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Abstract. This is the forth and final paper of a series in which we investigate the
stationary solutions of the BBGKY equations. Herein we prove a lemma which
forms the basic step in the proof of our Main Theorem characterizing the
stationary solutions of these equations which was stated in the first of this series.
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0. Introduction

0.1. This is the final paper of a series, all bearing the same title (see [1-3]), devoted
to characterizing the stationary solutions of the BBGKY hierarchy equations. Our
Main Theorem, stated in [1], deals with states of an infinite system of classical
particles in Rv, v ̂  1. It asserts that the set of those states (within a certain class of
states) which correspond to stationary solutions of the BBGKY hierarchy coincides
with the set of equilibrium states. As our class of states we take the Gibbs (DLR)
states which correspond to potentials (in our terminology, "generating functions")
of a general type (many-body and depending not only on coordinates but on
particle velocities as well) which satisfy conditions (G l91) — (G6,1)1. The
hypotheses of our Main Theorem require that the pair interaction potential in the
hierarchy satisfies conditions (71? 1) ~(/4,1). The condition (74,1) restricts the
interaction potential to a finite range.

1 Instead of writing: condition (G^) from [1], formula (4.1) from [3], etc., we shall write: condition
(Glf 1), formula (4.1,3), etc. This convention was adopted in [2] and [3]
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The proof of our Main Theorem was divided into two parts. In the first part we
showed that the generating function of a Gibbs state corresponding to a stationary
solution satisfies Eq. (2.8,1). This equation is the dual of the BBGKY hierarchy.
This part was presented in [1 ] (see, in particular, Theorem 1,1). In the second part of
the proof we show that any function satisfying Eq. (2.8,1) and conditions (G1? 1)
— (G6,1) is of the form (2.7,1), i.e., is the generating function of an equilibrium
state. This was asserted in Theorem 2,1.

The proof of Theorem 2,1 was started in [2], continued in [3] and will be
completed in the present paper.

We will say a few words about the contents of [2] and [3] in order to make things
easier. In [2] we proved Theorem 2,2 from which a special case of Theorem 2,1
immediately follows. In this special case the number n0 which appears in condition
(G3,1) is equal to 2, i.e., the generating function of the Gibbs state vanishes for all
configurations consisting of more than two particles (for a configuration we write
both the coordinates and velocities of the particles). In addition, Theorem 2,2 is the
first step of an inductive process by which we prove Theorem 2,1 in the general case.

In [3] we show that the Theorem 2,1 follows from Theorem 2,2 and
Theorem 0.1,3. Theorem 0.1,3 asserts that if the generating function is 0 for all
"admissible" configurations with more than n particles (n ̂  3) it is 0 for all n-
particle admissible configurations.

The proof of Theorem 0.1,3 requires an additional inductive procedure which
concerns itself with the geometrical characteristics of configurations. To every
particle configuration we associate a graph in Rv whose vertices coincide with the
positions of particles and whose edges correspond to pairs of interacting particles.
Associated with each graph is a triple of non-negative integers (n, m, k)\ the number,
n, of vertices, the number, m, of edges (both of which are positive), and the order, k,
of the graph (which may be 0). The order of the graph indicates, roughly speaking,
the common length of the one-dimensional "tails" with the possible exclusion of a
"chain" of maximal length (for a precise definition, see either [3] or a subsection 0.2
below).

We proved Theorem 0.1,3 by separately proving the assertion of the theorem for
the various subsets of configurations labeled by the triples (n, m, k). By this
procedure the proof of Theorem 0.1,3 is reduced to that of Theorem 1.2,3. The
inductive procedure mentioned above tells us in which order we must take the
triples (n, m, k) in order to prove Theorem 1.2,3 (see [3, Sections 3-5]). The proof of
Theorem 1.2,3 is reduced in [3] to the proof of an auxiliary assertion - the Basic
Lemma (see [3, Sect. 2]). The present paper is devoted entirely to the proof of the
Basic Lemma.

Unfortunately, the Basic Lemma as stated in [3] needs to be modified. In this
section we reformulate our Basic Lemma and indicate the changes which must be
introduced into the proof of Theorem 1.2,3 and Lemma 4.1,3 which form the basis
of the inductive procedure mentioned above.

0.2. New Formulation of the Basic Lemma. Assuming the notation of Sect. 1,1 (see
also Sect. 1,2), we first state conditions on the interaction potential U which we
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assume to hold throughout. In addition we will use (with few changes) the definiti
ons put forth in [3]2.

The interaction potential Uis assumed to be a real-valued function on the half-
line (c/o, + oo ) where d0 ̂  0. Assume that

(70 t/eC3(£/0,+oo).

Assume further that there exists d± > d0 such that

(7£) UφO on (di-Mi) for any <5e(0, ί^-do),

(7£) C/ = 0 on [rfl

As usual, //will denote the Hamiltonian of a system of particles interacting via the
pair potential U (the particle mass is set equal to 1):

(0.1)

The closure of the convex hull of a set KaRv will be denoted Conv (K).
For any xeD° let q(x) = {qeRv:(q, v)ex for some veRv}. We say that

x = (q, i;) ex is an external point in x (or, q is an external point in x) if # is an extremal
point in Conv (q(x)).

Assume that q is an external point in jc, n(x) ^ 2. Let £* = l?*(x) be:
for v ̂  2 - the open cone in R consisting of the open halfϊines originated at q

which are normal to those supporting hyperplanes, P, of Conv(#(jc)) for which

for v = 1 - the open half-line which does not intersect q(x) and has q as a limit
point.

It is not difficult to check that

1) W-q\>\<}-q\ for all qfeBe

q,qex,qή=q,

2) every point qfeBqί for which \q' — q\ > d0, is an external point in x\jxf

where x' = (q', v'), v'eRv.

We say that Λ: = (q, v) EX is an accessible point in x (or q is an accessible point
in jc) if there exists a non-empty open set Ba

q = Ba

q(x)c:Rv such that qeBq implies
(l)\q-q\>d0,(2)U'(\q-q\)*Q,znd(3}\q-q'\>dίΐoral\q'ex,q'*q.

The set Bq is not uniquely defined. We assume that it is fixed once and for all for
all configurations x and all accessible points qex.

Further, we assume that Bq is chosen in such a way that if q is an external point,
then Bq consists of the points qe Bq for which conditions (l)-(3) above hold. Notice
that in this case there is a point qeBq such that3

2 In conformity with [1,2] we will denote the conditions on U by (/{'), (1%), (I£) and the conditions on
the generating function / by (GJ'), (GJ), (GJ) (see 0.4)
3 This assertion follows from conditions (!'{)-(!'^) on U and is proven in fact in the course of the proof
of Proposition 2.2,2
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We say that the point x = (q, v) is an endpoίnt in x (or q is an endpoint in x) if there
exists a unique point qεx, q=¥ q, for which \q — q\ ̂  dl .

We define a chain in x to be a collection of pairwise distinct points xί , . . . , xs e x9

where ^ = (gί? ι?f), / = 1 , . . . , s9 s ̂  2, such that

(a) Ifc-

(b) k;-#l>^ι for all / = ! , . . . , j, qex\(xl u. . . uxs).

The points x1? xs (or ql9qs) are called the ends of the chain xί9 ...9xs.
We say that x e£>° has order 0 with respect to q e x if one of the following three

conditions hold

1° there are no endpoints in x,

2° q is the only endpoint in x,

3° x contains two endpoints both being the ends of a single chain and q is one of
these endpoints.

We say that xeD° has order k^l with respect to qz x9 if
(a) the configuration x\x' has order rgfc — 1 with respect to q for any point

xf = (q' ', ι/) ex such that i) #' φ q; ii) #' is an endpoint of x; iii) if q is an endpoint of a
chain in x, then #' does not coincide with the other end of this chain;

(b) there exists x' = (q'9 υ') ex with properties i)-iϋ) such that the configuration
x\x' has order k — 1 with respect to q.

We denote the order of a configuration x with respect to q ex by k(x9 q). The
order, k(x)9 of a configuration x is defined by k (x) = min fe (x, q), where the
minimum is taken over all external points qex.

We say that x = (q, v) e x is an isolated point in jc (or q is an isolated point in x) if
\q~ q'\> dl for all #' ex, q' φ #.

Below, an important role will be played by configurations containing a chain,
with ends consisting of an external and an accessible point. For this reason we give
the following definition:

Let (n, ra, k) be an admissible triple, n ̂  1 . Denote by <9(n9 ra, k, s), s ̂  1 , the set
of sequences of the form (x l5 . . . , xS9 y), where xt = ( ,̂ vt)ERv x ^?v, / = 1, . . . , s,
yeD°, such that

(a) Xi u . . . uxs uy is a configuration from Z)° of type («, m, A:);
(b) xx , . . . , xs is a chain in xί u . . . \jxs uy for 61 ̂  2 and q^ is an isolated point in

xl\jy for s = l.
We call the points of &S(n, m, k, s) ordered (n, m, k, ̂ -configurations or simply

configurations when there is no danger of confusion. gft(n, m, k, s) is endowed with
the topology induced by the Euclidian topology in (#v x #v)s x (^v x Rv)"~s under
the "partial" symmetrization map Sntn-s:(x1,...9xs,yί,...,yn-s)*-+(xl9...9xs,y),
where y = y1 u. . . u j n _ s . By J>$(n,m,k, s) (respectively, &$(n,m,k,s}) we denote
the subset of $(n9 m, fc, s) consisting of such (x1 , . . . , xs, y) that Iq — q'l^^ for
any q, qfex1 u. . . ux s uj (respectively, \q — q'\ = d1 for at least one pair
q, q'ex1 u . . . uxs uχ) Points of J>$(n, m, fc, 5-) [respectively, @$(n9 m, fe, .s1)] are
called internal (respectively, boundary) configurations. For any ̂ ^^(n, m, fe, 5) we
set ^=^r\^(n,m,k,s), ^^ = ^r\&^(n,m,k,s).

Using the map 5W> π _ s we can introduce in a natural way the notion of a function
of class Cl (with values in Rμ, μ = 1 , 2, . . .) at a point (xj , . . . , xs, y) e S0t(n, m, fc, s).
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Further, we can define the gradients dq J9 6Όtf9 i = 1, . . . , s, and dqf9 dυf, (q9 v) ey9

where /e C1 . Let /, g e C1 at a point (x1 , . . . , xs, j) e J3%(n, m, A:, 5). We set

{/(*!, . . . , xs, j), g(x l 9 . . . , *s, y)}

Σ «3β/> <U> - <dvf, dqg»(xi9 . . . , xa,y).
(^tOexjU.. . u^u^

A function / on J*(π, m, &, s) is called symmetric if

/(*!, . . . , xs9 y) =f(xS9 ...,Xι,y), (*!,..., xs, y)e£(n9 ra, k, s} .

Denote by <stf(n9 m, k,s)9s^.l9 the set of sequences (x1 , . . . , xs, y} e & (n, m, fe, s}
satisfying the following conditions:

(c) qί is an external and qs an accessible point in x,
(d) k(xίu... uxs \jy, qι) = k.

The quadruple (n,m,k,s), s^l, is said to be admissible if the set stf(n,m,k,s)
[or, equivalently, the set J*(w, m9k9s)] is non-empty.

Notice that if (x l9 .. ., xs,y)€J>^(n,m,k,s), s^2, then for 7 = 1, . . . , s — 1:
(i) (%!, . . . , xs-p y) e J^^(w - , m -j, /c, 5 -;),

(ii) (xj+ 19 ...9xs9y)e J^^(n —j, m —j, k', s —j} for some kf.
We are now ready to reformulate our Basic Lemma.

Basic Lemma. Let (n, m, k, s) be an admissible quadruple with n^3,s"^2. Suppose
that functions, fs andfs _ ± , are defined on 3% (n, m, k, s) and U

s—1) respectively, and that for s ̂  3 a function, /s_ 2, is defined on U ^3S(n — 2,
m — 2,k2,s — 1) and that these functions satisfy the conditions: k*

(1) fs is symmetric and continuous on $(n,m,k,s), /seC2 on
and fs == 0 on @jtf(n9 m, k, s),

(2) fs-^C2 on (J Sa(n-ί9m-l9kl9s-l)9

kι

(3) for s^l, / s-2eC2 ow U S&(n-29m-29k29s-2)9

|g|-»oo

x , . . . , xS9 y) e J>$tf(n, m, k, s) we assume that
a) the following equations hold

{ f s ( x l 9 ...9x89 y), H(xl9...9xs9y)} + {fs-l(x29...9x59y)9 U(\q1-q2\)}

1-ίs|)} = 0, (0.2)

2-ϊs-ιl)} = 0 (0.3)

= 2, Eq.(0.3) reώ/cβj ίo {Λί^^y), ff(jcl9j?)} = 0), where H(xl9 ...,xi9y)

b) for any x0 = (q0,v0)eBa

qι x .Rv, xs+1 = (qs+ί,vs+1)eBa

q8 x J^v the following
equations hold

= 0, (0.4)

= 0. (0.5)
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Then fs = 0 on ^(n, m, k, s) .

Apart from some technical details, this formulation of the Basic Lemma differs
from that given in [3] at two essential points. Firstly, the number of equations has
been reduced by 1 [Eq. (2.1,d,3) has been dropped]. Secondly, we now require that
the equations for/s,/s_ ί ,/s_ 2 are satisfied on J>s$(n, m, k, s), whereas in [3] we only
required that these equations hold at some point xeD°. Correspondingly, our
present conclusion is that fs = 0 on £#(n, m, k, s), whereas in [3] we concluded only
that/=0 atx.

