we will obtain some information about f;. Denote by
A9 i=1,...,5—1, the set of configurations (xi,...,x,, 7)€« for which
U'(lgi— 441 *0.

The results of this Section are summarized in the following theorem.

s—1
Theorem 1. (1) Let v=2 and let (x,, ..., x,, P)e () FA4D. Then
i=1

O fs(Xys ooy X, V) =0, fi (X1, ..., X, ¥)=0. (1.1a)
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(2) Letv =2 and let the configuration (x,, ..., X5, y) € S\ ™V be such that
|qgs— 1 — g, is a limit point of the set {r>dy:U'(r)=0}. Then

O fs (X1, .., X, ) =0. (1.1b)
We will start with the proof of the statement (2). Equation (0.4) takes the form

<au,f;(x19--',xs7.}7)7 aqu(IqO_qID>=05 qOEle’
on S\ L™, Cancelling U'(|go— q,1) 190 — ¢, |~ we get

<avlfs(‘x1: cees Xy .)7)5 do— q1> =0’ qOEle'

Since g, runs over an open set By it follows that 0, f;(x;, ..., X, ) =0.

Now suppose (X, ..., X,, ) satisfies the conditions stated in (2) of Theorem 1.
Then in any neighbourhood of (xi,...,x,, J) there is a configuration,
(X1, ..., x5, 7'), from S/ \ /¢~ But we have proved that 9, f,(x},...,x{,7) =0,
where xi = (q1,v}). It follows that 07 , fi(xy, ..., x, 1) =00, fi(X1,..., %, 7)=0
for all (g, v)ex,U... UX,UJ.

Applying 0, to (0.2) and using the above equalities we obtain (1.1b). Statement
(2) of Theorem 1 is proven. [

We now pass to the proof of statement (1).

Proposition 1.1. For v=1 the following formulas hold

av;fs(xla e xs: .17) = 8«1; U(lqs~1 - qsl) A(l)(xl’ ceey xs9 .}7) (123-)
(when — (xq,..., X, P)€SLE™),

avs.f;(xla ceey xs> ﬁ): 0q, U(|q1 - qZDA(S)(xla ) xs: .}7) (12b)
(when — (xy,...,x,, y) e IAD),

where AV, A9 are matrix-valued functions on F.4~ Y, 54V respectively, which
are locally constant. That is, for any configuration (x,,..., X, y)€ JILE™D
(respectively, (xi,...,x,, y)e IdV) there exists a neighbourhood, O =¥
(X1» ..., X5 P)= R, of q, (respectively, a neighbourhood, OV =0V (x,, ..., x,, )
=R, of q,) such that for all x.=(q.,v)e0" x R" (respectively, xi=/(q},v})
e0OYxR")

A(l)(XIZ‘ cer xs—1> x;a .)—}—)ZA(I)(XD cres xs—la xsa .)7)
(respectively,
AP, Xy oo X D)= A (X, X5, ., X D))

In addition, if q, is the limit point for some arbitrary open half-line, L< By , then
Jor all (xy,xy,..., %, P)€SFAC™V with x,e(Lugq,)x R", the neighbourhoods
O (x}, x5, ..., X,, ¥) can be chosen to coincide.

Proof. We will only consider the derivation of formula (1.2a) and the properties of
A™M. The derivation of (1.2b) and the proof of the fact that 4 is locally constant
involves a similar line of argument [we use (0.5) instead of (0.9) — see below]. In
addition, we will assume that s> 3 (for s=2 the formulas below need to be
modified in a superficial way).
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Let (x1,..., X, 7)€ L™V and let Le B (x; uU... Ux,UJ) be an open half-
line. Choose 0 to be a connected nexghbourhood of g, small enough so that the
following conditions hold: a) U’(|g,_; — ¢.]) 0 for all ¢g.e®*, b) L consists of

internal points from () B¢ (X UL uxgUY). Now let (X, x5, ..., X, V)€
X €09 x R

F/4~ Y, where x| =(g;,v})e(Lug,) x R*. Using conditions a) and b) find a
connected open set, O <= B (xj Ux,U... UX,UY), such that if x]=(q.,v)e0®
x R", q5 €0, then

(-xllaXZa""xs—lax;sf)ejﬂ(s_l)5 q/OEB (xl UXyU.. s lUx Uy) (1 2)
Notice that Eq.(0.4) holds when x, is replaced by xi=/(q4,05)€0 x R”, x, is
replaced by x; = (g}, v))€0® x R", and x; is replaced by x}. This equation has the
form

<avlf;(x1>x29"‘ s— 1>-xs9y) 6q1U(|q0 q’1|)>
+ <avs_1fs(x03 xla X2s ooy Xs—1> y)a aq;_1 U(Wo - qll l)> = Os
Xo€0 x R, x,e0® x R. 1.9
Dividing by U'(Igo — ¢1 ) U'(14,-1 — ¢s1) 190 — 9117 " 14— 1 — gs|* which is non-
zero by (1.3), we arrive at the equality
<a(1)(xll9 Xy ooy Xy 15 x.;: J7), ds—1— q.;>
+<a(S)(x67 xlla Xy ooy Xs— 15 _}7), 9s—1— q.:x> = 0’
Xg€O X R”, x,eO¥ x R, 1.5)
where
a (X}, x,, .00, Xm s X0 P)
=0 (-1 = @) g1 = acl Oy fi(x, X0y Xm0, X0 §), (1.62)
a(S)('x63 xlla X5 ooy Xg—15 .)—])
=0 (go— a1 D1 g0 — a1l 8, £ (xo, X1, X2 - X1, ). (1.6b)
By application of d,, and 0, to (1.5) we get
0y aM (X1, Xa, ooy X1, X, §) + [04,29 (x5, X7, X5 0, Xy, P)]*¥=0,
Xo€0 X R, x.eO¥ x R". 1.7

It follows that the matrix d,a(x{, X,,..., X, X{,7) is constant on
x,e0® x R". Denoting this matrix by A (x{, x,, ..., X,_, X, 7), we have

Al (X, xg, o, X, XL D) =LAV (XY, Xy, oy Xy, XL, )
+bW (X, x5, o, Xy, XL, ), XLEOD X R, (1.8a)
where the vector b (x{, x,, ..., x,_,, x., J) is constant on x.e0®® x R". Due to
1.7)
a® (x0, X1, X5, . X, P) = — qo (AD)* (X1, Xz, .0, Xoy, X0 )
+b9 (xp, X1, X5, 000y X1, D), Xo€O X R, x.€0® x R”, (1.8b)
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where b (x{, x|, x5, ..., X,_,, y) is constant on x, €@ x R". Substituting (1.8a, b)
into (1.5) and applying d,, to both sides of this equality we get
b (X, Xgy ooy Xem 1, X )= — ot AV (XY, Xy, ooy X1, XL, D), XLEOO X R,
From this and from (1.8a), (1.6a), we obtain (1.2a). [
Propoéition 1.2. Letvz1 andlet (xy, ..., X, 7)€ IV, xoeBy x R". Then
AV (x(, o x6 7)) (A (xg, ..y X_ 1, 7)=0. 1.9

Proof. Choose neighbourhoods, ¢, 0, of g,, g, such that conditions (1.3) hold for
4o €0y, x;€0, x R*. Notice that if we write Eq. (0.4) with xi = (go, vg) replacing x,
and x.=(q., v}) replacing x,, we get (1.4).

We then substitute equalities (1.2a, b) with argument (xg, X, ..., X,_, ) into
(1.4) [it is easy to see that (xg, x;, ..., X, 1, y) € £ 1], By cancelling the factor
U' (195~ 411) 16— 411" U'(1g5— — 4.1) |g5— — 4,1 ~" and using the fact that the
matrices A1), 4 are locally constant (see Proposition 1.1), we obtain (1.9). [J

Proposition 1.3. Let v=1 and let (x,, ..., X, )€ IV N I4 ™V, Then
[553 U(Iql - qZI) A(S)(x19 sy xs’ J;)]*
+00: U(Igs-1—4) AV (xy, ..., x,, 7) = 0. (1.10)

Proof. To Eq.(0.2) we apply 0, and d,. If (x,, ..., X, ) € LV F/ ™Y, then
using Proposition 1.1 we obtain (1.10). [

Corollary 1.4. Let v=1. Assume that for s 23, (Xy, ..., Xs )€ IS~ Jf~
and for s =2, (x;, x,, y) € 4V, Assume further that xo€ By x R". Then,
65“_2,%_1 U(lqs—l—qs—l I) A(l)(x()’ cees Xs— 15 );)
=AV (xy, .., %, 7) 05, Ulgo— 44 ). (1.11)

Proof. We apply Proposition1.3 to (xg, ..., x,_, ) and then use (1.9). [

Denote by , the set of configurations (xy, ..., x,, y) €/ for which ¢; is an
external pointin x; U... Ux,uUy. In other words, (x,, ..., X, ) €, ifand only if
(X150 005 X6 P), (X, .. ., Xq, P) €/ Notice that when v =1, o/, is non-empty only if
n(y)=0.

Proposition 1.5. Let v=1 and let (xy, ..., x,, y)€ S VN .. Then
AV Gy, Xy )= A9 (xy o Xy, D). 1.12)

Proof. According to the Basic Lemma, f; is symmetric. By using (1.2a, b) we see
that

aqs U(lqs—l - qu A(l)(Xl, cees Xy )7)
-0, U(Ig-1—q) A® (xgs ..., x1, D=0, (x1, ..., X, DEIA VN,
By cancelling the factor U'(|q,_; — q,|) |gs— 1 — q,| ~* we see that
(qs—l —qs) [A(l)(xla sy X J;)—A(S)(xss cees X J;)]:O

Using the fact that the matrices A and A® are locally constant we arrive at
(1.12). O
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Corollary 1.6. Let v2 1. Assume that (x,, ..., X,, )€ #o/*~ V) and that x,€ B},
X R" is such that (Xq, ..., X;_y, V)€ Ayyy. Then

(A(l))* (x19 sy Xy }7)+A(1)(xs~1> <oy X0 )7)=0 (113)

Proof. Notice that the conditions stated in Proposition 1.2 hold for (x,, ..., x,, J)
and x,. Hence, (1.9) holds. Moreover, since (X,_1, ..., Xo, J)€ S V.o

sym>
Equality (1.12) holds for (x,_4, ..., Xq, 7) by virtue of Proposition 1.5. Combining
these two equalities, we obtain (1.13). [

s—=1
Proposition 1.7. Let v=1 and let (x,, ..., x,y), (xi,...,x,, p)e [) FLD. Fur-
i=1

ther, assume that qy, ..., qs, 44, .. -, q. lie on a straight line, Lc R®, satisfying the
condition dist (L, Conv ¢ (7)) > d, and assume that q lies on the same side of g, as q,
of q,. Then

AP (xy, ., x, ) =AD(x), ..., xL, D). (1.14)

Proof. From conditions (/{ — I}) on U it follows that in any neighbourhood of d;
there are points, r, for which U’ (r) % 0. Using this fact we choose r,, 1} €(dy, d;) and
natural k,, k7 > s/2 such that the following conditions hold

U'(r)U'(r) #0, (1.15a)
ro,ry>d2, ri+lg—qil>dy, ri+ gy —gi>dy, (1.15b)
g+ 2k, 11 (91 — 92)/19y — @21 = g1 + 2k, 11 (91 — 43)/191 — g21. (1.15¢)
Further, set
g=q+r (—i+10)(q —q)/lg2—q.l, =0, -1, -2,...,

qu{q’l+r1(—i+1)(q’1—q’2)/lq’1~q'z l, i=0, —1,..., =2k, +1,
Colgy I 2k H (=i =2k ) g — ) gy — qal, i= -2k, =2k -1, .