In the following we will call /s,/s-ι,/s-2 higher, middle and lower functions
respectively. Correspondingly, Eqs. (0.4), (0.5) are called higher equations, (0.2)
and (0.3) middle and lower equations respectively.

0.3. We now make the necessary modifications in the proofs of Lemmas 3.1,3 and
4.1,3. We first deal with the auxiliary propositions from Sect. 2,3. We will assume
that the function/: D°-+Rl appearing in the statements of these propositions is of
class C2 at every point xeD°.

Proposition 0.1. (Corresponds to Proposition 2.1,3). Let xεDQ and n(x)^2.
Assume that there are points, x{ = (qt, v^) EX, ί ~ 1, 2, xί ή= x2, and that there is a non-
empty open set, B^RV, such that for any q0EB, veRv:

a) E/'dίo-

b) {/((*\*ι)u(9l,ι>)), t/(ko-<7ιl)} = 0, (0.6)

l), U(\q, - ?2|)} - 0. (0.7)

Proof. Equation (0.6) may be written as

Due to condition a),

<dvf

Since B is a non-empty open set, we conclude that

Taking this into account, we apply the operator dυ to (0.7). As a result, we find:

Sqιf((x\Xι)u(ql9Ό)) = 09veR\ D

Proposition 0.2 (Corresponds to Proposition 2.2.3). Let zeD° and «(z)g:l.
Assume that there are two points, z(i} — (q(ί\ V(I))EZ, /= 1,2, and that there is anon-
empty open set, BaRv, such that for any ZQ — (q0,VQ)EB x Rv, VERV:

(a) U'(\q0-q^\)*0,

(b) there exists a point, qE(z^jz^\z(2\ such that:

q^\}} = 0. (0.8)
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Proof. When z(1) φ z(2), the result of applying dv to (0.8) is:

" ?(1)) - 0,
l<7o~<7 I

z0 = (<?

When z(1) = z(2), the result is:

' ' ϋ)) (?° - *(1>) = °
Because of (a) the scalar factor is non-zero. Since B is a non-empty open set, we
conclude that for z(1) φ z(2)

and for z(1)-z(2)

Setting t; = t;(2), we obtain the required equality. Π

Proposition 0.3 (Corresponds to Proposition 2.3,3)- Let xeD° and n(x)^2.
Assume that there are points, xt = (qt, vt) e x, x(i} — (q(i\ v(i}} ex, i — 1 , 2,
x2 Φ Xι Φ ̂ (2) Φ Λ:(I), ώf«<^ that there is a non-empty open set, Bc:Rv, such that for any

(a) C/'dϊo

(b) the following equations hold:

9υy)9 U(\q0 - q, |)} = 0, (0.9)

(0.10)

(0.11)

Proof. As in the proof of Proposition 0.1, we deduce from condition (a) and
Eq. (0.9) that

On account of this equality and Eq. (0.1 1), we obtain the required result by applying
dv to both sides of (0.10). D

0.4. We now turn to the proofs of Lemmas 3.1,3 and 4.1,3. Since Lemma 3.1,3 is a
particular case of Lemma 4. 1 ,3, we only consider the latter. Assume that/: DQ-^Rl
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is such that:

(CD /eC2,

(G'2) there exists n0 such that f ( x ) = 0 for x eD® and w (x) > n0,

(G£) for all xeZ)° with n(x) ̂  1 and veRv

lim f(
kl-»oo

Let (#, m, £) be an admissible triple with w ̂  3 for which the conditions of
Lemma 4.1,3 hold. Let DQ(n,m,k) be the set of configurations xeD° of type
(n, m, k). We now define four subsets, D° (n, m, fc) ̂  D° («, m, fc), = a,b,c,d.
A configuration xeZ>° («, m, £) is an element of:

a) D^ (n, m, k) if there exists an external, isolated point, x = (q, v) ex.
b) Dl (n, m, k) if there exists an external point, x = (q, v)ex, which is neither an

isolated nor an endpoint in x,
c) DC (n, m, k) if there exists an external point x — (q, v) e x which is an endpoint

but is not an end of a chain in jc,
d) D°ά (n, m, k) if there exists an external point x = (q,v)ex which is an end of a

chain in x.
The sets D? (n, ra, k), - = a,b, c, d, cover D° (n, m, k).
The assertion of Lemma 4.1,3 is that f(x) = 0 for x eD° (n, m, k). Because of

condition (G2) it is enough to prove this equality for internal configurations x of
type (n,m,k), i.e., for xeDQ(n,m,k) such that \q — q'\^dl for all q,qfex. For
x eD° (n, m, k), • — #,&, c, the proof in [3] holds (see Sects. 3,3 and 4,3). Therefore,
we have to show that f ( x ) = 0 for all internal xeD° (n, m, k).

For every s ̂  2 we introduce the set D ° («, m, fe, 5-) consisting of configura-
tions, xeDj(n9m,k), which satisfy the following condition: there exists a
chain, x1? . . . , xs9 in x with ends ^1? gs such that (i) q1 is an external point in x,
(ii) k (x, qi) = k. Clearly, U DQ

d (n, m, fc, s) = D^ («, m, A:). From D J (w, m, k) we
^ s

extract the subset D°(n, m, k) consisting of those internal configurations x which
contain a chain xl9 . . . , xs with ends ql9 qs satisfying conditions (i), (ii) above and
such that (iii) qs is an accessible point in x. We first show that /= 0 on J5° (n, m, fe, s)
for all s Ξ> 2.

For fixed j ̂  2, we define the functions,

m-\,k^s-\}-+R\ and (when s^
^2 _

generated by / under the symmetrization maps (x^ , . . . , xt, y) *-+ x1 u . . . \jxt \jy,
t = s — 2,s — l,s. We should check that fs,fs-ι,fs-2 satisfy the conditions of the
Basic Lemma.

The continuity and smoothness of these functions follow from condition (G'[).
Now let (*!,..., xs, y) E 2tf(n9 m, k, s). We will show that fs (x1 , . . . , xs9 y) = 0. It
is enough to verify that f(x± \j . . . vxs uy) = 0. But this follows from the continuity
of/ and from the fact that we can approximate the configuration x1 u . . . u xs u y
with configurations of type (n, m', k'}, m' ^ m — 1, for which /— 0 by virtue of
Lemma 4.1,3. We still have to check that for all (xί9 . . . , xs, y) e Jstf(n, m, k, s),
conditions a) and b) of the Basic Lemma hold [i.e., Eqs. (0.2)-(0.5) are valid]. This
can be done as in Sect. 4,3.
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According to the Basic Lemma, fs = 0 on j/(n, m, k, s). Since the image of the set
&f(n, m, k, s) under symmetrization covers D® (n, m, k, s), it follows that /= 0 on
D°(n9m9k9s). Since D°(n9m9k,s) is open, all gradients of / vanish on
D%(n,m,k9s).

We now prove that f(x) = 0 for any internal configuration xeD® (n, m, k, s)9

s^2. Let x be an internal configuration from D® (n, m, k,s) and xl9..., xs be a
chain in x figuring in the definition of DQ

d (n, m, k, s). There are two possibilities:
1) U'(\qs- i - qs\) = 0 and 2) U'(\qs-ι - qs\) Φ 0. It is not hard to check that in the
first case x satisfies the conditions of Proposition 0.1 and hence d q ί f ( x ) = Q.

Consider the second case. Observe, that if XQ = (q^v^)eBa x jRv, then
(*\ χs) \JXQ ej5° (n, m, k, s) and, as we proved above, the function/together with all
its gradients vanishes at the point (x\xs) ux0. Using this fact, it is not hard to
check, that for z = x\xs, z(1) = xl9 z(2) = % s _ l 5 B = Bqι the conditions of
Proposition 0.2 (with q = qs-2}

 are satisfied. Whence, SlitΌa_ιf(x\xs) = 0.
Making use of the above results, we can verify that for x the assumptions of

Proposition0.3 are satisfied with x(1) = x s _ 1 ? x(2} = xs, B=Ba

qι. Accordingly,
3qιf(x) = 0.

We have therefore proved that dqιf(x) = Q for any internal configuration
χξD®(n,m,k,s} containing a chain, xl9...,xs, where q± is an external point
in x and k(x9qί) = k. Notice that for any such configuration one can find a
continuous curve, q 1 ( t ) 9 O r g ί ί g l , with the following properties: (i) #ι(0) = #1?

(ii) (x\xί)^j(q1(t)9υi)eD^(n9m9k,s) for O g f ^ l , (iii) (x^) u(^ι(0,^ι) is an
internal configuration for 0 ̂  / < 1 and a boundary configuration for t = 1. By what
is proven above, f ( ( x \ X ί ) u(#ι (0? ^i)) does not depend on / for 0 ̂  t < 1. On the
other hand, f((x\Xi)u(q1 (1), i^)) = 0 since the configuration (x\Xi) \j(q± (1), i^i)
may be approximated by configurations, x', of type (n,m — l 9 k f ) for which
/(*') = 0 by virtue of Lemma 4.1,3. Consequently, f ( x ) = Q. This concludes the
proof of Lemma 4.1,3. D

0.5. The sections which follow are devoted to proving the Basic Lemma. We will
assume, but will not repeatedly mention, that the quadruple (n, m, k, s) and the
functions/ s,/ s_ 1 ?/ s_ 2 satisfy the conditions of the Basic Lemma. To lighten the
notation we will write & and js/for $(n9 m, k, s) and <stf(n9 m, k, s).

1. Analysis of the Upper Function (An Application of the
Upper and Middle Equations)

This section contains the first part of the proof of the Basic Lemma. Using
Eqs.(0.2), (0.4), (0.5), we will obtain some information about fs. Denote by
J3/(0, i=l9...9s—l9 the set of configurations (xί9.. .,xs9y)€J& for which

The results of this Section are summarized in the following theorem.

s-l

Theorem 1. (1) Let v ̂  2 and let (xί9..., xS9 y) e f) </j/(0. Then

dΌJs(xί9...9xs9y) = dvJs(xl9...9xS9y) = Q. (1.1 a)
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(2) Let v ̂  2 and let the configuration (xl9 ..., xs, y) e «/^\ ^(s~ 1} be such that
0/ fλe set [r > dQ : U'(r) = 0}.

We will start with the proof of the statement (2). Equation (0.4) takes the form

<dϋJs(x1,...,xs,y),dqιU(\q0-q1\)y = Q,q,ε

on Sj/\ji/(s~1\ Cancelling U'(\qΌ- q^) \qQ- q±\~l we get

Since #0 runs over an open set Ba

qι it follows that dvιfs(xl9 ...,xs,y) = Q.
Now suppose (xί9 . . . , xS9 y) satisfies the conditions stated in (2) of Theorem 1.

Then in any neighbourhood of (xί9 . . ., xs, y) there is a configuration,
(x'l9 . . . , x ' S 9 y'}, from M\Λ?(S~I). But we have proved that d^fs(x'^ . . . X, j;') = 0,
where x{ = ( ,̂ t i). It follows that d^qfs(xl9 ...9xs9y) = d^Jvfs(xl9 ...9xs9y) = 0
for all (̂ , t;) ex^ u . . . u^cs u j.

Applying 3Pι to (0.2) and using the above equalities we obtain (1.1 b). Statement
(2) of Theorem 1 is proven. D

We now pass to the proof of statement (1).

Proposition 1.1. For v ̂  1 the following formulas hold

3,Js(xι, ,x*>fl = B9.U(\q8-ι-q

(when (xί9...9 xs9 y) e

(wAe/2 ( î , . . . , Jcs, y) e «

where A(1\ A(s) are matrix-valued functions on </<$tf(s~l\ J>£#(1\ respectively, which
are locally constant. That is, for any configuration (xί9 . . . , xs9 J)G j^j/(s~υ

(respectively, ( χ l 9 . . . , xs,y)eJ><stf(1)) there exists a neighbourhood, 0(s) = $(s)

(x1, . . . , xs9 y)^Rv, of qs (respectively, a neighbourhood, (9(^ = &^(xί9 . . ., xs9 y)
dR\ of qj such that for all xf

s = (q's,v
f

s)e(9(s) x Rv (respectively, xf

1 = ( q ' l 9 v ' 1 )

A(i)(xί9 . . . , x s_ 15 x's, y) =

(respectively,

A(s](xf

1,x2, ...,xs,y) = A(s}(x1,x2, . . . , xs, y)) .

In addition, ifqί is the limit point for some arbitrary open half-line, L^Be

qι, then
for all (x(, x2, . . ., xs, y)e J^/(s"1} with x( e(Lu^ι) x ^v, the neighbourhoods
^(s)(xi, x2, ..., xs, y) can be chosen to coincide.