(see Fig. 1). Finally, choose arbitrary v;,eR” for i=0, —1, ... and arbitrary v/eR"
for i=0,..., =2k} +2. Set v; =v;, o, o, for i= =2k} +1, =2kj,....

L

o

<
R A VIR AT

Fig. 1
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Consider configurations (x;, X; 41, - - -» Xj15-1, ) a0d (X}, X1 1, -« 5 Xi45-15 F)s
i=1,0,—1,..., where x;=(g;,v), x;=(q;,v}), j=s,5—1,.... From (1.15a,b)
and the conditions of the proposition under consideration it follows that foralli < 0

Kig1s e os Xips DVEIACTD, (x5, Xy 15 V) €Ay,
X, €Bg, (Xit1U... UX;py1UY) X R,
(x;+1’ tet x1{+s= y)ejﬂ(s_l)a (xila Tt x1{+s—1: .}j)e"%ym’
Xi€BG, (Xi+1U...UX{y— 1 UY) X R
Using Corollary 1.6, we obtain

A(l)('xl’ ceey Xy )7)=A(1)(x2j+1: AR x2j+s: .)7),

A(l)(x,l9 e x;:y)=A(1)(x/2j+la R 'x/2j+sa .)7)5
j=0,—-1,.... (1.16)
From the construction and from (1.15c) it follows that if i< —2k,+1 and
i'=i+2k;—2k;, then ¢;=gq; and v;=v. Hence, for j< —Fk,—(s—1)/2,
J'=Jj+k,—k} the configurations (X,;4 1, -+, X245 ¥) A0d (X3 415+ +» Xajr 455 V)

coincide. Together with (1.16) this gives (1.14). [

Notice that if v =1, the conditions of Proposition 1.7 hold only when n(y) =0.

s=1
Proposition 1.8. Let v=1. Assume that (x,,...,x, p)e () 4D and that the
i=1

points qy, .. ., g, lie on a straight-line, L= R”, satisfying the conditions LN Bj =+ 0,
dist (L, Conv (g (p)) > d,. Then

AW (xy, ..., x,, 7)=0. 1.17)

Proof. We will assume that s =3 (as in the proof of Proposition1.1, for s=2
the formulas below need to be modified in a superficial manner). Choose a
sequence of points, ¢,(i), i=0,1,..., on L, lying on the same side of ¢, as q,,
with ¢, (0) = ¢, and such that (a) U'(1¢, ()) — ¢,]) + 0, 14, () — 4| > [¢, — ¢, forall
i, (b) llirg lq: (D) — g, =d;.

By application of Propositions 1.1, 1.7, we can find a neighbourhood, 0, of ¢,
such that

AP (xy, o x, )= AP (X0, Xgy ooy X1 X0 D),
x,eO9x R, xi()=(q,(0),v)), vieR’, i=0,1,.... (1.18)
By (1.2a) and (1.18),
Jox1()y Xgy ooy Xg— 1, X, ¥) =401, aq;U(‘qs—l —q:D) AV ey, x, P
+a(xi (@) Xgs s X1, X5 7), X,€09 X RY, X1 (1) = (g, (1), v)),
o eR",i=0,1,..., (1.19)

where a (x} (i), x5, ..., X;_1, x., ¥) does not depend on v eR". As assumed in the
Basic Lemma,

lim £ (x] (D), Xz, ..o, X g, X, ) =0. (1.20)
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By using (1.19) with v} set equal to zero we get

llma(x,l(l)’ x25"'5xs—1>x;a)7)=0' (121)

From (1.19)—(1.21) it is clear that
01,05 U(1g-1— gD AP (xp, ., X, 7)) =0,  ¢;e0®,  veR”,
and therefore,
0y U(1gs-1—a) AV (xy, ., X, ) =0,  q;€0®.

By cancelling U’(|g,_; — ¢.|) and using the fact that 0 is non-empty and open we
obtain (1.17). O

‘ s—1
Proposition 1.9. Let v=2 and let (xy, ..., x,, 7)€ [ o9, Then

=1
AN (xy, ..., x,7)=0.

Remark. This statement also holds when v=1 and n(y)=0. In this case it is
implied by Proposition 1.8.

Proof. We employ a geometric construction which will also be useful below.
This construction can be used only when v = 2. According to the definition of By,

we can find a point, ¢'€Bg (x;uU...Ux,UY), such that |q’——q1|>d1/1/§
and U"(|¢'—q,1) £0. Set ¥, =g’ — ¢, | and let
G=a+(—i+ (@ ~q). x=(g.v). =01,

wherev;eR”,i=0, —1, ..., are arbitrary. It is not difficult to check that for |iy| > s
sufficiently large there is a point ¢ such that:

a) the halfline L, ={¢eR":4=q +1t(g—q;), (>0} lies in
B;,fo (g U UXigrs-1 UY),
b) dist (L, Conv (4()))) > d,, where L is the straight line containing L,
o lg—gqil=r
(see Fig.2). For such an i, we set
xi=xé, i=09—_17"‘5i03
qi=qio+(i0~1)(q—'ql{0)a xiz(qbvi)a i=i0_1: io-z,---a
where v;eR, i=iy,—1, i,—2,..., is arbitrary (recall how the sequence x|,

i=0,—1,..., was constructed).
Let’s consider the configurations (x;,...,X;.,_1,»), i=1, 0, —1,.... By

s—1
construction, (X;, ..., X;45_ 15 V)€ Dl A9, x,_ €BL(XU... UX;4y_ UJ) X R’

and for (x;, ..., X;15_1, V), i Siy— s+ 1, the conditions of Proposition 1.8 hold. By
Corollary 1.4 and our choice of g, which guarantees the non-degeneracy of
02 4, U(l40— g, 1), it is enough to prove that

AD (xo, ..., Xy, 7)=0. (1.22)
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By applying Corollary 1.4 to (x;, ..., X;45_1, ) and x;,_,, i=0, —1,...,itis
clear that we will be able to prove equality (1.22) if we can find an i such that
AV (x; .0 Xii5-1,9)=0.
But by Proposition 1.8 the last equality holds for all i i, —s+1. [J

s=1
Proposition 1.10. Let v=2. Assume that (x,,...,x, )€ () FA4V and that
U"(1g; — q,1)*+0. Then j=1
A9 (x,, ..., x, 7)=0. (1.23)

Proof. According to Proposition1.9, 4™ (x,, ..., x,, ) =0. Using Proposition
1.3 and the fact that 92; U(|q, — g,|) is non-degenerate we get (1.23). [

s—1
Proposition 1.11. Letv=2 and let (x,, ..., x,, Y)€ () £V, Then equality (1.23)
holds. j=1

Proof. We choose an arbitrary goeB; ~and consider the half-line

s—1
L={qeR*:q=q,+t(go—¢,),1=0}. Obviously, (x;(1),X,,..., X, )€ ) SAD
for 0 <t <t,, where j=1

to=min[t20:U'(lg; + (g0~ q,) — g,1)=0].
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Since 4 is locally constant and continuous (see Proposition1.1),
A9 (X, (1), Xgs oy X )= A9V (xy, .., X, P), 0=5t<t,.

If we can find 7€[0, #,) such that U”(|g,(r) — g,|) # 0, then, by Proposition
1.10, A9 (x, (1), X5, ..., x,, ¥) =0 and (1.23) follows.

IfU"(1g,(¥) — q,1)=0forall £ €[0, t,), then U’ (|¢, () — ¢, |) = ¢, a constant, for
0=1<ty, and, by our choice of ¢, and the continuity of U’, ¢ = 0. This contradicts
the condition U'(|lq, —g,|)*+0. O

Assertion (1) of Theorem1 follows immediately from Propositions1.1, 1.9,
and 1.11.

2. Analysis of the Middle Function for v > 2
(An Application of the Middle Equation)

We now pass to the second part of the proof of the Basic Lemma. In this second
section we study the properties of f; _; using Eq. (0.2) and Theorem 1 of Sect. 1. We
will assume throughout this section that v = 2.

We will consider the following sets:

AV = {(x;, s X €LV U (1= gy DFO0}, i=1, 0,51,

In addition, we will consider the set 2/ composed of those configurations
(X1s .. s X1, el JB(m—1, m—1, k;, s— 1) for which there exists an open set,

ky s—1 __ .
0eR”, having the property that (x, xq, ..., X,_1, ﬁ)e.ﬂ &Y for all xe® x R".
We define =1

G(q.9)=0;,U(lg—q']). ¢.qeR, |qg—q'|>d,.
It is easy to see that (x,,...,x,_;,y)e</,, s=3, implies that the matrix
s]:f G (g;, 9;+ 1) i1s non-degenerate.
o The major result of this section is:

Theorem 2. a) If s=3, then

2 -
avl,vs_lfs-l(xla R xs—1>y)
s—2

=b(x1"":xs—1’)7) l I G(Qisqi+1)a (xls-”:xs-—laf)ej"(il; (213)
i=1
b) if s=2, then

0 fi(x, ) =b(x, NE,  (x;,7)€ I, (2.1b)

Here, b is a Junction on S5, having the property that (x,...,%,_,)),
(x1, ... Xi_q, V) eI, together with y =73', implies

b(Xyy o s Xy, )=b(xY, .., xI_1, 7)), (2.2)

E is the identity matrix.
We now begin the proof of Theorem 2.
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. s—1 .
Proposition 2.1. Let (x, ..., x,, )€ (| FAD. Then
i=1

agz,v:.f;—l(xb s X 1) G (41, 92) = G(q5-1,95) atzq,us-l Jo—1 (X5 X521, 9). (2.3)

Proof. Weshall only consider the case s = 3. Let (x,, ..., X, J)€ ﬂ IoAD Choose

L) xs 1> xss y)e ﬂ 'fﬂ(l)

when x| =(q},v})€0,; x R” and x,=(q;,v;)el, x R*. By Theorem 1 (1),
av’,fs(x/l’ Xos vy X1 X;, .l;) = av;f;(xlla Xoseons Xg— 15 x;’ ﬁ) =0. (24)

Consider Eq. (0.2) with argument (x}, x5, ..., X,_;, X;, J). By applying 0, and
0, to this equation and using (2.4), we obtain

neighbourhoods, 0,, 0O, of ¢q,, g,, such that (x, x,, ..

aq;_f.;(xlla Xoseees X5— 1, x;’ y_)
=a§;,v§f;—1 (x25 cees Xs—1s x;a J;) aqu(lq’l _qzl) (25&)
and
aq{fs(xll’ x29 Tt xs-b x; Jj) = agsAl,uifs—l (xlb XZ’ MRS xs—l! )7) aqs_, U(IQs—l - q;),
x1€0;xR*, xieO,xR". (2.5b)

By applying d,, to (2.5a) and d, to (2.5b) and then comparing the results we arrive at
2.3). O

For (xy,...,X,_, )€ S, we set
s—2

-1
655_1,01]2—1()61’ cees X1 ﬁ)(n G(qi’qi+1)> H 523’
i=1

B(Xps Xy 1o )= i
(1o Xm0 V=0 52 0 e 5, =2, 2.6)

s—1 .
Proposition 2.2. Let (xy,..., X, p)e [ ) LY. Then
i=1

G(qth)B(xZa ..,,xs,f)=B(x1, -~-axs—1aJ7)G(91"]2)- (27)

s—1
Proof. Notice that if (x;,...,x,7)€ _Dl IV, then (xy,..., %1, ),

(x5, ..., X, )€ £4,. Under these conditions Eq.(2.3) of Proposition2.1 holds.
We substitute (2.6) into this equation. Using the fact that G (¢, ¢") is symmetric we
obtain (2.7). [

Proposition 2.3. Let(x,, ..., x,_,, y) € #<,. There are neighbourhoods, ;= R*, of
q;,i=1,...,5—1, such that for x;eO; x R*, i=1,...,5s—1,

(X4, .. X eIdy,  B(xy,..., X1, 9) =B, ..., x_, 7). (2.8)

s—1 _ .
Proof. We first choose x{=(qp,vp) such that (xg,x,...,X,_;, )€ [) FLD.
i=1

We then choose a sequence of points, x_; =(q_1,0_ 1), X_,=(q-5,0-2), ...,
and neighbourhoods, @,,...,0,_,, of ¢q;,...,q,_; such that for every
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xi=(q,v)eO; xR, i=1,...,5—1, (x|, ..., x,_,, )€ FH,, and for every j <0

s—1 _
(X}, .., Xjg-1, V)E N\ £,
1=1
By Proposition 2.2, for j <0 we have

B(X}, st x}+s—2’ y—) G(q_;7 CI}+1)= G(qjl’ qJ{+1) B(x}+1a et le'+s—1= y—)’

where x| =(g;,v))€0; x R*, i=1,...,s—1.
By repeatedly applying this equation we obtain

0 0
ﬂZG(CI{,QEH)B(X’;,--',x;—l,ﬁ)=3(x’—s+z,---,xi),f) Il G aqiy)

i=-s+2

i=—s+
The right-hand side of this equality is constant on x/€@®;x R”, i=1,...,s—1.
0

From this and the fact that [] G(g},¢}+,) is non-degenerate, we obtain the
required result. [ i=—s+2

Proposition 2.4. Let (x,, ..., x,_,, )€ $4,. Suppose that the points q,, ..., qs_,
lie on a straight line, L= R, such that dist (L, Conv (G (J))) > d, . Assume further that
for s=3 these points satisfy the condition |q;.—q;|=r, i=1,...,5—2, where
max (d,, dl/]/E) <r<d, and

0= U"(r)=U'(r)/r+0. (2.9)
Then if Ge L\ q,, the vector q, — § is an eigenvector of B(xy, ..., X;_1, J).

Proof. We will consider the cases v =2 and v = 3 separately. For v = 2 we construct
a closed polygonal line, y<= R?, with the following properties:

1) 7 is the boundary of a rectangle, I', which is not a square;

2) the length of the edges forming y are multiples of r;

3) one of these edges belongs to L and contains the points ¢, ..., g,_,. The
distances between ¢, ¢,_; and the two ends of this edge are both multiples of ;

4) Conv (g(»)) =T, and dist (y, Conv(g(y)) > d, (see Fig.3a).

For v =z 3 we will employ the following geometric result: if C= R” is a bounded
convex set and R= R is a proper subspace, then there is a hyperplane, H< R”, such
that Re H and dist (C, R) = dist (C, H). We take L for R and Conv (¢ (7)) for Cand
construct a closed polygonal line, y, in H with the properties 1)-3) mentioned above
(see Fig.3b).

We now subdivide the edges of y into semi-intervals of length r. By construc-
tion, ¢4, ..., q,—, are among the endpoints of these semi-intervals. We denote
the remaining endpoints ¢, ..., gy in such a way that |gq,,,—¢;|=r for
i=s—1,...,N—1 and |gy—g,|=r. Choosing arbitrary v, ..., vyeR", we set
x;=(q;,v;), i=s,..., N. Set

. j for 1SN,
[J]={ J Sjs

J—N for j=N, J=1,2,....
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It follows from the construction and the conditions
consideration that for both cases, v=2 and v = 3,

of the proposition under

s=1
(%) Xpjtgs - - x[i+s—1laf)e,ﬂl JAO,  j=1,...,N.
i=

By Proposition 2.2,

B(Xj, Xj1ys - o Xpjrs—2p ¥) G (4> G 11)
= G(qj’q[j+1]) B(x[j+1]a cees x[j+s—1]’.)7)a j=1,...,N.

Iterating, we obtain

B(xl’ --~axs—13)7) G{V=G{VB(X1, '~~’xs—1’.}7)’ (210)

N
where G = 1_[ G (g, g+ 17)-
i=1
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In order to solve Eq.(2.10), we represent G (g, g') as
G(.9)=-U"(lg=q'DP-y
_U'(lg—4q'D
lg—q'l
where P,_ . is the orthogonal projector onto the subspace generated by ¢ —¢q'.
From (2.11) we obtain

GY = U" () (U (n)[r)*:r Py + (U' (1) [r)*1ir (U (1)) P,
+U'(nrN(E-P,—-P,), (2.12)

where /, is the length of that edge of y which contains g, ¢,_;, P, is the orthogonal
projector onto the subspace generated by a vector collinear to this edge (for
example, by the vector ¢, —§ where §eL, §=* q,), [, and P, are the corresponding
quantities for the orthogonal edge of .

From (2.10) and (2.12) it follows that

GY B(x1ys s X1, M) (q1—9)
=U" (U (N[ B(xy, ..o Xg-1, D) (@1 — D)5
ie, B(Xy,...,%x_1,7) (q.—¢) is an eigenvector of G} with eigenvalue
A= (U"(#)?/r (U'(r)/r)?"I". According to (2.9) and since /; # /,, the coefficients of
P,, P, and E-P, — P, on the right hand side of (2.12) are different. Hence every

eigenvector of G¥ with eigenvalue A is proportional to g, — §. Therefore, ¢, — §
is an eigenvector of the matrix B(x,, ..., X,_1, ). [J

(E=Pi_g), 4. q€R,|q—q'|>dy,  (2.11)

Proposition 2.5. Let the conditions of Proposition 2.4 hold. Then B(x,, ..., Xs—1,¥)
is a scalar matrix.

Proof. Consider the case s=2. Let ¢ €L be chosen arbitrarily from the points
distinct from ¢,. There is a neighbourhood, ® < R”, of ¢~, not containing ¢,, such
that for every point ¢’ €@ the line L’ going through the points ¢, and ¢’ satisfies the
condition dist (L', Conv (§())) > d,. By Proposition 2.4, g, — ¢’ is an eigenvector
of B(x,, y). Therefore this matrix has an open set of eigenvectors, and hence, is
scalar.

Os.4

Fig. 4
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Now let s=3. Consider the neighbourhoods 0,,...,0,_, of ¢,,...,4,—4
figuring in Proposition 2.3. It is easy to check that one can find a neighbourhood,
0;=0,, of g, such that for any x)=/(g5,v5)€0; x R there exist points x;
=(q;,v)e0;x R*,2<i<s—1, i%2, for which (x,, x5, ..., x_, 7) satisfies the
conditions of Proposition 2.4 (see Fig. 4). It follows from Propositions 2.3, 2.4 that
for any g5 €05 the vector g, — ¢5 is an eigenvector of the matrix B(x,, ..., X;— 1, J).
As above, we deduce from this fact that B(xy, ..., X,_, J) is a scalar matrix. []

Proposition 2.6. Let(x,, ..., x,_,, 7)€ $4,. Then the matrix B(x,, ..., X,_1, J)is
a scalar, i.e.,

B(xla~~~>xs—17.}7)=b(x19~~~,xs—1>.}3)E~ (213)

Proof. By the definition of 2/, we can choose a point, g,eR’, so that
s—1

(X0» X1 -5 X_1, DVE [ FAD, where xo=(qo, Vo), Vo€ R’. Using the geometri-
i=1

cal construction employed in the proof of Proposition 1.9 we can find a point,
q'€Bg (xo, ..., X;_1, ), for which

lg'— g0l >d/V2, 0%£U"(1¢—qol) +U'(I¢'— gol)/Iq’ — go| + 0.
We set vy = |q' — gol,
qz{=q0—i(q’_q0)5 x£=(q{,v;), i=—1a_25'-"

where v;€R”, i= —1, —2, ..., are chosen arbitrarily. If |i;| > s is large enough,
there will be a point, ¢, satisfying conditions a)-c) listed in the proof of
Proposition 1.9. Fixing such i, and g, we set

xi=xi, Ii=-1,-2,...,0
=g, —((—i)(g—qi), xi=(q»v), i=io—1i—2,...,
where v,eR’, = z'0 — 1, are chosen arbitrarily. By construction,

(Xis oo s Xiss-1, V) E ﬂ S for i£0. Furthermore, if i <i,— s+ 2, then the
conditions of Propos1t10n24 hold for (x;,...,x;,,_,) and hence, the matrix
B(x;, ..., X;15_5,)) is a scalar.

By repeated application of Proposition2.2 we find that the matrix
B(xy,...,x,_y,7)1s ascalar. [

Proposition 2.7. The function b appearing in (2.13) has the following property: if
gy e s Xgm 15 0), (X4, oy Xy, V) €SS, and J' =, then

b(Xy, vy Xem 1, ) =b(X1, ..., xI_1, T). 214
Proof. Let (xq,...,%_1,7), (X7,...,X/_ l,y)ef&il Choose points ¢y, go SO
that (Xg, X1, ... Xo_ 15 3)s (XGs X750y Xi 1,y)eﬂ SV, where x,=(qo, Vo),
xo=10(490,00), Vg, Vo€R’. Next, choose pjomts ge€By (Xg, ..., Xs—15 D),

q'eBy (x5, ..., x,_y,7) so that: (a) the vectors g—gq, and q'—gq; are not

parallel; (b) |q—qol, 1q'—q61>dy/V/2, U"(Ig— o)) U"(I¢' — ¢51) = 0. We now
consider sequences, ¢y ;, vy i, 41,5 Uy, I=—1, =2, ..., where

91,i=490—1(q—4q0)s 41,:=90— (4" —q0)
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and v, ;, 0], are chosen arbitrarily. Let x; ;= (qy ;,vy 1), X1,;=(q},;,0},0), i= —1,
—2 . It is easy to see that when i— — o, the sets By (X i ..., X1 j45-1, V)
B, ,(xl i»+o» X1 i45-1,)) tend (in a natural way) to half—spaces By condition

(a) the 1ntersectlon of these sets is non-empty if || is large enough. Moreover, one
can find open  half-lines, Lc:Bq1 (X155 0s X1 445-1,0), L' By,

(X% 5.+ +s X1,i45-1, ¥), Originated at q; ;, 41 ; which mtersect each other with an
acute angle at some point §(7) (see Fig.5). By the properties of the potential U,

the conditions
UU"(0)*£0, o0>d/2 (2.15)
hold on some finite interval of values of ¢ and therefore, one can guarantee that if
dist (g, ;, §(i)) and dist (g} ;, (i) are large enough [according to condition (a) they
tend to 4+ oo as i— — 0], each of them is divisible by some number from this
interval.
Let i=1i, be such that all of the above holds. Choose half-lines, L and L’,
intersecting each other with an acute angle at a point, § (i,) = ¢. With such choices

dist (91,5,,q) =jr, dist(q} ;.9 =1,

where j, j' are natural numbers. In addition (2.15) will hold for g=r, ¥'.
Let ¢, _1, 45, -4 be points on L, L', respectively, such that

diSt(‘h,io»@h,—l):’% diSt(Qi,iwaz.ﬂ):”,-

Fig.5
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Fori=—1,-2,... we set

‘I2,i=‘_11,i0_i(‘]z,—1_‘h,io)a 92,i=91,i,— (92, -1~ 91,1)»
g1, losSis -1,

4= | Yaic+1s lo—J SiZip—1,

G o=is -1,
q;= ;

92,i,+i>
g, iSio—j —1.