Proof. We will only consider the derivation of formula (1 .2 a) and the properties of
A(l\ The derivation of (1.2b) and the proof of the fact that A(s} is locally constant
involves a similar line of argument [we use (0.5) instead of (0.9) - see below]. In
addition, we will assume that s^3 (for s = 2 the formulas below need to be
modified in a superficial way).
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Let (xl9.. .,xs,y)eJ<$tf(s~^ and let LeBe

qι(xi^j... vxsvy) be an open half-
line. Choose $(s) to be a connected neighbourhood of qs small enough so that the
following conditions hold: a) U'(\qs_l- q's\) φ 0 for all q'seφ(s\ b) L consists of
internal points from f) B ^ I ( X I \ J . . . \ J x ' s \ j y ) . Now let (x(9x29 ..'.9xs9y)e

J^(s~l\ where χ( =(q'l7v'ί)e(L^jq1) x ^v. Using conditions a) and b) find a
connected open set, ΘdBa

qlι(x{ ux 2^ vxsvy)9 such that if x's = (qf

s,v's)eφ(s)

xRv, q'Q^Φ, then

. (1.3)

Notice that Eq. (0.4) holds when x0 is replaced by XQ = (qo9VQ)e& x Rv, xs is
replaced by x's = (̂ , ̂ ) e(P(s) x Rv, and jcj is replaced by x( . This equation has the
form

<3^f8(xf

l9 X2,.. , xs-ι> x's, y\ δg, U(\qf

Q - q( |)>

+ <^S_I/S(Λ:O) x'ι, X2> , xs-ι>y)> Sqs_, U(\q0 - q[ |)> = 0,

R\ x'seO(s)xR\ (1.4)

Dividing by [7'(|^ - ̂  |) t/'d^.! - q's\) \q'0 - q[ Γ1 \qs_ι - q'sΓ
l which is non-

zero by (1.3), we arrive at the equality

<a(1)(*i> X29...9xs^l9 x's, y)9 qs-ι- q's")

4- <a(s) K, x( , x29 . . . , xs_ t , jθ, ^s_ ! - q'sy = 0,

xόe^x^ v , x'aeΘ(s)xRv

9 (1.5)

where

a (x0, x1? x2? ? *s-iί y)

= lU'Uύ-qϊ I)]'1 kό -?ί I V./.W. »i. ̂

By application of δ?i and δ?; to (1.5) we get

δ?;a
(1)(*ί, x2, .. .,*,_!, x'ny)+ [d^(x'0, x [ , x2, . . . , x s_1;y)]* = 0,

x'0eΘxRv,x'se&(s)xRv. (1.7)

It follows that the matrix dlύΛ
w(x'1,X2,...,xll-l,x's,y) is constant on

x'se&(s)x Rv. Denoting this matrix by Aw(x(,x2, .. , xs-t, x ' s , y ) , we have

) (xΊ,x2,..., xs- 1 , x's, y) = q's A
(1) (x{, x2, . . . , xs_ t , x^,

where the vector b(1)(^i, x2, . . . , xs_1} x's, y) is constant on x'seφ(s)xR\ Due to
(1.7)



344 B.M. Gurevich and Y.M. Suhov

where b(5) (x'0, x'l9x2, ? χ

s-ι>y) *s constant on xf

0E@ x Rv. Substituting (1.8a, b)
into (1.5) and applying dq,o to both sides of this equality we get

b(1)(xi, x2, ...9xs_l9 x's, y)=- qs-1A
(1)(x'ί,x2, ...9xs_l9 x's, y\ x'se&(s} x R\

From this and from (1.8a), (1.6a), we obtain (1.2a). D

Proposition 1.2. Let v ̂  1 and let (xl9...9 xS9 y) e <Λ/(s~ 1}, *0 e^ x ̂ v. 7%e/ι

)*(^θ3...^ s-.ι,>0 = 0. (1.9)

Proof. Choose neighbourhoods, @o,@s,ofqQ,qs such that conditions (1.3) hold for
q'0 eφQ9 x's eφs x Rv. Notice that if we write Eq. (0.4) with x'Q = (q'Q9 vf

0) replacing x0

and x's = (q's9 v's) replacing xS9 we get (1.4).
We then substitute equalities (1.2a, b) with argument (x'Q9 xί9 . . . , xs-ι9y) into

(1.4) [it is easy to see that (x'Q9 xί9 . . . , xs-ι,y) e «/«s/(1)]. By cancelling the factor
^Xko-^iDko-^iΓ '^CI^-i-^DI^-i-^Γ 1 and using the fact that the
matrices ^4(1), ^4(s) are locally constant (see Proposition 1.1), we obtain (1.9). D

Proposition 1.3. Let v ̂  1 and let (xl9...9 xS9 y) e Λ/(1) π J^(s~l\ Then

,-..,^>0 = 0. (1.10)

Proo/. To Eq. (0.2) we apply 3βι and dVg. I f ( x ί 9 . . . 9 xs9 y) e ,/^(1)n J^(s"1}, then
using Proposition 1.1 we obtain (1.10). D

Corollary 1.4. Let v ̂  1 . Assume that for s^39 (xl9 ...9 xS9 y) 6 ,/J/(s " 2) n Λa/^ " υ

and for s = 2, ( χ ί 9 x2,y)ε^<$/(l}. Assume further that x0eBa

qι x J?v. Then,

q1\). (1.11)

Proo/. We apply Proposition 1.3 to (x0, . . . , x s _ l 5 JO and then use (1.9). D
Denote by j/sym the set of configurations (χi9 . . . , χS9 y) e j/for which gs is an

external point mxί\j...\jxs uy. In other words, (xί9 ...9 xs, y) ej/sym if and only if
(%! , . . . , xS9 y)9 (xS9 . . . 9 x ί 9 y ) e < s f . Notice that when v = 1 , <s/sym is non-empty only if

Proposition 1.5. Let v ̂  1 and let (xl9...9 xs, y) e J^(s~l} n ̂ sym. Then

,...,xs,y) = A^(xs,...,x1,y). (1.12)

Proof According to the Basic Lemma, fs is symmetric. By using (1.2a,b) we see
that

By cancelling the factor U' ( \ qs _ ± — qs |) | qs _ j — qs \~ 1 we see that~ 1

Using the fact that the matrices A(1) and A(s) are locally constant we arrive at
(1.12). D
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Corollary 1.6. Let v ^ l . Assume that (xl9..., xs,y)e<f£0(s~l) and that x0eBqί

x jRv is such that (x 0 ? . . ., x s _ l 5 jO^^sym Then

, _ ! , . . . , Λ:0,JO = 0. (1.13)

Proof. Notice that the conditions stated in Proposition 1.2 hold for (xί} ..., xs9 y)
and XQ. Hence, (1.9) holds. Moreover, since (xs-ί9 . . . , xθ9 j)e^^r(s~1)^^sym?

Equality (1.12) holds for (Λ:S__ 1 , . . . , x0, y) by virtue of Proposition 1 .5. Combining
these two equalities, we obtain (1.13). D

s-l

Proposition 1.7. Let v ̂  1 fljid feί (x1? . . . , xs y), ( x ( 9 . . . , x's, y) e Π ^^(0 ^wr-
i = l

ίήer, assume that qί9 . . . , qs, q'ί9 . . . , q's He on a straight line, Lc=^v, satisfying the
condition dist (L, Conv q(y)) > d± and assume that q( lies on the same side ofq'2 as q^
of 'q2 Then

,...,x's,y). (1.14)

Proof. From conditions (/'/ — /!,') on £7 it follows that in any neighbourhood of d1

there are points, r, for which U' (r) φ 0. Using this fact we choose rί,r'le (d0, dt) and
natural kί,k'l> s/2 such that the following conditions hold

\q2-q1\>d1, + \q'2-q'1\>d1, (

(ίi - ?2)/lίi - ?i l (l 15c)

Further, set

(see Fig. 1). Finally, choose arbitrary Vi
for z = 0, . . . , -2fci +2. Set v'ί = vί+2k^

' = 0. -1, -2,-..,

i = 0,-l, . . . ,-2Λi + l,

-?2|> /= -2k',, -2k{-ί,..
v for z = 0, -1, ... and arbitrary v eRv

kι for /= -2fci + 1, -2&i, ... .

Fig.l
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Consider configurations (χh xi + ί9 ...9xi+s_l9y)and (x'i9 x'i + !,..., x'i+s- ^ 9 y)9

ϊ = l,0, -1, . . . , where χj = (qpvj), x'j = (q'j9Vj)9j = s9s-l9... . From (1.15a,b)
and the conditions of the proposition under consideration it follows that for all ί ̂  0

. - uχ ί + s_ι uy) x

xί e5J+ι (x;+ j u . . . u x;+s- 1 u JO x -

Using Corollary 1.6, we obtain

A (X1 , . . . , Xs, jy) = A (

^4 (Xj, . . . , Xs, j) = Λ V*2./

7 = 0,-!,.... (1.16)

From the construction and from (1.15c) it follows that if /^ —2kί + l and
i' = i + 2ki-2k(9 then ft = ̂  and 1̂  = 4. Hence, for y^ -^ - (.y- 1)/2,
j'=j+kl-k( the configurations O2;+ι> - - 9 -^2j+s5 J

7) and (xi/ + l 9 . . . , xi/+s, y)
coincide. Together with (1.16) this gives (1.14). D

Notice that if v = 1, the conditions of Proposition 1.7 hold only when n(y) = 0.

s-l

Proposition 1.8. Let v ^ l . Assume that (x l9 . . ., xs, j7)e (°) J>stf(i} and that the
ί == i

points qί9 . . . , qs lie on a straight-line, Lc:Rv, satisfying the conditions Lr\Be

qι Φ 0,
dist (L, Conv(^(j)) > d±. Then

AM(xl9...9x89y) = 0. (1.17)

Proof. We will assume that s^3 (as in the proof of Proposition 1.1, for s = 2
the formulas below need to be modified in a superficial manner). Choose a
sequence of points, q±(ϊ), i = 0, 1, . . . , on L, lying on the same side of q2 as ql9

with #! (0) = q1 and such that (a) U'(\ql (ί) - q2 1) Φ 0, | ̂  (/) - q2 \ > \q1 - q2 \ for all

z, (b) lim 1^(0-^21 = ^1-
i-» oo

By application of Propositions 1 .1 , 1 .7, we can find a neighbourhood, Θ(s\ of qs

such that

x'seβ<*xR\ xl(0 = (ϊι(0^a ϋ i e Λ v , ί = 0 , l , . . . . (1.18)

By (1.2a)and(1.18),

/s(xi (0, Λ:2, . . . , x s_ 19 x's9 y) = <t;i, δg; C/(k s_ ! - ^ I) ̂ (1)( ̂ ι? - - > ^s? Jθ>

+ fl(xi(0^2,...^s-i,^30, ^eΦ ( s ) xΛ v ,x /

1 (0 = (9l(ί),ϋί)9

ϋ i 6 Λ v , / = 0 , l , . . . , (1.19)

where α (x( (z), x2? > ^s- 1 ? x's> y) does not depend on v( eRv. As assumed in the
Basic Lemma,

lim /s(xi(0, x2, . . . , xs-l9 x'8,y) = 0. (1-20)
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By using (1.19) with v( set equal to zero we get

lim a(x( (/), *2, . . . , xs- 1, x's, y) = Q. (1.21)

From (1.19H1-21) it is clear that

<v(9dq,U(\qs.l"q8\)A^(xl9...9x89y)y = 09 q'se&(s\ υ'seR\

and therefore,

By cancelling U'(\qs- x — ̂  |) and using the fact that (9(s) is non-empty and open we
obtain (1.17). D

s-l

Proposition 1.9. Letv^2 and let (xl9 . . . , xs, y) e

Remark. This statement also holds when v = l and n(y) = 0. In this case it is
implied by Proposition 1.8.

Proof. We employ a geometric construction which will also be useful below.
This construction can be used only when v ̂  2. According to the definition of B^

we can find a point, qΈBqι(χ1 u. . . U-X suy) ? such that \qf — q±\ > d1/]/2
and E / " ( | t f ' - t f ι l ) Φ θ . Set ̂  = 1^-^) and let

where v e R v, / = 0, — 1 , . . . , are arbitrary. It is not difficult to check that for | /0 1 > s
sufficiently large there is a point q such that:

a) the half-line Lί = {q e R v : q = q o + t (q - # 0), t > 0} lies in

b) dist (L, Conv (q(y))) > dly where L is the straight line containing L l 5

c) k-ii0l = r!

(see Fig. 2). For such an /0 we set

•̂ i — χί •> l : — 0, — 1 , . . . , z'o,

^i = #ίo + Oo ~ 1) (Ά - ^ίo), ^f = (&> ^i)9 / = /o - 1 ? /o - 2

? ?

where v^Rv, i=i0 — 1, / 0 ~~2, . . . , is arbitrary (recall how the sequence x ,
z = 0, — 1, . . . , was constructed).