Setv;=wv, ;,v; =0} ;foriy £i< —1andchoosev;,v; e R fori < i, —1sothatv,=v;
for i<i,—j —1. Finally, let x;=(q;,v,), i=—1,—=2,....
It follows from the construction that
(xio—j—s+29 e xio-j’ .)7)= (xéo-j’—s+2’ e xl{o“j” .}7)
and for i<0
s—1
(xi:""xi+s—-1ai)’ (X{,...,X,{+s_1,_)_/’_)€lq M(l)‘

Using Propositions 2.6 and 2.2, we obtain (2.14). [
The result of Theorem 2 is now obtained by applying (2.6) and Propositions 2.6
and 2.7.

3. The One-Dimensional Case

In this section we will prove Theorem 1(1) for the special case where v=1. In
addition we will prove a slightly modified version of Theorem2 using
Propositions 1.1-1.3 and Corollary1.4 (which we have proved for arbitrary
dimension). We use the notation introduced in Sect.1 noting that vectors and
matrices are scalars when v=1. In this special case G(q,9)=U"(lqg—¢q']).

3.1. We first prove assertion (1) of Theorem 1. Consider the set
‘J(i)z{(xla --')xsa,}j)Eﬂ: U,,(‘Qi'—%+1‘)='=0}; l=1a "‘95_15

and the function

s—2 -1
A(l)(xl,...,xs,f)[n U,/(lqi_qi+1‘):l >
i=1
s—2 -
AXyy .oy Xy P) = (X1,...,xs,f)efﬂ‘s"”m‘qfﬂ‘”, s23,

ANV (xq, x5, 7), (xl,x27)7)€fd(l), s=2. (3.1)

s=2
Proposition 3.1. Assume that (x,,...,x, 7)€ FA INIAL N[ S D
i=1

when s=3, and that (x;,x,,7)e IV when s=2. Let x,€Bj xR,
U"(1g0—q11) # 0. Then

AXgy ooy X1, ) =A(X15 ..., X5, V).
Proof. We apply Corollary 1.4 and use the definition of 4. [
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s—1 s—2
Proposition 3.2. Assume that (xy, ..., X5, D)y (X1, ..., x5, 7)e ) LV ) £4O
i=1 i=1

when s = 3, and that (x,, X5, ), (x|, x5, 7)€ £V when s = 2, where j = ' and the
points q;, qi, 1 i< s, all lie on the same side of §(y). Then

Ay, o, X ) =AY, ..., x5 7). 3.2)

Proof. Using the properties of U choose positive real numbers r, ' and positive
integers j, j' such that

r>max(dy,d;[2,dy — |q, — q,1), ' >max(dy,d;/2,d, —|q; — q51),
U@U" ) £0+U'F)U"(r"),
g, +Jrsign(g, —q,) =gy +Jj'r'sign(q; — g3).

Let

g;=9q,+(—i+1)rsign(g, —9,),
,_{q;+(—i+1)sign(q1—q;), —-j+12i=0,

= Givj—jp I=—J,

xi=(qv), xi=(q,v), i=0,-1,...,

(see Fig. 6), where v, vje R' are chosen so that vj =, ; _; for i <",
r
9s
C N 1 i } KJ\51 N L )
x ¥ T T —T T 7 T T T

Qi
i

\’/{ gs Conv (G (7))

Fig.6 '

From the construction it follows that the pairs (x;, ..., X;15-1, J), X;—; and
(x{, ..., Xl+s-1, ), Xi_, both satisfy the conditions of Proposition 3.2. Moreover,
(¥ojostzr s Xojrts ) =Xy oo, X i g, 9).

We now obtain (3.2) from Proposition 3.1. [J
To lighten the notation we shall often write A (y) for 4 (x,, ..., x,, ¥) when

s=1 s—2 .
either s =3, (x;,..., X, e [) FALIN ) S, or s=2, (x;,%,, ) IAD.
i=1 i=1
s—1
Proposition 3.3. The function A vanishes on [\ IV (see Sect.2).
i=1

Proof. Let us first assume that s = 2. Using Propositions 1.1, 3.2, and formula (3.1)
we apply the operator d, to (0.2) two times. We then get

24U (191 =420 = 0, U(lg1 = 421) 031 /1 (x1, ) =0, (x1, x5, 9)e S D (3.3)

Using Propositions 1.1, 1.3, 3.2, and formula (3.1), we apply d,, to (0.2) two times
and get

=24 U"(19:~ 92D =0, U(19: = 421) 033./1 (x2, ) =0, (x1,%,, )€ SA4D. (3.4)
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Combining (3.3) and (3.4) we have
0, U(lay = 0:1) 103/, G0 ) = 033 /1 (0 D=0, (xy. 53, 7) € I,
or
05 i, 1) =003 f1(x2,7),  (xp, x5, 7)€ I (3.5)

Using a simpler version of the method of proof used for Proposition 3.2, one can
deduce from (3.5) that 0; f1 (x, 7) =03, f1(x1, 7)) when p'=j and (xy, ),
(x1,7Vel) $B(m—1,m—1,k;,1) (see Sect.0) and when both g¢,, ¢, lie on the

ky
same side of (7). This fact along with (3.3) imply
U"(r)/U'(r) = const

on {r>d,:U'(r)+ 0}, when 4 (x,, x,, y) # 0 for some (x,, x,, y) € £/ V. But this
contradicts conditions (/7)—(/3) on U, and we must conclude that

A(xl’XZ:);)zo: (x1,x2,}7)€f437(1).

So the proposition holds when s=2.

We now consider s = 3. Let ie{1, ..., s} be fixed. Apply 9, , 0,, 9, to (0.2)
successively and subtract from this equality that obtained by applying d,, 0,,, 9, to
(0.2). Using (3.1) and Propositions 1.1, 1.3, 3.2 this expression simplifies to

s—1
24(y) aq,-l: ﬂ U”(IQj_qj+1|)]+631,v,-,vs_1fs—1(‘x17 s X 5, ) U (1g5- 1 — 451)

j=1

s—1 . .
~U"(1g:=921) 05, 0. fom1 (XKoo, X ) =0, (x4, ..., xs,)?)eﬂl IAD (3.6,1)
i=

[if i =1 or s, one of the two last terms on the left side of (3.6,1) must be dropped]. By
(3.6,5) we have

s—1
st fom1 (X2, oo, X0 9) =24() 5%[[_12 U"(14: = Qi1 I):|~ (3.7

s—1 . .
For each configuration (x, ..., x,, 7)€ [ | £ thereisan x,e R' x R* for which
i=1

s—1
(Xgs - v vy Xs—1, V) EIAN iD1 /D Therefore we can replace each x; in (3.7) by

Xj_1, 25j =, and obtain

s—2
ai,,uf_,fs—l(xb e Xe_ 1, P)=2A4(D) 8q,_1 l: n U'(lg;— Qi+1|):l~
i=1
By substituting this into (3.6,s—1) we get

U”(lql - ‘]2[) Qz,vsq,vs s—1 (x2> sy X .17)

s—2
=24(p) {2 U"(145-1— 45D 9, [Ul U"(19i= Gi+1 I)]

+ [Ijl U"(19: = gi+1 I)] 04, U"(195-1— qsl)}~ (3.8
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When s = 4 we can divide (3.8) by U”(|¢; — q,|) and obtain

3 —
a VU1, 05 J5— 1 (x25 ) xs5 y)

s—2
=24(y) {2U”(lqs—1 -4 o, [l;[z U"(lg:— qml)]

s—2
+ [Dz U"(lg;— qu} 0,_, U”(Iqs-i—qsl)}' (3.9

Replacing x; by x;_;, 2<j<s, in (3.9) we obtain a formula for 63 , , .

Substituting this into (3.6,5-2) and repeatedly applying this procedure we get

3 —
a 03,0,0, /s~ 1 (x29 et xs’ y)

=24(y) {(S—j+1) U"(1g;=gj+11) 5q,.[ [1 U”(qu~£11+1\)]

25I<s—1,
I+j

+<s—1)[ [1 U"(qu—%ﬂ|)]5q,U"(|qj"Ij+1|)}’3§f§s_1’ (3.10)

25lss—-1,
I+j

which can be checked by induction going from j to j— 1, using (3.6,j—1) and
replacing x,, ..., x, with x,, ... x,_ [notice that as j =5 — 1, (3.10) coincides with
(3.9)]. This same substitution in (3.10) implies that

ai,,u;,vs_,fs—l(xla ] xs—l’.]})

=24(y) {(S~2) U”(qu—qsl)ﬁqz[ [1 U”(Iql—qu,-l)]

15lss-2,
1+2
+(S"3)|: 1—[ U”('%_Qtﬂ|):Iaqu"(|‘]2_q3|)}s sz4. (3.11)
15125-2,
[+2

For s =4 we can substitute (3.11) into (3.6,2) and obtain
U”(lql - qzl) ai%,u,fs—- 1 (x25 cees Xgo J—j)

=24()) {(S—i) U"(léIz—qsl)f?q,[ I1 U”(]‘_h_%+1l)]

1<i<s—1,
12
+6-2) I U'(la—9+11)0,U"(lg,— ‘13')}~ (3.12)
1<I<s—1,
I+2

Notice that (3.12) also holds for s = 3 since in this case (3.12) coincides with (3.8).
We now consider equality (3.6,1). Using the conditions on (x, ..., X,, ) and
the fact that s = 3, we can divide (3.6,1) by U"(|¢,— 1 —¢4,|) and get

s—2
24(5) aql[n U"(iq,-—qﬁll)}6iz,us_xfs_1(x1, X D) =00 (313)
j=1
Now suppose that
s—1
(x19-~'sxs9.)7)e ﬂ JJU), dISt(QS:q—(J}))>3d1 (314)
j=1
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[The validity of the last condition follows by shifting g;, 1 < i < s, by some vector.
This does not alter 4 (x,, ..., x,, 7).] Then there will be a point, x,, ,eR! x R,

s—1 .
such that (x,, ..., X4 1, 7)€ () ALY, We can then replace each x; in (3.13) by
X;+1, 1Si<s—1. Hence 771!

s—1

2A4(p) 642 I:l—IZ U”(lqj’“qj'+1|)] + asvg,v,fs—l(xb co X 1) =0, (3.15)
j=
From (3.15), (3.12) it follows that if (3.14) holds, then
2461 [T U"(g;— ¢+ DU (11— 42 8, U" (19— 43

25jSs-1,
Jj*2

+U"(14:= 43 9,,U" (19, — 4. )]=0.