Let's consider the configurations (xh . . . , xi+s_l9 y), ί=ί, 0, — 1 , . . . . By
s-l

construction, (xi9 ...,xi+s_l9y)e (} Λ/ϋ), x^^B^x^. . . ^xi + s-ί u.y) x ̂ v

7 = 1

andfor(x ί ? . . . , x i + s _ 1 } i y), i^i0 — s+ 1, the conditions of Proposition 1.8 hold. By
Corollary 1.4 and our choice of q0 which guarantees the non-degeneracy of

), it is enough to prove that

9...9xs_l9y) = Q. (1.22)
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Fig. 2

By applying Corollary 1.4 to (A:,-, ...9xi+s-l9y) and xt_l9 / = 0, -1, . . . , it is
clear that we will be able to prove equality (1.22) if we can find an i such that

But by Proposition 1.8 the last equality holds for all / ̂  z'0 — s + 1. D

Proposition 1.10. Let v^2. Assume that (xί9 . . . , xs9 y}e f| J^£/(j) and that
U"(\q1-q2\}*0. Then j = i

A<*(xι9...9x89y) = 0. (1.23)

Proof. According to Proposition 1 .9, A(1)(xl9 . . . , xs,y} = Q. Using Proposition
1.3 and the fact that d^ U(\ql — q2\) is non-degenerate we get (1.23). D

Proposition 1.11, Letv^2 and let (xλ , . . . , xs, y) e f) Jfj/^. Then equality (1 .23)
holds. j=1

Proof. We choose an arbitrary qG£Be and consider the half-line
s-l

L={qeRv:q = q1 + t(q0- qι\ t^ 0}. Obviously, (x1 (/), x2, . . . , xs9 y) e f)
for 0^ t< ΐ 0 , where
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Since A(s} is locally constant and continuous (see Proposition 1.1),

A(s\Xί(t\ x2,..., xs,y} = A(s\xly . . . , χs9 y\ Q^t<t0.

If we can find τ e [0, ί0) such that U"(\q1 (τ) — q21) φ 0, then, by Proposition
1.10, A(s} (x1 (τ), *2,..., xs9 y) = 0 and (1.23) follows.

If E/"(|0ι(0 - 021) = ° for all f e[0, *0), then 17'(1^(0 - ?2I) = c, a constant, for
0 ̂  ί < ί0, and, by our choice of ί0 and the continuity of £/', c = 0. This contradicts
the condition U'(\q± - q21) Φ 0. D

Assertion (1) of Theorem 1 follows immediately from Propositions 1.1, 1.9,
and 1.11.

2. Analysis of the Middle Function for v ̂  2
(An Application of the Middle Equation)

We now pass to the second part of the proof of the Basic Lemma. In this second
section we study the properties of/s_ 1 using Eq. (0.2) and Theorem 1 of Sect. 1 . We
will assume throughout this section that v ̂  2.

We will consider the following sets:

In addition, we will consider the set ̂  composed of those configurations
(x l5 . . . , xs-ι,y) e(J&(n — 1, m — l9kί9s—\) for which there exists an open set,

kί s~ί _
0eRv, having the property that (x,xί9...9 xs_ί9y)e f) j/(ί) for all xeθ x R\

We define ί = 1

q'\)9 q9q'eR\ \q-q'\>d0.

It is easy to see that (xί9 . . . , x s _ l 5 y)^^l9 ^^3, implies that the matrix
s-2

Π ^fe'^i + i) is non-degenerate.
ί=l

The major result of this section is:

Theorem 2. a) Ifs^39 then

s-2

Π G(qi9qi+ί)9 (xl9 . . . , xs-l9 y)eJ^\ (2.1 a)

b) if j = 2,

w β function on $stfv having the property that (xί9 . . . , x s _ l 5 j),
/) e ,/ĵ  together with y = j;7, implies

b(xι9...9xs-l9y) = b ( x ' l 9 . . . 9 x ' s _ ι 9 y ' ) 9 (2.2)

w ίA^ identity matrix.
We now begin the proof of Theorem 2.
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s-l

Proposition 2.1. Let (*1 9..., xS9 y)e f) Jstf(i\ Then
i = l

l9qs) 8^Vs_ιfs_1 (χl9..., *s_1? j). (2.3)

Pr06>/. We shall only consider the case 5- ̂  3. Let (xx , . . . , xs9 y) e f] Jstf(i\ Choose
i = l s-l

neighbourhoods, Φί9 0S9 of # l 5 qS9 such that (*ί, *2, . . . , xs_ί9 x's9 y)e Π Λ/(ί)

i = l

when *; = (#;, t i) effi x ^v and ̂  = (̂ , ̂ )'eβ?s x ^?v. By Theorem 1 (1),

BV( fs(χΊ,χ2> ...9χs-ι,χ's,y) = dv'.fs(χ'ι, x2>-->xs-i> χ's> y) = ° (2 4)

Consider Eq. (0.2) with argument (x'i9 x29...,xs-ι9 x's9 y). By applying dv, and
5oi to this equation and using (2.4), we obtain

(2.5a)

and

δ?i/s W^25 - , xs-ι,x's, y) = tf.-lt»'Js-i(x'i>x2, --,xs-ι,y) ̂  U(\qs^.l- q's)9

x(eβίxRv

9 x'sE(DsxR\ (2.5b)

By applying dq, to (2. 5 a) and dq to (2.5b) and then comparing the results we arrive at
(2.3). D

For (xl9 . . . , xs.ί9y) e ̂ ^ we set
/s-2

(2.6)

Proposition 2.2. Let (xlt..., xs, _χ)e P) Λ/(i). 77ze«

?2). (2-7)

s-l _

Proo/. Notice that if (x1 , . . . , xs? JO e Π «^«^(ί), then (xl9 ...,xs-ί9y)9

(x2, . . . , xSJ Jθe-^Ί Under these conditions Eq. (2.3) of Proposition 2.1 holds.
We substitute (2.6) into this equation. Using the fact that G(q, q') is symmetric we
obtain (2.7). Π

Proposition 2.3. Let (x1 , . . . , xs_ ί , y) e J*^ . There are neighbourhoods, Θi c JRV, of
qh / = ! , . . . , s— 1, ^wc/z that for x'ieφi x R\ i=!9...9s-l9

(xi,...,xί_ι,Jθe^, 5(^ 1 , . . . ,x β _ l ί >0 = 5(xi, . . . ,^_ 1 ,y). (2.8)

s-l

. We first choose XQ — (^ό^ό) sucrι that (^O,x1? . . ., x s _ l 5 i >0 e Π

We then choose a sequence of points, x / _ 1 = (^'_1,t;/_1)5 x /_ 2 = (^ /_2,i; /_2)5 5

and neighbourhoods, 0 l 9 . . . , 0S_ 19 of ^1? . . . , #s_ x such that for every
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Rv

9 z = l, ...,$-!, (*ί, . . . , x's_l9 y)e Sdfl9 and for every 7^

s-l
(γf γ> ϋ\<= Γ\ Φ V?W(Xj9 . . . , Xj+s_l9 y)E [ ] jr<%f .

1=1

By Proposition 2.2, for j ^ 0 we have

B(x'j, . . . , x'j+s-2, y) G(q'j9 q'j+1) = G(q'j9 q'j+1) B(x'j+l9 . . . , x'j+s-l9y)9

where x( = (q'i9 v'^eΘ^R^ z = 1, . . . , s - 1 .
By repeatedly applying this equation we obtain

The right-hand side of this equality is constant on x eφt x Rv, i = 1, . . . , s — 1.
o

From this and the fact that f] G(q'i9q'i + 1) is non-degenerate, we obtain the
required result. D l = ~ s + 2

Proposition 2.4. Let (xί9 ...,xs_l9y)e J'^l . Suppose that the points qί , . . . , qs_ ±
lie on a straight line, L^RV, such that dist (L, Conv (q(y))) > d1 . Assume further that
for s^3 these points satisfy the condition \qi+ 1 — q{\ = r, i = 1, . . . , s — 2, where

max (ί/o, dί/ ]/2) <r<dί and

O φ £ / / / ( r ) φ t 7 / ( r ) / r Φ O . (2.9)

TTz^π if qeL\q1, the vector q± — q is an eigenvector of B(x1, . . ., xs_ί9y).

Proof. We will consider the cases v = 2 and v ̂  3 separately. For v = 2 we construct
a closed polygonal line, yaR2, with the following properties:

1) y is the boundary of a rectangle, Γ, which is not a square;
2) the length of the edges forming γ are multiples of r;
3) one of these edges belongs to L and contains the points ql9 . . . , qs-ι. The

distances between qί9 qs^1 and the two ends of this edge are both multiples of r;
4) Conv (^(j))c:Γ, and dist (y, Conv(^(y)) > dλ (see Fig. 3a).

For v ̂  3 we will employ the following geometric result: if Cc jRv is a bounded
convex set and Re: Rv is a proper subspace, then there is a hyperplane, He: ^v, such
that Rd H and dist (C, R) = dist (C, #). We take L for R and Conv (^(y)) for C and
construct a closed polygonal line, 7, in //with the properties l)-3) mentioned above
(see Fig. 3b).

We now subdivide the edges of y into semi-intervals of length r. By construc-
tion, #ι, . . . , #s_ι are among the endpoints of these semi-intervals. We denote
the remaining endpoints qs, . ,qN in such a way that \qi+ί — qι\ = r for
i — s — 1, . . . , N— 1 and \qN—q^ \ — r. Choosing arbitrary vs9 . . . , vNeRv, we set
^i = ta^iX i = s9...9N. Set

-JV for j^N,
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Γ

<ϊ/v
H —* 1 f-

<?S-1

Fig. 3 a

Γ

L "vl^ *~ # h

Coπv (q (y ))

Fig.3b

It follows from the construction and the conditions of the proposition under
consideration that for both cases, v = 2 and v^3,

By Proposition 2.2,

B(xu+l}9 . . . , A: [ j + s_1 ] 9 j), 7 = 1, . . . , N.

Iterating, we obtain

(2.10)

where G?=l\G(qi9q[i+l{).
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In order to solve Eq. (2.10), we represent G(q, q') as

U'(\q-q'\) (E p , ,eRV

\q-q'\ q~q' ' "q

353

(2.11)

where Pq_q, is the orthogonal projector onto the subspace generated by q — q'.
From (2.11) we obtain

where lv is the length of that edge of y which contains qγ, #s_ x, Pί is the orthogonal
projector onto the subspace generated by a vector collinear to this edge (for
example, by the vector qv — q where q&L, q^¥q^\ 12 and P2 are the corresponding
quantities for the orthogonal edge of y.

From (2.10) and (2.12) it follows that

U'(r)/r)W'B(xl9 . . . , * s_,, y) (?1 - q)9

i.e., 5(xl5 . . . , x s _ι, j) (^ι~#) is an eigenvector of Gf with eigenvalue
A = (U"(r))2U'(U'(r)/r)2Ur. According to (2.9) and since /x Φ /2, the coefficients of
P l5 P2

 an(i ^~Λ ~ ̂ 2 on ̂ e right hand side of (2.12) are different. Hence every
eigenvector of Gf with eigenvalue λ is proportional to ql — q. Therefore, qv — q
is an eigenvector of the matrix B (xί,..., xs_ 1, y). D

Proposition 2.5. Let the conditions of Proposition 2.4 hold. Then B (x1,..., xs-l9y)
is a scalar matrix.

Proof. Consider the case s = 2. Let q~εL be chosen arbitrarily from the points
distinct from q±. There is a neighbourhood, &c:Rv, of #~, not containing qί9 such
that for every point q' 60 the line L' going through the points q1 and q' satisfies the
condition dist(Z/, Conv(g(y))) > d1. By Proposition 2.4, q1 — '̂ is an eigenvector
of B(x1, y). Therefore this matrix has an open set of eigenvectors, and hence, is
scalar.

Oc.i

Fig. 4
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Now let s^3. Consider the neighbourhoods Φ2, . . . , 0S_ 1 of q2, . . . , #s_ 1

figuring in Proposition 2.3. It is easy to check that one can find a neighbourhood,
^2C=^2> of #2 SUCΓ1 that for any x'2 = (^2^2)^^ 2 x Rv there exist points x
= (q'i9 vβeφi x £v, 2 ̂  / ̂ s - 1, / φ 2, for which (xl9x'29 ...9x's-l9y) satisfies the
conditions of Proposition 2.4 (see Fig. 4). It follows from Propositions 2.3, 2.4 that
for any qf

2 e (9'2 the vector qί — q'2 is an eigenvector of the matrix B (xί , . . . , xs _ x , y).
As above, we deduce from this fact that B(xίy . . . , xs_ 15 y) is a scalar matrix. D

Proposition 2.6. Let (x1 , . . . , xs _ 1 , y) e Λ^ . Γ/zew ί/ze matrix B (x1 , . . . , xs _ x , j>) is
a scalar, i.e.,

...,x s_1,j^)E. (2.13)

Proof. By the definition of j/l5 we can choose a point, q0eRv, so that
s-l _

(XO,.KI, - - , xs-ι, y)e Π ^^w, where X0 = (qθ9υ0)9 v0εR\ Using the geometri-
ΐ = l

cal construction employed in the proof of Proposition 1 .9 we can find a point,
q'eB*o(xΌ9 . . . , χs_l9 y\ for which

We set ^ = 1^-

where v eRv, i= — 1, — 2, . . . , are chosen arbitrarily. If |/0 | > s is large enough,
there will be a point, q, satisfying conditions a)-c) listed in the proof of
Proposition 1.9. Fixing such i0 and q, we set

^ = ̂ 0-0'-ίo)(^-^0)' ^i = (^ui)» ^ϊ'o-^ z'o-2, . . . ,

where vteRv, i^ΪQ — 1, are chosen arbitrarily. By construction,
5-1 —

(Xj, ...9xi+s_ι9y)e p) ofj^0^ for f ^ O . Furthermore, if i^ίQ — s-\-29 then the
j=ι

conditions of Proposition 2. 4 hold for (xh . . . , x ί + s_2) and hence, the matrix
£(*;, . . . ,x ί + s _ 2 , j) is a scalar.