Dividing by the non-zero factors we get

24U (191 = DU (192 = 4D + U (19, — ¢.D U" (142 — 95D =0.  (3.16)

Suppose (x4, ..., x,, y) satisfies (3.14) and is such that 4 (7)) = A (X, ..., X, )
*0.If
r>lg,—q:l, U @OU()*0, (3.17)

then the configuration ((¢1, v,), X5, . .., X5, ), Where ¢; = q, + rsign(q, — ¢,), also
satisfies (3.14) and the pair of configurations (x4, ..., X;, 7), (q1,01), X2, - - - » X5, J)
satisfy the conditions of Proposition 3.2. Due to this Proposition and the above
hypothesis, 4 ((g1,v,), X5, - - ., X,, ¥) £ 0. From (3.16) it follows that if conditions
(3.17) are satisfied, then

U" ) (U"() ' +c=0,
where ¢c=U"(|g;—¢,1)(U" (13— ¢,1))~'. Thus for r>|q, — q,| we have
[U"(F) +cU" () U"(r) U'(r) =0, (3.18)

which contradicts conditions (I;)~(I3) on U. To show this let us divide the open set
O={r:r>lq,~—ql, U'(r)+ 0} into disjoint intervals. Let (o, f) be one of these
intervals. It then follows from (3.18) that (U”+ cU")U"=0 on (x,f) whose
general solution is U(r)=c,exp(—cr)+c,r+c5. If a>1q,—q,|, then U'(x)
=U'(B)=0. Since the derivative U’(r) = — cc, exp(—cr) + ¢, is monotone on
(o, B), U'(r) =0, re(a, B). But this contradicts the definition of (o, ). Hence o« = | ¢,
—¢q,|,1.e. O consists of a single interval. From (I{)—(Z}) it follows that f = d . Thus
U (r) has the above form for each r(|q, — ¢, |, d;). But this contradicts (I{)—~(I3) as
claimed.

We now see that A(x,, ..., x,, y) =0 for each (x,, ..., X, y) satisfying (3.14).
s—1 .
By Proposition 3.2 we can extend this equality to all (x,,...,x, e () £ZP. [
j=1

s—1 .
Corollary 3.4. Suppose that (x,, ..., x,, y)€ (| FLYV. Then
j=1

AV (xy, ..., x, 7)=0.
Proof. Use (3.1) and Proposition 3.3, [
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s—1
Proposition 3.5. Suppose that (x,, ..., x,, )€ ﬂ I, Then

i=1
AV (x,, ..., x,, 7)=0.

The proof follows the line of that of Proposition 1.9, but we use Corollary 3.4
rather than Proposition 1.8. We shall not go into details. [

s—1
Proposition 3.6. Suppose that (x,, ..., x,, 7)€ (| S, Then

ji=1
A9 (x4, ..., x,,7)=0.

The proof is obtained in two steps. We first obtain the 1-dimensional version of
Proposition 1.10 and then of Proposition 1.11 using arguments identical to those
used in the proofs of these propositions. [

For the v=1 case assertion (1) of Theorem 1 is an immediate consequence of
Propositions 3.5, 3.6, and 1.1 [see formulas (1.2a, b)].

3.2. We now proceed to Theorem 2. Recall the function b in the statement of this
theorem. For the v =1 case b satisfies the following condition: if (x,, ..., X,_1, J),
(X4, ..., X1, 7)€ S, ' =y and the points g;, g/, i=1, ..., s— 1, all lie on the
same side of (), then b(x(, ..., x,_, ) =b(x},...,xi_,¥).

In order to prove this modified version of Theorem 2 we use the v = 1 version of
Theorem 1(1) and then literally repeat the arguments used in Sect. 2 which lead to
the proof of Proposition2.2. Since, when v=1, B(x,, ..., X,_, y) is a scalar, all
that remains is to prove the following 1-dimensional version of Proposition2.7.

Proposition 3.7. Assume that (x, ..., X,_1, ), X\, ..., x._, y)e I,y =) and
assume that the points q;, qi, i=1,...,s—1, all lie on the same side of q(7). Then
(2.14) holds.

Proof. The construction used below is a simplified version of that used in the proof
of Proposition 2.7. Taking §e R* sufficiently far from 4 (7) and lying on the same
side of ¢(y)as ¢;,q/,i=1,...,5s—1, we can choose r, ' > 0 such that (2.15) holds
when ¢ =r, ¥’ and such that

lgy —gl=jr, lg1—ql=jr
where j, j' are positive integers.

Let . _
g=q,—(@—1)rsign(g, —q,), i=0,-1,...,

q{z{q’l—(i-—l)r’sign(q’l—q’z), i=0,..., —j +1,
! —(i+j —Vrsign(q,—q,), i=—j,—j—1,...,
x'=(qiavi)7 X{=(qlf,l]-,), l=05 —1, LR

where v;, v;e R' are chosen so that v;=v],,_;, as i< —j+ 1 (see Fig. 7).

i+tj—j’

- /
% G-ja® Q—j’ﬂ
¥

Fig.7 Conc (¢ 7

<
N
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Due to the construction
(Fojostzs s Xojr )= jgr3s o X i1, D),
s—1
_ - il .
(xia""xi+s—1’y)’ (xz{""’x1{+s-—1sy)em fﬂ(), léo
1=1

Applying Proposition 2.2, we get (2.14). [J

4. Further Study of the Middle Function (An Application
of the Middle and Lower Equations)

In preceding sections we obtained essential information about the function f;_ ;. In
this section we continue this investigation. Here we deal with arbitrary v = 1. We
emphasize that Theorem 1 and a slightly modified version of Theorem 2 hold for
the case v=1 (see Sect. 3). Our aim is to prove the following theorem.

Theorem 3. The equality

0% o Soo1 gy Xg—1, ) =0

holds on S, (see Sect.2).
In view of Theorem 2 it suffices to show that

B(X1se s X 1,7)=0,  (X1,..., X1, V) €IL,. 4.1)
We introduce the following notation: ,
C(Xgy. s X1, P)=b(xy,. ..,xs_l,)?):]]l G (g}, 9j+1)»
(Xgsenoy X1, P)ESIA,, 523, (4.22)
Cix,, N=b(x, NE, (x1,y)eSL, s=2. (4.2b)
Proposition 4.1. The following equality holds
Jom1(t1s ey X1, ) =CC (X, vy Xg_ 1, P) Ug—1,01) (4.3a)

+by(Xts ey X1, D) F b Xy, X1, ), (X, '--axs—pf)Ef&_[b s=3,
J1(xeq, ) =(1/2) CLx1, ) 01,010 +<by (x4, 9), 000 + by (x4, 3),
(x,,))etsd,, s=2, (4.3b)
where the functions by, b,_, and b, are such that
0y b1 (X1s s X_1,9) =0y by (X1, .., X1, ¥)=0, 523, (44a)
0y, b (x,)=0, 0,b,(x;,9)=0, s=2. (4.4b)

This Proposition immediately follows from Theorem 2.
s—1

Proposition 4.2. Let (x,,...,x, 7)€ () FLY. Then
j=1

aq,fs(xl’ ] XS, .}7)= C(xla R xs—la J7) aqs_l U('qs—l_qua (45)
aqsfs(xl’ cees Xgy J;)z C(xb s Xy J;)* aq2 U(‘ql _‘I2|)~ (46)
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Proof. Wefirstapply 0, to Eq.(0.2). Using Theorems 1 and 2, we then obtain (4.5).
The other equality can be proved similarly. [

Proposition 4.3. Let s=2. Then (4.1) holds.

Proof. First let v, =0 in (4.3b). Then from condition (4) of the Basic Lemma it
follows that
llilm by (x4,y)=0. 4.7
4y 0
We now make a double application of d, to Eq. (0.3) for the case s = 2. Taking into
account (4.2b), (4.3b), (4.4b), and the properties of b [see Theorem 2(b)], we obtain
an equality which shows that b, (x,, ») is linear in ¢, i.e.

b, (x1, ) =By (X1, 7) gy + by (x1,7),  (x1, 7)€ I, (4.8)
where

6q1B(x1a.)7)=av,Bl(xl’J;):(), aqlb:).(xl’);):avle(x17J7)=0' (49)

With the facts proved above and condition (4) of the Basic Lemma we successively
deduce from (4.3b) that B, (x,, 7)) =0, (1/2)<C(x,, 7)) vy, v,y +<b,(x;, 7),v,> =0,
and, finally, that b (x,,y)=0. [

So we have shown that when s =2 Theorem 3 is true.

In the remaining part of this section we will assume that s = 3. The values of our
functions will be 3-tensors. We will denote such tensors by bold Roman capital
letters: A, B, etc. The components of such a 3-tensor A will be written as Afvizk,
150,632,

Given a tensor A, let Af ,, A ;, A} ; denote the tensors Ahvinis= (A¥ ,)ivh
= (A% j)phi= (A’z",3)"1v"3’fz. We say that A is symmetric if A¥;=A, 1Si<j=<3.

Ifa=(a',...,a")eR"isavectorlet A1-1a, A2-1a, A3-1a denote the matrices
(Al 1 a)’1 sl = Z At ’ng (AZ 1 )11 i = Z Ak lzaj (A3 1 )'1 = z Alvis igd.
] 1 J =1

Finally, given a matrix 4 with entrles A" 10 jE, let A1 14, A1-24,
A2-14, ... denote the tensors

v
(Al'lA)ihiZ’isz Z Al Af,ia, (Al‘ZA)ilai23i3
ji=1
v v
= Z Adiviz 41 (A2:1 A)iinis = Z Andi Aibs
j=1 j=1
Similarly one defines the tensors A1-1A, A2°1A, A1-24A,....*
We will adopt the common notation a®a®a, a® 4 and 4 ®a for tensor
products of vectors and matrices.
Given a matrix-valued C'-function 4 of ¢,...,qy, vy,...,y€R", its
derivative 0, 4 (respectively d, A) will be a 3-tensor with

o . . A o
(0, A)rini= ét—]gA'zJa [respectlvely, (0, Azt = or A'v’s] .

4 These binary operations can be described using multiplication and contraction of tensors if we
consider vectors and matrices as 1-tensors and 2-tensors respectively
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From this it follows that for any scalar C3-function fof q,, ..., gy, vy, ..., Uy€R’
the tensors 23 , £, 8> ., f.... have the form

9a 45, 9y Gas 9p> Uy
53
@, qf)il,iz,u:__f*
> 9p> i i i
i aq;s aql;z aq;x

(one should have in mind the definition of the second derivative).
For g, '€ R” with |q — q'| > d, we set

F(qa q’) = aj;,,q,q’ U(|q - ‘IID
Obviously F (g, ¢') is a symmetric tensor and moreover F(¢',q) = F(q, ¢).

3f

03 iy =~
) qa,qﬂ,vyf) aq;‘a aqéz 61).1;,‘ >

s=1
Proposition 4.4. Let (x,,...,x,, y)e [ £AYD. Then
ji=1

azvl,qs_,bl(xla . ">xs-—1’ )7)- [G(qs—l’qs)]_l [azvz,qxbl(xZ? RS} xs’-);)] G(qbql)
+2 Z [(an(xl,..,,xs_l,f))’l“,3]3'1v

(g,v)€X V... UX,_,UJ
+3[0, C(xy,..., %1, M]3 1o,y
+{[G(qs—laqs)]_12'1[F(qs—l’qs)z‘zC(xla"'sxs—la.};)];,?’}3'11)3—1
*
-2 |:(5UC(X1,-..,xs-1,J7))“ ) aqU(lq—q/l):l =0. (4.10)
(g, v)€y q:q*qey

Proof. Substituting (4.3a), (4.5) and (4.6) into (0.2) and using (4.4a), we obtain an
equality in which the variables v,, v, do not appear. We then successively apply d,,

s—1
and 9, to this equality. For (x, ..., x,, 7)€ () £ZV we get
j=1

Z [G(qs—l’qs)2.3aqc(xla'-wxs-la)j)]?'.lv

(g, V)EXU... UX—  UY
+ [F(qs‘l’qs) 22 C(xla R ﬁ)]f,?: 31 Us—q
- (azuz,q!bl (XZ, ey xs—ls xs’f)) G(ql,qz) - G(qs_l’qS)aqu,Ux-lbs—l(x1> ceey xs_l’);)
*
- Z G(qs—1>qs)|:avc(‘xl’"'9xs—1=)7)1.1 Z aqU(lq—qlD:I =0 (411)
@v)er fatge

By substituting (4.3a) into (0.3) and successively applying 0, and 0, , we get

(aq1C*(x1a'-'axs—lay))f,23llvl+ z (6qC(x1,...,xs_l,)?))’{‘y33'lu

(g, 0)€X; V... UXs- UY

+(aq"‘C(x1’ et xs—la )7)) 31 Us—l

+62vl,q,_,b1(x1>"'sxs-—l’);)"i_a?;;,,v,_lbs—l(xl,~-~9xs—1>)7)
*
-2 [@C(xl,---,xs—l,y‘)"l > 6qU(|q—q’l)] =0. (4.12)
(gv)ey q:q¥qey

We multiply (4.11) on the left with (G (¢,_1,9,)) "' and add the resulting expression
to (4.12). This gives (4.10). O
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Assuming that (x,, ..., X,_;, ¥) € £/, we introduce the following notation:
Ci(xy, oo X, ) =03 4 by (Xgs oo X1, D), (4.13)
Ty (X150 Xm 1, 9) = 2(0, C(xy, ., X 1, DT 35 (BV)EX UL UX,—,UY,  (4.14)
Ty o X1 X ) =30, C(Xy,..., X1, )

+ [G(qs—I:Qs)]—lz‘l [F(qs—laqs)z.z C(xb "'9xs—1a.)7)]>;,3 (415)
Y(x,...,%_1,7)
%k
=-2) [BUC(xl,-.-,xs_l,y‘)l’l > 5qU(lq—q’|)] (4.16)
(g,0)ey q:q*q'cy

With (4.13)-(4.16) Eq. (4.10) assumes the form
Ci(Xgs ooy X1, 9) — [G(qs-bqs)]” Ci(x3, .., X5, 9) G (91, 92)
+ Y T 15 e s Xgm s D310+ o 0y, X, P)3 10

(g, D)€X V... UX,— 2 UY

s—1
+Y(Xp, s X ) =0, (X5 ..., X, P)E() IV, (4.17)
j=1

Proposition 4.5. There exist tensor-valued functions, W, ..., W,_,, and a matrix-
valued function, Z, on S, constant in v, ..., v,_1, such that

Cl('xh'--axs—la.)-)—) (418)
s—2
= Z [G(gs-2:95-1) 2T Wilxgy oo s X, D] 310, + Z (X5 ooy X215 D).
i=1
Proof. We shall show that, forj=1, ..., s — 2, there exist tensor-\fﬂued functions,
W, ;,s —j—1=<i<s—2,and amatrix-valued function, Z;, on £.¢/,, constant in v;,
s—j—1=Zi<s—2, such that

Cy(xy,s s X1, ) (4.19)
s—2

= Z 1[G(qs—2s‘]s—1)2"Wi,j(x1>~~axs—1aJ7)]3‘1Ui+Zj(x1>-~>xs—1,J7).
1=s—J]—

For j=s5—2, (4.19) reduces to (4.18) when W, =W, (_,, Z=7Z,_,. _
We use induction on . First consider the case j=1. Let (x{, ..., X,_, y) € I,

s=1
Choose x,€B% x R* such that (xo, Xy, ..., %, )€ [ | 2. Equation (4.17)
for (xq, Xy, ..., X,—1, y) has the form =1

Cl(xO’xla "°sxs—2’.);) - [G(qs—za qs—l)]‘l Cl(xls ""xs—-lsy)G(qu ql)
+ > T (Xos s Xgm 2, D310 +Ty o gy os Xgm g, D)3 105,

(g,v)€X0 .. UX,_3UY

+ Y (X, .. Xy 2, 7) =0. (4.20)

From (4.2a), (4.4a), (4.13)-(4.15), and the properties of b (see Theorem 2) it
follows that a) there are no terms in (4.20) containing v,_,, b) there are no terms
except for the second and the fourth, containing v, _ ,, ¢) the fourth term is linear in
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v,_,. Multiplying (4.20) on the left by G(¢,_,,4,—;) and on the right by
(G(q0-q1))~ " and using (4.2a), (4.14), (4.15) we obtain (4.19) for j=1.
Notice that for s = 3, (4.19) coincides with (4.18), when W, =W, ;,, Z=Z,.So
far s =3 Proposition4.5 is true.
We now suppose (4.19) to be valid for some j, < s— 3. For (x,,...,X,_1,7) € £,
s—1
choose x,€B% x R¥ such that (xq, Xy, ..., X,— 1, J) elﬂl SV, By setting j=j,

and replacing x; by x;_,, for 1 £i<s—1, in (4.19) we obtain C,(xg, ..., Xs—2, V)
By substituting this expression into (4.20) and multiplying the result on the left and
right by G (¢,—», g, 1) and (G (qq, q,)) " * respectively we get (4.19) forj=j,+1. ]

Assuming that (x,,..., X, ﬁ)eshl J4Y, we introduce the following abbrev-
iated notation. j=1

W,=W,(x1,...,%_1,0), W =W,(x,,...,x,)), 1Zi<s—1, (4.21)

T=T, (X X s D)y T =Ty (X, 9), 1SiSs—2, (422)

Toy =Ty o y&isees X0 V), (4.23)

Giiv1=G6(4nqi+1), 1=5iss—1. (4.24)

is

s—1 .
Proposition 4.6. Let (x,, ..., x,, y)e [ L. Then
j=1

Gy -1 2tW +T;=0, 523, (4.25)
Gs—2,s—12'lwi—(wit12'1G1,2)>2k,3+Ti=0, 2Z5iSs<2, sz4, (4.26)
—(Wr,21 Gy )53+ T_ =0, s=3. 4.27)

Remark. (4.26) shows that W,© |, 2 <i<s—2, is independent of x,.

Proof. We first substitute (4.18) into (4.17) and then equate the coefficients of
Uy, ..., V¢ to zero. [

Henceforth Egs. (4.25)-(4.27) will play a principal role. By deleting W;, W,,
1 <i<s—2, from them we obtain relations among the Ty, ..., T,_;, T,* , and will
show that these relations hold only in the case where b=0.

We start with the following auxiliary assertion.

Proposition 4.7. The following equalities hold:
Gy 2T =T+ T,) 22 (G )5 s24,
(Gs——ll,s)z‘lT;=[Ti+12.2(G1—,12)]§,3> S%S, 2§I§S_3

The proof can be obtained by a straightforward computation.

s—1 .

Proposition 4.8. Let s=4 and let (x,,...,x, p)e () ILY. Assume that for
1=1

some i, 2=Zi<s—2, there are X,i{,...,X4;-1ER"XR" such that

s—1
(Xjs ooy Xjygm1, DV E [ IAY for j=2,...,i. Then
1=1

W= = (G2 [(z‘— DT+ Y Tl:'- (4.28)
1=1
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Remark. Equation (4.28) also holds for i=1, s=3, (x;,..., X, J)€ ﬂ IAO,
as immediately follows from (4.25).

The proof is obtained by induction in i using (4.26) and Proposition 4.7. We
leave out details.

Proposition 4.9. Let (x,,..., X, )€ ﬂ SFAY  and assume that there are
Xgits o> X252 ERY X R” such that (x;,..., Xj+s_1, Y€ ﬂ IAV, 2<j<s—1.
Then

T 21 Gy ,+G, 321 ()5 3=0, s5=3, (4.29a)

s—1

(=T 521Gy +Gyoy 20 Y, (T)5,=0, sz4. (429
i=1

Proof. In view of the above condition on (xy, ..., x,, y) we apply (4.28) with
i=s—2 and obtain W,_, and then W," ,. By substituting this last expression into
(4.27) and then using Proposition 4.7 we obtain (4.29a,b). [

Proposition 4.10. Assume that the assumptions of Proposition 4.9 hold. Then
b(—Gs— i,s 22 Fs—z,s-l + Fs——l,s 22 Gs—-l,s—-i) = Oa (430)

where
b=b(xy,...,%_1,7), Fiv1=F(q9+1)-

Proof. As some computations are cumbersome, we will only outline the proof.
Firstly, from (4.2a), (4.14), (4.15), (4.22), and (4.23) we obtain T," ,, T;,, 1 <i<s
— 1, and then substitute those expressions into (4.29a, b). From the equality thus
obtained and by using the fact that b is locally constant (see Theorem 2) and by the
symmetry of G; ;,, and F, ;,,, find that

(2s—3)b(F,_; 22 Gi_l —Gy_y22 F_,,-122 Gs1—2)=0> (4.31)

ji—1
where Gi= I—[G”Jrl for 1<i<j<s—1, and G/=E for 1<i=j<s—1.

Denoting the left side of (4.31) by W we rewrite (4.31) in the form W 3-1 (G§~2)~!
=0 which can be reduced to (4.30). [J

We will need the following explicit formula for the matrix 6%: U(|¢|) and the
tensor 8% U(|q|) (v=2):

0% U(a)=vwo(ldDE+y,(Ig) (4®9), (4.32)
02 U(g)=vy1(lqD[®E+E®q+(EQq) ]
+¥3(lgD (@®q®9). (4.33)

where

Yo =r'U'M), vy O=y,()=r2U"(")-r>U®),
Ya(r)=r=3[PPU" (1) = 3rU" () +3U" (). (4.34)

From now on the cases v=2 and v=1 will be considered separately.
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Proposition 4.11. Let v =2 and the conditions of Proposition 4.9 hold. Then

b(xl9---sxs—l’jj) W3(|qs—1—qs|)=0' (435)
Proof.”> We first remark that if (x;,...,Xx,, ») satisfies the conditions of
Proposition 4.9, then so does every configuration (x,, ..., X,_, (¢,0), ) such that

q— g, is within a sufficiently small neighbourhood @ of g,—¢q,_,. Fixing
Xi,...,Xs—1,and y we consider the left side of (4.30) to be a tensor-valued function
on g €. We denote this function by V. Due to (4.30), (4.32), and (4.33), an arbitrary
component of V(g) has the form

3
V(g)wih= b.zzo AWDEAGE (4.36)

where P, 0 =i < 3, is a homogeneous polynomial of degree i in the components of
the vector g=(q', ..., q"). Specifically,

Py(q)=— Zl g q=q' Gely sy (4.37)

We now show that Pj is not constant on the sphere S ={geR": |q| = |q,— g, |}-
Suppose that P;(g) = const = ¢, g €S. Since P; is a homogeneous polynomial of an
odd degree it follows that ¢ = 0 and hence P, (q) =0, g€ R". Equality (4.37) implies
that the matrix G,_, ;_; maps the open set {geR”:¢" ¢+ 0} in the subspace
{geR”:q">=0}. But this contradicts the non-degeneracy of G,_, ;_;.

Choose a neighbourhood I' of ¢, — ¢, _; on S and a neighbourhood 4 of 1 on R?
so that Age@ for any geI', A€ A. Then by virtue of (4.30), (4.36) forgel', Le A we
have

blyo(20) Po(q) + 2wy (A0) Py (9) + A2y, (20) P2 (9) + 22 Y5 (Ae) P5(9)] =0,  (4.38)

where ¢ =|g,—¢,_,|. For fixed A the left side of (4.38) is a polynomial in the
components of ge R”. Since this polynomial vanishes on I'=.S it vanishes on S.