By repeated application of Proposition 2.2 we find that the matrix
B(xly .. ., xs-l9y) is a scalar. D

Proposition 2.7. The function b appearing in (2.13) /zαs the following property, if
(xl9...9xs.l9y)9 (x'l9 ....x's-^y'ΐeS tfί andyf = y, then

b(xί,...,xs_1,y) = b(x(,...,x's_l,y
f). (2.14)

Proof. Let (xl9 ...9x8-l9y)9 (xf

l9 ...9x
f

8-l9y)eJ^. Choose points q0, q'0 so
5-1 _

that (xθ9xl9...9xs-ί9y)9 (x'^x'i, . . ., ^-ι> Λ e Π Λ^ω, where x0 = (ίlro^o)Jj=ι
^o = (^o^ό)5 ^o? V0eRv. Next, choose points ^ejBJ0(x0, . . . , xs-l9y)9

q'eBq>o(xf

0, . . ., x's-ί9y) so that: (a) the vectors q — q0 and q' — q'Q are not

parallel; (b) 1?-^!, k'- <70I >^/1/2, U"(\q- ίo|) t/'XI^- ̂ |) Φ 0. We now
consider sequences, #M, ί;1>ί? ^i> £, i;^ t , / = —1, —2, . . . , where
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and v l f i 9 v'ίti are chosen arbitrarily. Let X ι ί i = (qι,i,vίti)9 xΊti = (qΊti,v
f

ίti)9 ί= — 1,
— 2, . . . . It is easy to see that when /-> — oo, the sets Be

qι t.(*ι,i? • > ^ι, i+ s -ι?Λ 5

^i,(xi,i' • > x'ι,i+s-ι>y) tend On a natural way) to half-spaces. By condition
(a) the intersection of these sets is non-empty if | / | is large enough. Moreover, one
can find open half-lines, LaBe

qι .(xltί9 . . ., xίti+s-l9 y)9 L'aB^
(xf

1>h . . . , x'lti+s_ί9 y)9 originated at qifi, ^isί'which intersect each other with an
acute angle at some point q(ί) (see Fig. 5). By the properties of the potential £/,
the conditions

<7'(ρ)t/"(ρ)Φθ, ρ>d1/2 (2.15)

hold on some finite interval of values of ρ and therefore, one can guarantee that if
dist (qltί, q(ί)) and dist (qΊti, q(ΐ)) are large enough [according to condition (a) they
tend to -f oo as z-> — oo], each of them is divisible by some number from this
interval.

Let i=i0 be such that all of the above holds. Choose half-lines, L and Z/,
intersecting each other with an acute angle at a point, q (/0) = q. With such choices

= r, rf.

ltio9q) =jr9 dist (q'liio, q) =jf r' 9

where j, / are natural numbers. In addition (2.15) will hold for
Let #2, -ι> ^2, -i be points on L, L', respectively, such that

(qίtio9 q2^^ = r, dist (q^q^-i) = r' .

Fig. 5
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For z — — 1, — 2 , . . . we set

Settf—i?! i i 9 v f

t = i/Mforz05^ / g — 1 and choose vhv eRv for z :g z'0 — 1 sothatt^ = ι?
for z g z0 -/ - 1. Finally, let xt = (qh vt)9 i = -1, -2,... .

It follows from the construction that

and for z ̂  0

fx jc v^ = (xf x'

s-1

Using Propositions 2.6 and 2.2, we obtain (2.14). D
The result of Theorem 2 is now obtained by applying (2.6) and Propositions 2.6

and 2.7.

3. The One-Dimensional Case

In this section we will prove Theorem 1(1) for the special case where v = l. In
addition we will prove a slightly modified version of Theorem 2 using
Propositions 1.1-1.3 and Corollary 1.4 (which we have proved for arbitrary
dimension). We use the notation introduced in Sect. 1 noting that vectors and
matrices are scalars when v = 1. In this special case G(q, q') = U"(\q — q'\\

3.1. We first prove assertion (1) of Theorem 1. Consider the set

and the function

A(xi9...,xs9y) =
s-2

(3.1)

s-2

Proposition 3.1. Assume that (xl9..., xs, j;) e J>^(s~2}r\ <#j/(s~l}r\ P)

w/z^π ^^3, α«J /Λ^ί (^1,^2? j)e,/^/(1) w/zβ« .9 = 2. L^z1 ^e^^ x Λ1,

Proof. We apply Corollary 1.4 and use the definition of A. D
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s-l s-2

Proposition 3.2. Assume that (x l5 . . . , xs9 y)9 (*i, . . . , x's9 y')ε Π «β/(ί)π Π
i = 1 i = l

w/z£ft s^3, and that (xί , x29 y)9 (x( , Λ:^ j> ') e Λ^(1) w/z£# j = 2, w/Z£re j; = j;
points qi9 q'i9 1 ̂  z ̂  5, α// fte on the same side of q(y). Then

. Using the properties of U choose positive real numbers r, r' and positive
integers j, f such that

r > max (dθ9 dJ2, dί-\qί-q2 1), r7 > max (rf0, ί/i/2, ̂  - \q{ - q'2 1),

l/ / (r)ί7 / ' (r)ΦOΦC/ / (r / )ί7 / / (r / ),

ίi +7>sign(^1 - ^2) = ίi +/r' sign(^ - q'2).

Let

^ = <

*i = (ft,ι>f), *ί = (ft',ι>ί), ι = 0,-l, . . . ,

(see Fig. 6), where ^, v eR1 are chosen so that i = vi+j,-j for z :

Conv

Fig. 6

From the construction it follows that the pairs (xi9..., xi+s_ί9y)9 x^^ and
(Λ:-, . . . , x'i+s,i9y)9 Λ: _ ί both satisfy the conditions of Proposition 3.2. Moreover,

We now obtain (3.2) from Proposition 3.1. D

To lighten the notation we shall often write A (y) for A (xί9 . . . , xs, y) when

either s^ 3, (xl9 ...9xS9y)eSf] Sj*®nf} Ss/v\ or s = 29 (xl9x29y)eSj/(i\
i=l i = 1

s-l _

Proposition 3.3. The function A vanishes on (°| ,/j/(ί) (see Sect. 2).
i=l

Proof. Let us first assume that s = 2. Using Propositions 1.1, 3.2, and formula (3.1)
we apply the operator dVι to (0.2) two times. We then get

). (3.3)

Using Propositions 1.1, 1.3, 3.2, and formula (3.1), we apply dU2 to (0.2) two times
and get

. (3.4)
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Combining (3.3) and (3.4) we have

or

ftιA(χι,y) = δlιA(χ2,y), (*1?*2,j)e^(1). (3.5)
Using a simpler version of the method of proof used for Proposition 3.2, one can
deduce from (3.5) that dilf1(xl9y) = d^f1(x'l9y

f) when y' = y and (xl9y)9

(x'l9y')e(JSόi(n-ί9m-i9kl9l) (see Sect.O) and when both ql9 q( lie on the
kι

same side of q(y). This fact along with (3.3) imply

U"(r)IU'(r) = const

on {r > d0 : U'(r) + 0}, when A (xί 9 x29 y) φ 0 for some (xl 9x29y)e j^/(1). But this
contradicts conditions (I'ΐ)-(Γ£) on U9 and we must conclude that

So the proposition holds when s = 2.
We now consider s;> 3. Let ze{l , . . . , 5} be fixed. Apply d0ι, δft, δ0j to (0.2)

successively and subtract from this equality that obtained by applying δv dqι9 dV{ to
(0.2). Using (3.1) and Propositions 1.1, 1.3, 3.2 this expression simplifies to

(\qj-qj+i\)\ + S^lίVitυs_1f8_i(xl9...9xs^l9^Uf'(\qs.1-qs

s— 1

[if/ = 1 or s9 one of the two last terms on the left side of (3.6,i) must be dropped]. By
(3.6,s) we have

i = 2

s-1 _

For each configuration (x1,..., xs9 y) e (°| jW(i) there is an x0 e R1 x Rx for which

(xθ9..., xs-ι, y)e <fs#r\ Π ^ίo Therefore we can replace each xi in (3.7) by
ί = l

Xj-ι> 2^7^5, and obtain

dLί-y.-ι(*ι,. ,^^

By substituting this into (3.6, j — 1) we get

^"(ki-#21)42! tWίI;s/s-ιfe, .-.9χS9y)

Γff ̂ (Ift-9i+ι 1)1 ̂ (̂lί.-ι-
Li=l J
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When s ̂  4 we can divide (3.8) by Uff(\qί — q2\) and obtain

(3.9)

Replacing xj by Xj_l9 2^j^s, in (3.9) we obtain a formula for δ3^^^.
Substituting this into (3.6,^-2) and repeatedly applying this procedure we get

Π t/"(k/-ft + ι l )^^"( l^-% + ι l ) , 3 £ / £ , y - l , (3.10)

which can be checked by induction going from j t o y — 1, using (3.6 j'— 1) and
replacing x29 . . . , xs with xί9 . . . x s_ ί [notice that as 7 = s — 1, (3.10) coincides with
(3.9)]. This same substitution in (3.10) implies that

= 2A(y)(s-2)U"(\q2-q3\)d
Ll

/ Φ 2

]^t7w(|?2-ί3l)j9 ^4. (3.11)
2, J J

/Φ2

For 5-^4 we can substitute (3.11) into (3.6,2) and obtain

= 2A(y)\(s-i)U"(\q2-q3\)dq

I

+ (ί-2) Π U"(\qι-ql + l\}dqU"(\q2-qτ\) . (3.12)

/ Φ 2

Notice that (3.12) also holds for s = 3 since in this case (3.12) coincides with (3.8).
We now consider equality (3.6,1). Using the conditions on ( x ί 9 . . . , xs9 y) and

the fact that s^ 3, we can divide (3.6,1) by U"(\qs-l -qs\) and get

(3.13)

Now suppose that

(x, , . . . , xβ, j) e'n Λ^Λ dist (ft, ϊ(y)) > 3 d, . (3.14)
7=1
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[The validity of the last condition follows by shifting qh 1 ̂  i g s, by some vector.
This does not alter A(xί9...9xs9 y).] Then there will be a point, xs + 1 eR1 x R1,

s-l _

such that (x29 . ..,xs+1,y)e f) Jstf(j\ We can then replace each xt in (3.13) by
xί+ι, l^ί^s-1. Hence j=ί

^'i^s-ife^.-^Λ^O^ (3.15)

From (3.15), (3.12) it follows that if (3.14) holds, then

2A(y)(s-ί) Π Uf'(\qj-qj+1\)[Uff(\q1-q2\)dg2U
ff(\q2-q3\)

7 Φ 2

Dividing by the non-zero factors we get

0. (3.16)

Suppose (x1 , . . . , xs9 y} satisfies (3.14) and is such that A(y) = A(xί9...9 xS9 y)
ΦO. If

r>\q2-9ι\, C/'(r)l7"(r)Φθ, (3.17)

then the configuration ((q( , i J, x2, . . . , xs9 y), where q( = q2±r sign (q^ — q2\ also
satisfies (3.14) and the pair of configurations (x1 , . . . , xs9 y), ((q^ , v^, x2, . . . , xs9 y)
satisfy the conditions of Proposition 3. 2. Due to this Proposition and the above
hypothesis, A ((q(, t^), x29 . . . , xS9 y) Φ 0. From (3.16) it follows that if conditions
(3.17) are satisfied, then

£7'"(r)(C/"(r))"1 + c = 0,

where c= U'"(\q3-q2\)(U"(\q,-q2\)Γ^ Thus for r>\q2-9l\ we have

[U'"(r) -h c t/r/(r)] £/"(r) C/;(r) - 0, (3.18)

which contradicts conditions (/{')-(/3 ) on U. To show this let us divide the open set
(9 — {r\r>\q2~ql\, U'(r) φ 0} into disjoint intervals. Let (α, β) be one of these
intervals. It then follows from (3.18) that (U'" + cU")U" = Q on (α,β) whose
general solution is U(r) = cl exp(-cr) + c2r + c3. If a>\q2-q1l then U'(ot)
= t//(jβ) = 0. Since the derivative C7'(r)= — cc! exp( — cr) + c2 is monotone on
(α, jβ), C/7^) Ξ 0, r e(α, )8). But this contradicts the definition of (α, β). Hence α = \q2

— !̂ I, i.e. Θ consists of a single interval. From (I^)-(I^) it follows that β = d^. Thus
U(r) has the above form for each r e(\q2 — q± |, d^. But this contradicts (/0"(^s) as

claimed.
We now see that A(xl9 ...9xs9y) = Q for each (xί9 ...,xs,y) satisfying (3.14).

s-l _

By Proposition 3.2 we can extend this equality to all (xl9...9 xs, y) e Π J>jtf(j\ D
J = l

s-l

Corollary 3.4. Suppose that (xί9 . . . , xs9 y}ε f j

Proof. Use (3.1) and Proposition 3.3. Π
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s-l

Proposition 3.5. Suppose that (xl9 ...,xs9y)e f) M(j\ Then

The proof follows the line of that of Proposition 1.9, but we use Corollary 3.4
rather than Proposition 1.8. We shall not go into details. D

s-l

Proposition 3.6. Suppose that (xl9 . . . , xs9 y)e (°) J>£/(j\ Then

The proof is obtained in two steps. We first obtain the 1 -dimensional version of
Proposition 1.10 and then of Propositionl.il using arguments identical to those
used in the proofs of these propositions. D

For the v = 1 case assertion (1) of Theorem 1 is an immediate consequence of
Propositions 3. 5, 3.6, and 1.1 [see formulas (1.2a,b)].

3.2. We now proceed to Theorem 2. Recall the function b in the statement of this
theorem. For the v = 1 case b satisfies the following condition: if (xl9 . . . , xs_ 1? y\
(X1? . . ., x's-ι, yf)e S j t f ί 9 y ' = jand the points qh # , /= 1, . . ., s— 1, all lie on the
same side of q(y), then b(xί9 . . . ., xs_^9 y) = b(x'l9 . . . , ̂ _1 ? /).

In order to prove this modified version of Theorem 2 we use the v = 1 version of
Theorem 1 (1) and then literally repeat the arguments used in Sect. 2 which lead to
the proof of Proposition 2. 2. Since, when v = 1, B(xl9 . . . , x s _ l 9 y) is a scalar, all
that remains is to prove the following 1 -dimensional version of Proposition 2.7.

Proposition 3.7. Assume that (x^ , . . . , xs _ l , y), (x( , . . . , χ's _ 1 , y
1) e J>stf^ ,y = yf and

assume that the points q^ q , i = 1, . . . , s — 1, all he on the same side of q(y). Then
(2.14) holds.

Proof. The construction used below is a simplified version of that used in the proof
of Proposition 2. 7. Taking ^e^1 sufficiently far from q(y) and lying on the same
side of q(y) as qh q(, i = 1, . . . , s — 1, we can choose r, r' > 0 such that (2.15) holds
when Q = r,r' and such that

where y, / are positive integers.
Let

0i = 0ι -O'-1) rsignte!-^), z = 0, -1, . . . ,

= i)> ί = 0, ...,-/ + 1 ,
^2), /=-/, -/-I,...,

^i = fe^i)5 x'i = (q'ί,vΰ, z = 0, -1,...,

where vί9 v eR1 are chosen so that v{ = v'ί+j_j> as i ̂  —j 4- 1 (see Fig. 7).

-E - - 3
Fig. 7 Cone (?(/))
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Due to the construction

( *-j-s+35 5 χ~j+ 1? y) = (χ-j'-s+39 - 9 χ-j'+i9 y)>

1 = 1

Applying Proposition 2.2, we get (2.14). D

4. Further Study of the Middle Function (An Application
of the Middle and Lower Equations)

In preceding sections we obtained essential information about the function fs_ 1 . In
this section we continue this investigation. Here we deal with arbitrary v ̂  1 . We
emphasize that Theorem 1 and a slightly modified version of Theorem 2 hold for
the case v = 1 (see Sect. 3). Our aim is to prove the following theorem.

Theorem 3. The equality

holds on J^ (see Sect. 2) .
In view of Theorem 2 it suffices to show that

b(xl9 ...9xs_l9y) = Q9 (xl9 ...9xs_l9y)e ̂  . (4.1)

We introduce the following notation:
s-2

C(xl9...9xs-ι9y) = b(xί9...9xs-ί9y) Π G(qj9qj+ί)9
j = ι

(4.2a)

s = 2. (4.2b)

Proposition 4.1. The following equality holds

...9xs_l9 j>K-ι,ι>ι> (4.3 a)

, (4.3 b)

where the functions 6 l 5 6 s _ l 5 andb1 are such that

^s_, bί(xl9...9xs-ί9y) = dvι bs_1(xl9...9xs_l9y) = Q9 s^3, (4.4a)

3016ι(^)0 = 0, 3 0 lb 1(x 1,JO = 0, 5 = 2. (4.4b)

This Proposition immediately follows from Theorem 2.

s-l _

Proposition 4.2. Lei (x1? . . . , xs,y)e Π Mu\ Then
j=ί

dqJ5(xί9 ...9xS9y) = C(xl9 ...9xs.ί9y) dq^ U(\qs.^ qs\)9 (4.5)

(4.6)
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Proof. We first apply dVι to Eq. (0.2). Using Theorems 1 and 2, we then obtain (4.5).
The other equality can be proved similarly. Π

Proposition 4.3. Let s = 2. Then (4.1) holds.

Proof. First let v1 = 0 in (4.3b). Then from condition (4) of the Basic Lemma it
follows that

lim bl(xl9y) = 0. (4.7)
!?!!-» oo

We now make a double application ofdVι to Eq. (0.3) for the case s = 2. Taking into
account (4.2b), (4.3b), (4.4b), and the properties of b [see Theorem 2(b)], we obtain
an equality which shows that bx (x^y) is linear in ql9 i.e.

(4.8)
where

dqίB(xl9y) = dVίBl(xl9y) = 09 dqb2(xl9y) = dυb2(xl9y) = Q. (4.9)

With the facts proved above and condition (4) of the Basic Lemma we successively
deduce from (4.3 b) that B1(xl9fl = 09(l/2)(C(xl9flυl9υly + Q>2(xi9fl9vά = ̂
and, finally, that b (xl ,y) = Q. D

So we have shown that when s = 2 Theorem 3 is true.
In the remaining part of this section we will assume that s ̂  3. The values of our

functions will be 3 -tensors. We will denote such tensors by bold Roman capital
letters: A, B, etc. The components of such a 3-tensor A will be written as A1'"1'̂ ,
l ^ / l 5 z 2 , z 3 ^ v .

Given a tensor A, let Af 2, Af 3, A|>3 denote the tensors A^^^A^)''2'''1'1'3

= (A?, a)1'3'1"''1 = (A* 3)/1)ί3'/2 We say that A is symmetric if A^ = A, 1 ̂  / <j ^ 3.
If a^O?1, . . ., α v)eJ^ vis a vector let A 1 1 a, A 2 1 a, A 3 1 a denote the matrices

V V V

(Ai ia)/ ι ι ' '2= J] A^'^^α 7', (A2 ia)''ι / 2= ^ A^^^ί/-7', (A3 ia) l '»' /»= ^ A^' V.
j=ι j=ι . j=ι

Finally, given a matrix ^4 with entries Al>J\ 1 ̂  /, j^v, let A1 '1^, A 1 ' 2^,
A 2 ' 1^, . . . denote the tensors

Similarly one defines the tensors Ai iA, A2'1 A, A1'2A,... . 4

We will adopt the common notation a®a®a, a.® A and A ® a for tensor
products of vectors and matrices.

Given a matrix-valued C1 -function A of #ι, . . . , # # > v l 5 . . . , vNeRv, its
derivative 5?ι^4 (respectively 9yί./4) will be a 3-tensor with

— A1*1* respectively, (dvA)l^^ = - — A***1*
cq1! [_ ' ϋϋl-1 * .

J

4 These binary operations can be described using multiplication and contraction of tensors if we
consider vectors and matrices as 1-tensors and 2-tensors respectively
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From this it follows that for any scalar C3-function/of qί9..., qN9 υί9 ..., υN<=Rv

the tensors d\^qj> ^l,^,^/ . . . have the form

(33

g q qf)ii>i2,h = - Z r,(d\ q 0/)'1' I'2'/ 3 = : - r, ...

(one should have in mind the definition of the second derivative).
For q, qΈRv with \q — q'\ > dQ we set

Obviously F (q, q'} is a symmetric tensor and moreover F (q1 ', q) = F (q, q').

s- 1 _

Proposition 4.4. Let (xl9 . . . , xs9 y) e f) Λ/0^. ΓAew
7=1

ι,^s)]~M32

θ2,ίl6ι(x2» ^

-2 X ^C^!,. ..,*,_!, Jθ)ι ι Σ 3, £7(|?- 9'|) = 0. (4.10)

Proof. Substituting (4.3 a), (4.5) and (4.6) into (0.2) and using (4.4a), we obtain an
equality in which the variables vl9υsdo not appear. We then successively apply dq

s-l _

and dq to this equality. For (χl9 . . . , χs, y) e f) J^j3/(j) we get

- Σ G(q^1,qd,C(x1,...,xs.ί,y)^ Σ 3βC7(|ί-?'|) = 0. (4.11)
(q,v)ey L ί'^Φί'e^ J

By substituting (4. 3 a) into (0.3) and successively applying d0ι and d1)s_l we get

lt . . . , xs_ 1; y)

We multiply (4.1 1) on the left with (Or (^s_ i , ̂ s)) ~ 1 and add the resulting expression
to (4.12). This gives (4.10). Π
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Assuming that (xί, . . . , xs_ 1, y) E </^ we introduce the following notation:

C1 (xί9 ...9xs_ί9y) = d^.q,^ bι (*ι> > *s-ι>y)> (4 13)

T ( g > I J )(x 1,... Jx s_ 1,jO = 2(3eC(x1,...,x s_1, ijO)*3 J (q,v)exίv...vxs-2vy, (4.14)

Tfc.^.oixi, - , xs, y) = 3 δ^ C(xi9 ...,xs-l9y)

1^s)
2 2C(x l 5 . . .,x s_ l 5 j)] !> 3 (4.15)

1*
= -2 £ \dΌC(xl9...,xs_ί9y)i'ί £ dqU(\q-q'\)\ . (4.16)

q' .q^q'ey

With (4.13H4.16) Eq.(4.10) assumes the form

, . . . s _

+ Y(xl9 . . ., xs.ls JO = 0, (Xi, . ., xβ, jOe'Π Λ^λ (4.17)

Proposition 4.5. There exist tensor-valued functions, W l 5 . . . , W s _ 2 , βwrfβ matrix-
valued function, Z, <9# «/«β/ι, constant in vl9 . . . , v s _ι, ^wc/z //z^/

QC^,...,^^,^) (4.18)

We shall show that, for 7 = 1, . . . , s — 2, there exist tensor-valued functions,
Wifj9s—j—ί^i^s — 2, and a matrix-valued function, Zj? on Λ^ , constant in vt,
s—j—l^i^s — 2, such that

Cι(xl9...9xs-I9y) (4.19)
s-2

= Σ [Gfe_2^s-l)2 1 W / 5 J ( x 1 , . . . , X s _ 1 , 7 ) ] 3 - l t ; . +Z J(X 1,.. . ?^_ 1,J).

i=s-J-l

For 7 -5 -2, (4.19) reduces to (4.18) when Wf = W ί s S _ 2 , Z = Z S _ 2 .
We use induction on/ First consider the casey = 1 . Let ( q , . . . , xs_ j, , j) e Λ^ .

s-l _

Choose x0eBa

qι x 7^v such that (x0, xi9...9 x8-i9y)e f) Λ/(I) Equation (4.17)
for (x0, x1? . . ., xs_ί9y) has the form ί = 1

+ Σ T^^^o. . . . , Λ:s-2, j)
 3' 1

(q,v)ex0\j.. \jxs-3vy

+ 7(x0,...,x s_2,j) = 0. (4.20)

From (4.2a), (4.4a), (4.13)-(4.15), and the properties of b (see Theorem 2) it
follows that a) there are no terms in (4.20) containing t; s_1 ? b) there are no terms
except for the second and the fourth, containing y s_ 2, c) the fourth term is linear in
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vs-2 Multiplying (4.20) on the left by G(qs_2> qs-ι) and on the right by
(Gteo^i))"1 and using (4.2a), (4.14), (4.15) we obtain (4.19) for;- 1.

Notice that for s = 3, (4.19) coincides with (4.1 8), when Vf1 = V f l t l 9 Z = Zί.So
far s = 3 Proposition 4. 5 is true.

We now suppose (4. 1 9) to be valid for somey0 ̂  s — 3 . For (xl9...9xs,ί9y)e
s- __

choose x0eBa x Rv such that (x0,xl9...,xs-i9y)e(~} <As/(0. By setting j =j0
l = 1

and replacing xt by xt-ly for 1 ̂  i^s — 1, in (4.19) we obtain C1(xθ9 . . ., xs-2>y)
By substituting this expression into (4.20) and multiplying the result on the left and
right by G (#s_ 2, qs- i) and (G (qQ9 qj) ~ 1 respectively we get (4.19) fory =j0 + 1 . D

—
Assuming that (xί9 ...9xS9y)e (~] J^^(j\ we introduce the following abbrev-

iated notation. j=1

W^WΛ*!,..., *,_!,#, V/i+=Vίι(x2,. ,xs,y), 1 ^ / ^ J - l , (4.21)

2, (4.22)

(4.23)

(4.24)
s-l _

Proposition 4.6. Let (x±9 . . . ? xs9 y)e Π J^(j). Then

(4.25)

s^49 (4.26)

(4.27)

Remark. (4.26) shows that W f ΐ 1? 2 ̂  / ̂  s — 2, is independent of xs.

Proof. We first substitute (4.18) into (4.17) and then equate the coefficients of
vί9 . . ., t;s_! to zero. Π

Henceforth Eqs. (4.25)-(4.27) will play a principal role. By deleting Wί? W f

+,
l^i-ζs — 2, from them we obtain relations among the T l5 . . . , Ts_ 1 , TSΪ2 and will
show that these relations hold only in the case where b = 0.

We start with the following auxiliary assertion.

Proposition 4.7. The following equalities hold:

G~\s2 ι T,+ = [(T, + T2) 2 - 2 (G-i2)]* 3 > ,^4?

(σΓΛ^2-1^^^! 2 - 2 (G-I)]*^, ^5, 2^/^-3.
The proof can be obtained by a straightforward computation.

s-l _

Proposition 4.8. Let s^4 and let (xl9 . . ., xs9 y)e P| J?jtf(l}. Assume that for
1=1

some i, 2 ^ / ^ s — 2, there are xs+ί, . . . , xs + i-1eRv x Rv such that

(xj9 . . . , xj+a-l9y)ef} S&»forj=29 . . . , ί.