Now suppose that by, (¢) # 0. Since /5 is continuous [see Condition (I7)], there
is a neighbourhood, A, = A4, such that

bys(lo) =0, Aed,. (4.39)

Since P; is not constant on S (see above), there is a point ¢g*€.S and a non-empty
open subset IT of S such that P;(g*) % P;(g) for gell. From (4.38) we get

b Ay, (AQ) [Py (q) — Py (g®)]+ b 27y, (A0) [P2(q) — P2 (q%)]
+b2%y3(10) [P5(g) — P3(g)]1=0. (4.40)
By (4.39) the last term on the left side of (4.40) differs from zero when 1e A, and
qell. Since ¥, = y,, it follows from (4.40) that y, (1¢) =, (1¢) # 0 when 1€ A, .
So the functions ¥, and ¥,, where ¥;: 1~ A'y;(A0), 1 £i<3, AeA,, are linearly

independent. But (4.40) shows that ¥, , ¥,, and ¥, arelinearly dependent. Thus for
g eIl the 3-dimensional vector (P, (q) — P, (¢*), P,(q) — P, (¢*), P3(q) — P3(q%)) is

5 The idea of the proof was suggested to us by Yu. S. I'iaSenko
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proportional to a vector (c,, ¢,, c;) independent of g and such that (c¢? + ¢3) c3 %0
[see (4.40) and the definition of IT]. For every gelIl we have

¢2 [P3(9) — P3(g")] = ¢3 [P2(q) — P2 (¢™)], (4.412)
¢y [P3(9) — P3(g™)]=c3 [Pi(9) — Pr(g)] (4.41b)

Since these equalities hold on a non-empty open subset of S, they hold on S. Replace
gin (4.41a) by — g and subtract the resulting equality from (4.412). Since P, and P,
are homogeneous, we find that ¢, P;(q) =0, g€S, and hence that ¢,=0, ¢, 0.
Similarly, using (4.41b) we deduce that P;(q) = c; * ¢; P (q), g€S, i.e.

Py(g)=ci' 0 %cslq1* Pi(q), qES.

Both the left and right hand sides of this equality are homogeneous polynomials

of degree 3 in ¢, ..., ¢". Since their restrictions to S coincide, they are identical,
that is )
Py(g)=constP;(9) 3. (4)* qeR". (4.42)
i=1

By the non-degeneracy of G,_, ,_, (4.42) contradicts (4.37) and hence by 5 (0) =0
as desired. [

Proposition 4.12. Let v =2 and the conditions of Proposition 4.9 hold. Then
b(xy, ..o X1, D) Wi (lge-1—4s)=0. (4.43)
Proof. Let®,V,S, T, A, g be as in the proof of the previous proposition. By (4.30),
(4.32), and (4.33) the polynomial P, appearing in (4.36) has the form
P (p)=—q" G?’—iJZ,s-1 -q" Gi“—iaz,s— 1= 90,4 Z A CHEPR (4.44)
i=1

0, ,;, being the Kroneker symbol. If i; = i,, P, cannot be constant on S. This follows
by an argument identical to that used in the case of Py (see the proof of
Proposition 4.11).

By Proposition 4.11, when AeA, gel’, equality (4.38) assumes the form

blyo(20) Po(q) + 2y1 (AQ) Py (9) + A2y, (A0) P (9)] = 0. (4.45)

As in the above we can be assured that (4.45) holds for g € S. Assuming (4.43) false,
choose a neighbourhood A, < A such that

by, (o) +0, Aed,. (4.46)

Let i, = i,. Since in this case P; (q) + const, g€, there exist ¢g*, ¢** €S such that
P, (q*) % P, (q**). From (4.45) we get

by (2Q) [P (") = Pi(gM)] + b A2y, (AQ) [P, (¢*%) — P, (qM)] =0, AeA. (4.47)

By (4.46) and the identity y,=w,, the functions ¥, and ¥, are linearly
independent on A,. Then from (4.47) it follows that P, (¢**)= P, (¢*) which
contradicts the choice of ¢g* and ¢**. []
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Proposition 4.13. There is a point r, arbitrarily close to d,, such that
wvi(U (U (r)*0.

Proof. Assuming the proposition to be false, choose a point d, e(d,, d,) such that
v, (NU'(rU"(r) =0 for all re(d,, d,), that is (see (4.34)), U" (r) [(U' (n)*/r*]' = 0.
It is easy to see that the identity U"(r)=0, re(d,,d,), contradicts conditions
(I7)~(I3) on U. So the set (d,,dy)N{r:U"(r) + 0} is non-empty and open. Let
(o, ) be an interval being a connected component of this set. The equation
[(U'(r)*/r*]’=0 has the general solution U(r)=cy,r*+c, on (x,f). By the
definition of (&, f), U"(B) = 2¢,=0. Whence ¢, =0 and U"(r) = 0 for re(x, ). But
this contradicts the definition of (o, ). [J

Proposition 4.14. Let v=1 and let (x,, ..., X,_,, ) € $4,. Then (4.1) holds.

Proof. We first consider the case v=2. Proposition4.12 then implies that if
(xXi,...,xi 1, 7)eS4, and there is a point x.eR'xR' such that
(x1, ..., xi_1, x5, p') satisfies the conditions of Proposition 4.12 and moreover if
vi(qgi_1—q.D#*0, then b(x},...,x._;,y)=0. But given a configuration
(X415 ..., Xs_1, y)€ I, Proposition 4.13 assures us that there is another con-
figuration (xi, ..., x,_;, ¥") with y'=j and with the properties just mentioned.
Since b is constant when y is fixed (see Theorem 2), we have b(x,, ..., x,_;,»)=0.
We now deal with v=1. In this case equation (4.30) assumes the form

b(xl’"'axs—-17)7)W(lqs—l_qsl)zoa (448)
where

Yy () =U"()=[U"(1g5-2 = 4= 1 DIU" (14— 2 = ¢, DIU" (1)

(X¢>...,X,_1, and y are assumed to be fixed).

From (4.48) it follows that if (x},...,x._,, 7)€ #,, if there is a point
x.e R* x R* such that (x}, ..., x_,, x., J') satisfies the conditions of Proposition
4.9 and moreover if ¥ (|q._; —q.|) €0, then b(x}, ..., x;-1,7)=0.

In the proof of Proposition3.3 it was shown that given ceR' and a
neighbourhood ¢ of d,, there is a point re@ for which

[U"(r)y+cU" U () U'(r)*0.

Keeping this in mind, for every (x,,...,X,_;, )€, it is easy to find a
configuration (xi,...,x._;, ') with y’=) which satisfies the conditions just
mentioned. Since b(x,,..., x,_,,») is independent of x,,...,x,_,, we have

b(xyy..., X_,y)=0. [J
This finishes the proof of Theorem 3.

5. Completion of the Proof of the Basic Lemma

We let o/, denote configurations (xi,...,x,_,N)elJBn—1,m—1,k;,s—1)
ky
satisfying the following condition: there is a point, xeR”x R", such that

s—1
(Xiroer Xs_1, X% ) E [} AP (see Sect. 1).
i=1
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Proposition 5.1. Let (xy, ..., X,_, y)€ S, Then
621)1,vs_1f:s—1(x1>"'sxs—b.};):()' (51)

Proof. We shall consider only the case s=3, because when s=2, c.,
and hence our proposition follows from Theorem3. It is easy to find x;
=(¢;,v)eR" X R", —s+3=i=<0, such that (x_,3,..., Xy, )€ £, and such

s—1
that (x;, ..., X;15_1, )€ [) ILD for i=0, ..., —s+ 3. By Theorem 3
j

=1
azv_ﬁ,,vlf;—l(x—s-f?}: sy xla .)7):0

By Proposition2.1 and the non-degeneracy of the matrix G(g;,g;+1),
—5s+3<i<0, we obtain (5.1). [J

s—1
Corollary 5.2. Let (xy,...,%,_1, 7)€ () I4Y. Then
i=1

O fi(Xy, o0, X, )=0. (5.2)
One can get (5.2) by first applying d, to (0.2) and then using Proposition 5.1.
Proposition 5.3. Let (x, ..., X, y)€ I (see Sect.0). Then
(@) fU'(lg:—q21) =0, then
Og fi(xy, .., X, 7)=0; (5.3)
(b) if U'(1gs— 1 — qs)) =0, then (5.2) holds.
Proof. (a) In this case Eq.(0.5) has the form
U195 = s 1 D195 = Goss ] 770, £ (xgs oo X ) 5= Gos ) =0, gy41€BY.

Dividing by the non-zero factors and using the fact that BY is a non-empty open

set we get
avsf‘s(xl’ cey xss J;):O

Using this equality, an application of 0, to (0.2) gives (5.3).
Assertion (b) can be proved similarly [use (0.5) instead of (0.4)]. [

Proposition 5.4. Let (xy, ..., x,, y)e I and let U'(|g,_, — ¢,|) =0. Then

Soxqs oo, %, ) =0. (5.4)
Proof. Set

ql(t)=q1+tl’ tgo’

where a) if v =2, 1 is the unit exterior normal vector of an arbitrary supporting
hyperplane of Conv (§(x;uU... ux,Uy)) passing through ¢;; b) if v=1, 1=/
=sign (g, —g,). Let T be such that |g, (t) — g,| = d, . If s = 3, then the configuration
(g (®),v1), X2, ..., X, ) for t€][0, 1) satisfies the assumptions of Proposition 5.3
(b) which in turn implies that

aqfs((q’vl)a x2,...,XS,)7)]q=ql(,)=0, O§Z<T- (55)
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If s =2, then the above mentioned configurations satisfy either the assumptions of
Proposition 5.3(b) or those of Proposition 5.2. In both cases (5.5) holds. From (5.5)
and the identity f, = 0 on 2.(n, m, k, 5) (see the statement of the Basic Lemma) we
obtain (5.4). [

We will treat the cases v =2 and v =1 separately and will start with the first.
Here we need two easy geometric results whose proof we leave to the reader.

Lemma 5.5 Let Kc R*, v=2, be convex and let p, % p, lie on its boundary. For i
=1,2 let L; be a supporting hyperplane of K passing through p; and let I, be the
exterior (with respect to K) normal of L; passing through p;. Then for y, €l,, y,€l,,
and ye K we have

(1) dlSt(yny)ngSt(pny)’ l=152)
(2) dist(py, p,) = dist(yy, ya).
Lemma 5.6. Let K beasin Lemma 5.5 andletp,, p,e R"\ K, p, * p,. Then at least
one of the points p,p, is an extreme point of Conv (Kup; Up,).
s—1
Proposition 5.7. Let v=2 and let (x, ..., X, P)e (| SV N, (see Sect.1).
Then (5.4) holds. =1

Proof. Let K=Conv (§(x; U...ux,uJ)). Fori=1,2let g; be the p, appearing in
Lemma 5.5 and let /; be the corresponding exterior normal. Let I, be the vector
corresponding to /; and set

ql(t)=q1+tlla qs(t)=qs+tl2a 120
92 94

Fs-1 b
g, (7y)

Fig. 8

Let t,, 7, be such that
lg:(t1) — ¢21 = 1q,(t)) — 45— 1| = d,
(see Fig.8). If
i =min {>0:U'(|q, () — q,) =0}, (5.6)



Stationary Solutions of the Bogoliubov Hierarchy Equations. 4 373

s—1

then 0 <t} <1y, and (g, (1), v,), X5, ..., X,, 7)€ [} F/D when 0 £ t < 7}, and for
i=1

such ¢ and, moreover, for ¢t =1} (by Corollary 5.2 and the continuity of f)

fs(xl’ sy X y—)=f.;((q1 (t)>vl), X5 eees Xgs .}7) (57)

If t} =14, then (¢, (z}),v1), X5, .. ., X, V) s a boundary configuration and, by
(5.7) and by the assumptions of the Basic Lemma, (5.4) holds. If 1] <7; and s =2,
then ((¢, (1), vy), X, y) satisfies the assumptions of Proposition 5.4 which together
with (5.7) imply that f; (x,, x,, ) =0. Thus for s =2 our proposition is true.