W ί=-(Gs-_1

2,s-ι)2 1Γ(ί-l)T ί+ ΣTi (4.28)
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s-i _
Remark. Equation (4.28) also holds for ι = l, s^ 3, (xl9 . . . , xs,j)e f| Jάt(l\
as immediately follows from (4.25). ί = 1

The proof is obtained by induction in i using (4.26) and Proposition 4.7. We
leave out details.

s-l _

Proposition 4.9. Lei (x ls . . . , xs, >>)e (°) </j/a) β/?d assume that there are

ΛTy, ...^y+^i, j5)e f)
ί = 1

ισ2)S.3 = 0, * = 3, (4.29a)

i β 2 ιSΣ(T i)* f 3 = 0, ^4. (4.29b)
i = l

Proo/. In view of the above condition on (x1? . . . , xs, j) we apply (4.28) with
i = s — 2 and obtain W s_ 2 and then Ws"ίL 2 . By substituting this last expression into
(4.27) and then using Proposition 4.7 we obtain (4. 29 a, b). D

Proposition 4.10. Assume that the assumptions of Proposition 4.9 hold. Then

*(-Gβ-1, s

2-2Fβ.2iβ.1 + F β _ l f S 2.2G s . 2 f S . 1 ) = 0, (4.30)

where

Proof. As some computations are cumbersome, we will only outline the proof.
Firstly, from (4.2a), (4.14), (4.15), (4.22), and (4.23) we obtain Ts

+_2, Tί9 l^i^s
- 1, and then substitute those expressions into (4.29 a, b). From the equality thus
obtained and by using the fact that b is locally constant (see Theorem 2) and by the
symmetry of Gί>ί + 1 and F ί j ί + 1, find that

(2* -3) b(fa.l982'2GΓ^Gs_lt82 2 f a _ _ 2 ί a ^ 2.2 G'f2) = 0, (4.31)

j-i
where G{=Y[Glίl + 1 for l^i<j^s-ί, and G{=E for l£i=j£s-ί.

l = i

Denoting the left side of (4.31) by W we rewrite (4.31) in the form W 3 i (Gι"2)~ 1

= 0 which can be reduced to (4.30). D

We will need the following explicit formula for the matrix d2

q2 U(\q\) and the

(4.32)

s]

(4.33)
where

ψ0(r) = r~
lU'(r), ^(r) = ̂ 2(r) = r-2C7"(r)-r-3t/'(r),

ψ3(r) = r~5 [r2 U'"(ή - 3r U"(r) + 3£7'(r)]. (4.34)

From now on the cases v^.2 and v = 1 will be considered separately.
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Proposition 4.11. Let v Ξ> 2 and the conditions of Proposition 4.9 hold. Then

b(x1,...,xs_1,y)ψ3(\qs_1-qs\) = Q. (4.35)

Proof.5 We first remark that if (xl9 ...9xs9y) satisfies the conditions of
Proposition 4.9, then so does every configuration (x^ , . . . , xs_ 1 , (q9 v}, y) such that
#~#s-ι is within a sufficiently small neighbourhood & of qs — qs-ι Fixing
A T j , . . . , xs- ! , and y we consider the left side of (4.30) to be a tensor-valued function
on q eΦ. We denote this function by V. Due to (4.30), (4.32), and (4.33), an arbitrary
component of V (q) has the form

(V(q)y^,t3 = b £ Vi(\q\)Pt(q)9 (4.36)
ί = 0

where Ph 0 ̂  / ̂  3, is a homogeneous polynomial of degree / in the components of
the vector q = (q1, . . . , #v). Specifically,

Λ>te)=- Σ^ίVί^s-i (4-37)
ι = l

We now show that P3 is not constant on the sphere S={qeRv:\q\ = \qs — qs-ι\}.
Suppose that P3 (q) = const = c,qeS. Since P3 is a homogeneous polynomial of an
odd degree it follows that c = 0 and hence P3 (q) — 0, qeRv. Equality (4.37) implies
that the matrix Gs_2,s-ι maps the open set {qeRv:qί^qi^O} in the subspace
{qeRv\q^ = Q}. But this contradicts the non-degeneracy of 6 !

s _ 2 > s _ 1 .
Choose a neighbourhood Γ of qs — #s_ x on S and a neighbourhood AoflonR1

so that /ίg e0 for any q eΓ, A eΛL Then by virtue of (4.30), (4.36) for q eΓ, A eΛ we
have

*[^oαρ)/>

0(9) + ̂ ιαρ)P1to) + AV2(λρ)P2fe) + λ>3(λρ)^ (4.38)

where ρ= |0 5-&_ι|. For fixed A the left side of (4.38) is a polynomial in the
components of qeRv. Since this polynomial vanishes on Γc^ it vanishes on S.

Now suppose that bψ3(ρ)ή=0. Since ι//3 is continuous [see Condition (/{')]> there
is a neighbourhood, Λ^aΛ, such that

fcι//3(Aρ)φO, Ae^. (4.39)

Since P3 is not constant on S (see above), there is a point q*eS and a non-empty
open subset Π of 5 such that P3(g*) ΦP3(#) for geU. From (4.38) we get

b λ ψ, (λρ) [Λ (q) - Λ (?*)] + b λ2 ψ2 (λρ) [P2 (q} - P2 (q*)]

+ b λ >3 (Aρ) [P3 (q) - P3 to*)] = 0 . (4.40)

By (4.39) the last term on the left side of (4.40) differs from zero when λeΛί and
qeΠ. Since ψί = ̂ 2, it follows from (4.40) that ψί (λρ) = ι//2(λρ) Φ 0 when λeΛ1.
So the functions Ψί and ^2? where Ψ t : λ^> λ^ψ^λρ), 1 ̂  i^ 3, λεΛl9 are linearly
independent. But (4.40) shows that Ψ ί 9 Ψ 2 , and Ψ3 are linearly dependent. Thus for
q eΠ the 3-dimensional vector (P1 (q) - P1 (q*\ P2 (q) - P2 (q*)9 P3 (q) - P3 (q*)) is

5 The idea of the proof was suggested to us by Yu. S. IΓiasenko
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proportional to a vector (c1, c2, c3) independent of # and such that (c\ + c2) c3 φ 0
[see (4.40) and the definition of 77]. For every qeΠ we have

c2 [P* (q) ~ P3 (?*)] = '3 to (?) ~ ̂ 2 (?*)], (4.41 a)

ci [Λ (?) - 3̂ (?*)] = c, [Λ (?) - Λ (?*)]. (4.41 b)

Since these equalities hold on a non-empty open subset of 5, they hold on S. Replace
q in (4.41 a) by - q and subtract the resulting equality from (4.41 a). Since P2 and P3

are homogeneous, we find that c2/
>

3(?) = 0, qeS, and hence that c2 = Q, c1 ΦO.
Similarly, using (4.41 b) we deduce that P3 (q} = c± * c3 Px (#), qeS, i.e.

Both the left and right hand sides of this equality are homogeneous polynomials
of degree 3 in q1, . . . , qv. Since their restrictions to S coincide, they are identical,
that is

(q) £ fa*)2, ?eΛ\ (4.42)

By the non-degeneracy of Gs_2>s_1 (4.42) contradicts (4.37) and hence bψ3(ρ) = 0
as desired. D

Proposition 4.12. Let v ̂  2 αrcd ίΛe conditions of Proposition 4.9 A0W.

ι-?sl) = 0. (4.43)

Proof. Let ύ?, V, S, Γ, ΛL, ρ be as in the proof of the previous proposition. By (4.30),
(4.32), and (4.33) the polynomial Pl appearing in (4.36) has the form

Λ (?) = - Φ GΆ,S- 1 - q1' (%,_ ! - δ,,, Σ q' G^2 > s_ t , (4.44)
ί = l

(5Σι /2 being the Kroneker symbol. If /^ = z'2? A cannot be constant on S. This follows
by an argument identical to that used in the case of P3 (see the proof of
Proposition 4. 11).

By Proposition 4.11, when λεA, qeΓ, equality (4.38) assumes the form

b [ψ0 (Aρ) PO (?) + λψt (λρ) P, (q) + λ2 ψ2 (λρ) P2 (q)] = 0 . (4.45)

As in the above we can be assured that (4.45) holds for qeS. Assuming (4.43) false,
choose a neighbourhood Λ2aA such that

Z?^ 1(λρ)φO, λeΛ2. (4.46)

Let i1 = i2. Since in this case P^ (q) φ const, qeS, there exist q*9 q**eS such that
Λ(?*)*Λ (?**)- From (4.45) we get

O-Λ(?*)] + ̂  λ^Λ- (4 47)

By (4.46) and the identity ψ1 = ψ2ί the functions Ψ1 and Ψ2 are linearly
independent on Λ2. Then from (4.47) it follows that Pι(?**) = Λ(?*) which
contradicts the choice of q* and #**. D
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Proposition 4.13. There is a point r, arbitrarily close to d^ such that

Proof. Assuming the proposition to be false, choose a point d2e(d0, d^} such that
i//! (r) £7'(r) U"(r) = 0 for all r e(</2, rfj, that is (see (4.34)), ί/"(r) [(t/'(r))2/r2]' - 0.
It is easy to see that the identity t/"(r) = 0, re(d29dί)9 contradicts conditions
(/ΓM/a) on U. So the set (d2,d1)n{r:U"(r)=tQ} is non-empty and open. Let
(α, j8) be an interval being a connected component of this set. The equation
[(C/'(r))2/r2]' = 0 has the general solution U(r) = c0r

2 + c1 on (α,j8). By the
definition of (α, β), U"(β) = 2c0 = 0. Whence c0 = 0 and U"(r) = 0 for r e(α, j8). But
this contradicts the definition of (α, β). Π

Proposition 4.14. Lei v ̂  1 απJ fef ( q , . . . , xs_ ί , j) 6 J^ . Then (4.1) /zoώfr.

Proo/. We first consider the case v^2. Proposition 4. 12 then implies that if
(xΊ , . . . , x's _ 1 , y ') e ./̂  and there is a point x'seRv x Rv such that
(x'1? . . . , X g _ l 5 Λ:^, jμ') satisfies the conditions of Proposition 4.12 and moreover if
Ψι(\Qs-ι ~^sl)^^5 ^en ^ W ϊ j ^s-iJ J7) — O ^ut given a configuration
(xl9 ...9xs-ί9 $)£*?£#!, Proposition 4Λ3 assures us that there is another con-
figuration (x'ί9 .. .9x's-l9y') with y' = y and with the properties just mentioned.
Since b is constant when y is fixed (see Theorem 2), we have b (xί , . . . , x s_ 1 , y) = 0.

We now deal with v = 1. In this case equation (4.30) assumes the form

6(xι,. . . ,x s - 1 ,Jθ^(lί s -ι-ίsl) = 0, (4.48)
where

(xl9 . . . , xs-ί9 and j; are assumed to be fixed). _
From (4.48) it follows that if (x'l9 . . . , x's-ι9y')eS<tfι, if there is a point

x'seRl xR1 such that (x(9 .. ., x's_l9 x's9 y') satisfies the conditions of Proposition
4.9 and moreover if \μ(\q's-ι — q's\) Φ 0, then b(x(9 . . ., x's-ι,y') = Q>

In the proof of Proposition 3. 3 it was shown that given ceR1 and a
neighbourhood & of dl9 there is a point reφ for which

[t/'^r) + cE7"(r)] t//A(r) t/r(r) Φ 0.

Keeping this in mind, for every (jc l5 . . ., xs_ί,y}eJίj^l, it is easy to find a
configuration (x'1? . . . , x's-ί9 y') with y' = y which satisfies the conditions just
mentioned. Since b(xl9 . . . , xs-l9y) is independent of xl9 . . . , xs~l9 we have
b(xί9 ...9xs_l9y) = Q. D

This finishes the proof of Theorem 3.

5. Completion of the Proof of the Basic Lemma

We let J/S denote configurations (xl9 . . . , xs-l9 y)e(J&(n — 1, m — I9kί9s— 1)
1

satisfying the following condition: there is a point, xeRvxRv, such that

(x l9 . . . , xs-i9x,y)er\ ^(ί} (see Sect. 1).
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Proposition 5.1. Let (x1 , . . . , xs_ 1 , y) e Λ/s. Then

0U-Js-ι(*ι>. >* s - ι>y) = 0. (5.1)

Proo/ We shall consider only the case s^3, because when s = 29 j^cj^
and hence our proposition follows from Theorems. It is easy to find x{

= (qhυi)eRvx R\ -j + S ^ / g O , such that (x-s+3, . . . , x^^e^/j^ and such
s-l

that (xi9...,xί+s,l9y)e f| Λ/^ for z = 0, . . . , -s + 3. By Theorems

By Proposition 2.1 and the non-degeneracy of the matrix G(qi9qi+ί)9

- s + 3 g / ̂  0, we obtain (5.1). D

Corollary 5.2. Lef (x l9 . . '

3,1/5(^1,...,xs,Jθ = 0. (5.2)

One can get (5.2) by first applying dϋι to (0.2) and then using Proposition 5.1.