We now suppose that s = 3 and 7] < 7,. First consider the case where for every
te[0,1,), q, (1) is an external point in (g, (t1), V) UX, U. .. UX,_ 1 U(gs(2), v5) UP).
In this case Lemma 5.5 implies that ((g,(t}),01), X2, ..., Xs_1, (g5(8), vy, ¥),
te0,1,), satisfies the assumptions of Proposition 5.3(a) which in view of the
continuity of f, implies that

f:s((ql (Tll)avl)a Xy oovs Xy .)7)
=fs((q1 (T/l)avl)a X2 "'axs—b(qs(t)s l)s), )7)5 Oélé‘fs. (58)

If t =1, the right side of (5.8) vanishes. This tegether with (5.7) imply (5.4).

We now consider the case where there is a £€[0, 7,) such that ¢, (t}) is not an
external point of (g, (t}),v) Ux,U... u(g(f),v,) Uj. It is easy to see that there
exists a minimal ¢ with this property. Denote it by 7,. By Proposition 5.3(a) and the
continuity of f;,

fs((ql (Trl)a Ul)’ X2seees X J;)
zfs'((ql (Tll)svl)’ x2a "':xs—la(qs(l)’ Us),y—), O§I§Té (59)

The definition of 7, and Lemma 5.6 together imply that ¢, (z}) is an external point of

(Q1 (T/l)’vl) UxZ U... st—l U(qs(‘[;)’ Us)UJ;' Hence ((qs(T;)’ Ds), xs—la cees X,
(g, (z}),v,), y) satisfies the assumptions of Proposition 5.4, from which it follows

that
f.;((qs(‘[;)> vs)s Xsg—15 205 X2 (ql (T11)> Dl): .)7) = 0 (510)

Using (5.7), (5.9), (5.10), and the symmetry of f; (see the statement of the Basic
Lemma) we get (5.4). [

Proposition 5.8. Let vz=2, let (xy,...,x, V)€ S, and assume that the
following condition holds: there exists a supporting hyperplane, L, of
Conv (g (x; U... ux,u)) passing through q, and such that q; fori=1,...,sis an
extreme point of Conv (4 (x; U... ux,up)ul)), where lis the exterior (with respect
to Conv (G (x;uU...Ux,Uy)) normal of L, passing through q,. Then (5.4) holds.

Proof. Let ,, 0 <i<s—1, denote those configurations (x,, ..., x,, 7) satisfying
the conditions of our proposition and in addition (for 0 £ i < s — 2) the following
s—i—1

condition: [] U’(l¢;—g;+,!) # 0. We have to show that f, =0 on %,_,. For this
j=1
we shall show that f,=0 on %, 0 <i<s— 1, using induction.
s=1
Evidently, %,< () $oY N .o,,,. Therefore Proposition 5.7 implies that
i=1

f,=0on %,. Assume f,=0 on %, for some i/, 0 <i=<s—2. Since %, is open, all
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derivatives of f; vanish on %;. Keeping this in mind we apply d, to Eq. (0.2) where
we assume (x, ..., X,, ) € €,. It follows that

U/(‘ql —qZI) |q1 - q2|_1 [azvz,vs s—l(x25 e xss .)7)] (QI - qZ):()

By definition of ¥, and since i < s — 2, the scalar factor on the left side is non-zero.
Hence for all (x,, ..., x,, V) €%,

[a%z,vsj;—l(x27~-'axss ﬁ)](ql-_qZ):O (511)

As . is open, (5.11) remains true when we replace g, by an arbitrary point
sufficiently close to ¢,. Therefore for (x,,..., X, V) €%,

3 o Sfom1 (xas o X, 7)=0. (5.12)

Now let (x4, ..., X,, 7)€ %, . Using the properties of U choose a point ¢’ on /
appearing in the statement of the proposition, such that

9" —q:|>d;, U'(lg—q,1)*0, min  |g'—q|>d;.
q xq’;ql UV,
By the definition of BY (see Sect.0) and %;, we have
qgeBy, (X,X{,....,X%_1,V)EE, (5.13)

where x' = (¢',v"), v'€e R*. As BY and %, are open, there is a neighbourhood, ¢, of ¢’
such that (5.13) remains true when ¢’ is replaced by an arbitrary point g,€@ and x’
is replaced by x,=1(¢q,00), vo€R". Therefore for every x,=(qq,0q)€0 x R"
equality (0.4) holds which, by the induction assumption, assumes the form
U'(190—q11) 190 — %I_l <8v1fs(x1a cs X6 )5 40— g1 =0.

By the properties of @ it follows that

Oy Js(X15 ..., X, )= 0. (5.14)

The inclusion (xg, ..., X,_1, V)€ %, xo€@ x R”, allows us to apply (5.12) to
(Xgs -+ +» Xs_1, ¥) Which gives

O Soo1 (X Xy, P)=0. (5.15)

In view of (5.14), (5.15) an application of 9, to (0.2), where (x;, ..., X;, V) €%+,
ields _

Y 0y fo(X1s - Xy, §) =0. (5.16)

As in the proof of Proposition 5.7, let ¢, (f) =¢q, + ¢1, where 1 is the direction
vector of the normal /. Let t{ =min {t=0: U'(|¢q,(¢) — q,|) =0}. It is easy to see
that if 0=<r<7}, then ((q,(?),vy), X5, ..., %X, V)EF,4+,. By (5.16) and the
continuity of f; we have

f:s(xb"'5xs5.)7)=f:s((q1(t)>vl)sx2’~~-axsa.)7)> Oétér/l’ (517)

(we remark that t{>0 when i<s—2 and ;=20 when i=s-—2). If
lq: () —q,|=d; then ((q,(t}),vy), X3,.-., X5, ¥) is a boundary configura-
tion, and (5.4) follows from (5.17) and condition (1) of the Basic Lemma. If
lg, (t]) — g,] <dy, then (x,, ..., x,, (q;(1),v,), y) satisfies the assumptions of
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Proposition 5.4 which in view of (5.17) and the summetry of f; also implies
5.4). O

Proposition 5.9. Let v=2, let (xq,...,x,y)ESH, and assume that the
following condition holds: there exists a supporting hyperplane, L, of
Conv (g(x; U... Ux,UJ)) passing through q, and such that the straight line passing
through ¢, and orthogonal to L has no intersection with Conv (g (y)). Then (5.4)
holds.

Proof. Let 9, 0<i<s—1, be the set of configurations (x,, ..., X,, y)€ I
satisfying the following condition: there exists a supporting hyperplane, L, of
Conv (g (x; U... Ux,UY)) passing through ¢, such that ¢; forj=1,...,s—iisan
extreme point of Conv ((§(x; U... ux;Uy) ul), where /is the exterior normal of L
passing through ¢, . One can easily check that Yyc Y, =...< %,_, and that &,
9,_, coincide with the sets of configurations satisfying the assumptions of
Propositions 5.8 and 5.9 respectively.

We shall now show by induction that f,=00on Z,,0<i<s— 1. For i=0 this
follows from Proposition 5.8. Suppose now that f,=0 on %, for some i, 0 <i<s
— 2. Just as in the proof of Proposition 5.8 one can obtain the equality

U,(Iql——qZD Iql—qllﬂl a%};,us.fs——l(XZa . ':xsa.};)(ql——qZ):O’
(xla”-axs:);)EQb (518)

which implies (5.11) provided that U’ (|¢q, — ¢, 1) * 0. If, however, U'(]g, — ¢,|) =0,
one could find a point, g¢el, such that U'(Jg—q,|)+0. Since
((g,v1), X3, ..., X, ) € D, and Z, is an open set, we have ((¢',v,), X5, ..., X, V) €D,
for every ¢’ from a sufficiently small neighbourhood of ¢. Replacing ¢, in (5.18) by
q' we get (5.11) and then (5.12). The subsequent arguments do not differ from those
involved in the proof of Proposition 5.8.

Proposition 5.10. Let v=2 and let (x4, ..., x,, )€ I Then (5.4) holds.

Proof. Let &, be the set of configurations satisfying the conditions of
Proposition 5.9 and let &, i=1,2,..., be the set of configurations
(X1, ..., X, ¥) € S satisfying the following condition: there exists a supporting
hyperplane, L, of Conv (¢(x; U... UXx,Uy)) passing through ¢, and such that on
the exterior normal / of L passing through ¢, there are points, ¢¢, ..., §_; 4, such
that(a) U'(lg;— q;+.1) #0,7=0, ..., —i+1; (b) when x; = (¢;, v}), v;je R for j < 0
and when xj=x; for j>0, (xj,,..., X, p)efd for j=—1,...,—1i, and
(X415 --» X i1, ») satisfies the assumptions of Proposition 5.9.

We show by induction that f,=0 on &, for every i. For i =0 this follows from
Proposition 5.9. Adopting the same procedure as that used in the proof of
Propositions 5.8 and 5.9 we can go from i to i + 1. Finally we note that £o/= ] §,.

This completes the proof of Proposition 5.10 and also the proof of the Basic
Lemma for v=2.

In the case v = 1 the following two propositions play the role of Propositions 5.7
and 5.8 above.

s—1
Proposition 5.11. Let v=1, let (x,,...,x, 7)€ (| £4D, and assume that dist
(45, G (7)) > 3d,. Then (5.4) holds. =t
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Proposition 5.12. Letv=1,let (x;, ..., X, J) € I, and assume that dist (¢, §(7))
>3d,. Then (5.4) holds.

Proposition 5.11 can be proved as was Proposition 5.7. However the ine-
quality dist (¢, §(9)) > 3d, replaces the condition that ¢, is an external point
in x;,u...ux,uy. Moreover, the fact that for ¢ >0 the point
g, (H)=gq, + tsign(q, —q,) is external in (g, (?),v) UX;U... UXe—; U(gs (), 1y),
where ¢,(t') = g,+ t'sign (g, — g,-1), allows the arguments to be simplified.

The proof of Proposition 5.12 is similar to that of Proposition 5.8.

The following proposition completes the proof of the Basic Lemma for v=1.

Proposition 5.13. Let v=1 and (xy, ..., X, y) € I Then (5.4) holds.

Proof. Let %, be the configurations satisfying the assumptions of Proposition 5.12
andlet Z,i=1,2,..., be the configurations (x,, ..., X,, ¥) € £ for which there
exist g, ..., g_;+1€R" such that (a) U'(1¢;—¢;+11) 0, —i+1£j<0; (b) when
x;=(g;,v})), vjeR", for j<0 and when xj=x; for j>0, (Xj,1,.... Xjsy V)E
S, —i<j<~1, and the (x_;4+q,..., X_;4+ V) satisfies the assumptions of
Proposition 5.12. By the latter proposition f,=0 on %, We go from % to %,
using the method adopted in the proof of Proposition 5.10. It remains to note
4
that So/= ) #£. O

i=1
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