Proposition 5.3. Let (xί9 . . . , xS9 y) e Jsϋ (see Sect. 0). Then

(a) !/ £/'(!?!- ?2 1) = <Uλ*«

δ ίβys(x1,...,xs,Jθ = 0; (5.3)

(b) (ft/Oft- !-&!) = (), ίAe/i (5.2) Ao/ώ.

Proof, (a) In this case Eq. (0.5) has the form

U'(\qs-qs + ι\)\qs-qs + ιΓ*(dυJs(x^ . . . , xs, y), qs- qs + ίy = 0, qs + 1^Ba

qs.

Dividing by the non-zero factors and using the fact that Ba

q is a non-empty open
set we get

d0.ys(*i,...,*S5j/) = 0.

Using this equality, an application of dVs to (0.2) gives (5.3).
Assertion (b) can be proved similarly [use (0.5) instead of (0.4)]. D

Proposition 5.4. Let (xl9 . . . , χs9 y) e J^ and let U'(\qs-ι — qs\) = 0. Then

f8(x1,...,xs,y) = 0. (5.4)

. Set

where a) if v ̂  2, 1 is the unit exterior normal vector of an arbitrary supporting
hyperplane of Conv (q(xl u. . . u^sU3>)) passing through q1; b) if v = l, ! = /
= sign (qί — q2). Let τ be such that | q1 (τ) — ^2 1 — dί . If 51 ̂  3, then the configuration
((#ι (0? ϋι)5 ^25 j -^s' Λ f°r ^ e [0, τ) satisfies the assumptions of Proposition 5.3
(b) which in turn implies that

δq fs ((q> vj, x2 , . . . 9xs9 y) \q=qι w - 0 , 0 ̂  t < τ . (5.5)
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If s — 2, then the above mentioned configurations satisfy either the assumptions of
Proposition 5.3 (b) or those of Proposition 5.2. In both cases (5.5) holds. From (5.5)
and the identity/s = 0 on &jtf(n9 m, k, s) (see the statement of the Basic Lemma) we
obtain (5.4). D

We will treat the cases v ̂  2 and v = 1 separately and will start with the first.
Here we need two easy geometric results whose proof we leave to the reader.

Lemma 5.5 Let KdRv, v ̂  2, be convex and let /?1 Φ p2 lie on its boundary. For i
= 1,2 let L{ be a supporting hyperplane of K passing through p{ and let l{ be the
exterior (with respect to K) normal of Li passing through pt. Then for y
and yeK we have

(1) distO^j;)^ distil), ί = l , 2 ;

(2)

Lemma 5.6. Let K be as in Lemma 5.5 andleΐp1,p2eRv\K,p1 Φ/?2. Thenat least
one of the points Pi, p2 is an extreme point o/Conv^upί u/»2).

s-

Proposition 5.7. Let v ̂  2 and let (xl9 . . . , xs, y)e p| Λ/^nX^ (see Sect. 1).
Then (5 A) holds. i = 1

Proof. LQtK=Conv(q(x1 u. . . uxsuj)). For i— 1, 2 let qi be the^ appearing in
Lemma 5. 5 and let /f be the corresponding exterior normal. Let 1^ be the vector
corresponding to lt and set

?ι (0 = ̂ i + ίli , 9s(t) = qs+tl29 t^ 0 .

7s lrs)

Fig. 8

Let τ l 5 τs be such that

(see Fig. 8). If

:0}, (5.6)
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s-l

then 0 < τi ^ τ1 , and ((q^ (t)9 v^\ x29 . . . , xs, y) e f| Stf® when 0 ̂  ί < τ( , and for
i = l

such t and, moreover, for t = τ( (by Corollary 5.2 and the continuity of /s)

If τi = T l 5 then ((#t (τi), i^), x2, . . . , *5, JO is a boundary configuration and, by
(5.7) and by the assumptions of the Basic Lemma, (5.4) holds. If τi < τ1 and s = 2,
then ((q1 (τi), i^), x2, y) satisfies the assumptions of Proposition 5.4 which together
with (5.7) imply thatf2(xi,x2,y) = Q. Thus for ^ = 2 our proposition is true.

We now suppose that s ̂  3 and τ(<τ1. First consider the case where for every
/ e [0, τs), q1 (τi) is an external point in (q1 (τi), v1)\jx2\j...\jxs-iv(qs (t), vs) \jy).
In this case Lemma 5.5 implies that ((q1 (τi), f1), x2, . . . , xs-ι, (<7S(0? vs)> Λ?
ίe[0, τs), satisfies the assumptions of Proposition 5. 3 (a) which in view of the
continuity of fs implies that

τί),ι>ι), X2> > x,-ι> (<ls(t)>v8)>y)> 0^t^τs. (5.8)

If / = τs the right side of (5.8) vanishes. This tegether with (5.7) imply (5.4).
We now consider the case where there is a t e [0, τs) such that ql (τi) is not an

external point of (qί (τi), u j ux2 u . . . u(gs(0? O uj^. It is easy to see that there
exists a minimal / with this property. Denote it by τ^. By Proposition 5.3 (a) and the
continuity of /s,

=/s(teι(τί),ϋι), ^2, - - - , ^s-i, (ft(O^s), JO, 0^ ί^τ;. (5.9)

The definition of τ's and Lemma 5.6 together imply that qs(τ'^ is an external point of
(0ι (τi)> ι>ι) u.T2 u . . . ux s _ ! ufe«), ϋs) \jy. Hence (fe(^), ι?s), jcs_ 1? . . . , x2,
(qι(^'\\^ι),y) satisfies the assumptions of Proposition 5.4, from which it follows
that

fs((<ls«\ vs), X8-19...9X2, (q, (τi), vJ9 y} = 0. (5.10)

Using (5.7), (5.9), (5.10), and the symmetry of /s (see the statement of the Basic
Lemma) we get (5.4). D

Proposition 5.8. Lei v ̂  2, let (xl9 . . . , xs9y)e^^9 and assume that the
following condition holds: there exists a supporting hyperplane, L, of
Conv (q (x1 u . . . u xs u y)) passing through ql and such that qi for i = 1 , . . . , s is an
extreme point of Conv (q(x± u . . . u.v, u y) u/)), where I is the exterior (with respect
to Conv(q(xl u. . . uxs\jy)) normal of L, passing through q1. Then (5.4) holds.

Proof. Let %, 0 ̂  z ̂  5- — 1, denote those configurations (xl9 . . . , xs9 y) satisfying
the conditions of our proposition and in addition (for Q^i^s — 2) the following

s-i-l

condition: ]Ί[ U'(\qj — qj+i\)^Q. We have to show that/s = 0 on ^s_ t. For this
j=ι

we shall show that fs = 0 on %, 0 ̂  / ̂  j — 1, using induction.
s-l

Evidently, ^0^ Π ^^0)πJ4ym Therefore Proposition 5.7 implies that
j = ι

/s = 0 on ^0. Assume fs = 0 on ^ for some z, 0 ^ / ^ 5 — 2. Since % is open, all
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derivatives of fs vanish on ^. Keeping this in mind we apply dVs to Eq. (0.2) where
we assume (x l5 . . . , xs, y) e %. It follows that

^'(101 ~ 02 1) I0ι - 02 Γ1 [32v2,v,fs-ι (*2, , *s» ΛK0ι - £2) = °

By definition of % and since z :g s — 2, the scalar factor on the left side is non-zero.
Hence for all (x^ , . . . , xs, y) e %

As (6i is open, (5.11) remains true when we replace q± by an arbitrary point
sufficiently close to qί . Therefore for (x l5 . . . , xs9 y} e %

3U/s-ι(*2,...,* s,y) = 0. (5.12)

Now let (*! , . . . , xs, y) e % + 1 . Using the properties of U choose a point q' on /
appearing in the statement of the proposition, such that

I?'-?! (></!, E / W - ί i D Φ O , min \q'-(]\>d1.
qexj. u. . uxsu.y,

9*#ι

By the definition of Ba

qι (see Sect. 0) and %, we have

^e^ι? (^x^ .^Xs-^JOe^, (5.13)

where x' = ( '̂, ι/), v'eRv. As 5^ and % are open, there is a neighbourhood, (9,ofq'
such that (5.13) remains true when #' is replaced by an arbitrary point q0 e@ and x'
is replaced by x0 = (qQ,vQ\ v0eRv. Therefore for every x0 = (^0,ι;0)e(P x Rv

equality (0.4) holds which, by the induction assumption, assumes the form

u'(\qQ - #ι I) \q0-qι\~l <dvjs(χι, , χs, y), q0 - qι> = o.
By the properties of Θ it follows that

dvjs(xι,...9xs9y) = 0. (5.14)

The inclusion (x0, . . . , x s _ l 5 y)e %, x0e@ x Rv, allows us to apply (5.12) to
(x0, . . . , Λ:S_ ! , y) which gives

3 2

0 l ϊ f , ._ 1 / s -ι(^ι,. . .,x s -ι,Jθ = 0. (5.15)

In view of (5.14), (5.15) an application of dϋι to (0.2), where (x l s . . ., xs, j)e% + 1,

YieldS 3 ί ι/β(^1,...,xβ,y) = 0. (5.16)

As in the proof of Proposition 5.7, let #ι(0 = tfι + *l» where 1 is the direction
vector of the normal /. Let τ[ =min{ί ^0: U'(\qί(t) — q2\') = Q}. It is easy to see
that if 0^t<τ(, then ((qifoυ^Xz, ...,xs,f)e<#i+i. By (5.16) and the
continuity of fs we have

f8(x1,...,xs,fl=fs((qι(t),υ1),x2,...9xs,fl, 0^t^τ(, (5.17)

(we remark that τ ^ > 0 when i<s — 2 and τ i ^ O when i = s — 2). If

ki (τi) -q2\ = dι tnen ((tfi (τi)> ̂ ι)5 x2» 9 ^SJ y) is a boundary configura-
tion, and (5.4) follows from (5.17) and condition (1) of the Basic Lemma. If

I0ι (τί) ~~ 02 1 < ̂ i 5 tnen (-^s? 5 ^2s (0ι (τίX ^ι)> JO satisfies the assumptions of
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Proposition 5.4 which in view of (5.17) and the summetry of fs also implies
(5.4). D

Proposition 5.9. Let v^2, let (xί, . . . , xs, y)eJ*£#, and assume that the
following condition holds: there exists a supporting hyperplane, L, of
Conv (q(xιv...\jxs u y)) passing through qγ and such that the straight line passing
through ql and orthogonal to L has no intersection with Conv(g(y)) Then (5.4)
holds.

Proof. Let ®ί5 O r g / ί g s — 1, be the set of configurations (xl9 . . . , xs, y^
satisfying the following condition: there exists a supporting hyperplane, L, of
Conv (q(x1\j...\jxs \jy)} passing through qγ such that q^ for j = 1, . . . , s — i is an
extreme point of Conv ((q(x^ u . . . u Xj u y) u /), where / is the exterior normal of L
passing through q1 . One can easily check that ^Oc ̂  c . . . c &s_ ί and that ®0,
® s_ι coincide with the sets of configurations satisfying the assumptions of
Propositions 5.8 and 5.9 respectively.

We shall now show by induction that fs = 0 on @ί9 0 ̂  i ̂  s — 1 . For i = 0 this
follows from Proposition 5.8. Suppose now that fs = 0 on ̂  for some /, 0 ̂  / ̂  s
— 2. Just as in the proof of Proposition 5.8 one can obtain the equality

(x1,...,x8,y)e@i, (5.18)

which implies (5. 11) provided that V'(\ql — q2\)^F 0. If, however, U'(\q1 — q2\) = 0,
one could find a point, qel, such that U'(\q — q2\)=¥Q. Since
((#, ̂ i), x25 > ^s? JO E ̂ i an(i ί̂ is an open set, we have ((#', i^), x2, . . . , xs, j) 6 ̂
for every '̂ from a sufficiently small neighbourhood of q. Replacing ql in (5.18) by
q' we get (5.1 1) and then (5.12). The subsequent arguments do not differ from those
involved in the proof of Proposition 5.8.

Proposition 5.10. Letv^2 and let (xί9 . . . , xs, y) e Λ/. Then (5.4) holds.

Proof. Let <f0 be the set of configurations satisfying the conditions of
Proposition 5.9 and let ^, / ' = 1 5 2 , . . . , be the set of configurations
(x1? . . . , xS9 y} e Λ/ satisfying the following condition: there exists a supporting
hyperplane, L, of Conv (q(x± u . . . ux s u>0) passing through gx and such that on
the exterior normal /of L passing through ̂  there are points, q0, . . ., q-i+ί, such
that(a)^ |^- ? J + J)ΦθJ=0,.. . ,-/+l;(b)whenxj = (^f;j),t;j
and when A:J = X>/ for y>0, (xj+ l 5 . . . , x'j+s,y)eJ'^ for 7= — 1, . . . , — / , and
(x'-ί+l9 . . . , x'_ i + s, jμ) satisfies the assumptions of Proposition 5.9.

We show by induction that fs = 0 on ̂  for every i. For / = 0 this follows from
Proposition 5.9. Adopting the same procedure as that used in the proof of
Propositions 5.8 and 5.9 we can go from i to i -f 1 . Finally we note that Λ/— (J ̂  .

i

This completes the proof of Proposition 5.10 and also the proof of the Basic
Lemma for v ̂  2.

In the case v = 1 the following two propositions play the role of Propositions 5.7
and 5.8 above.

s-l

Proposition 5.11. Let v = 1, let (xl9 . . . , xs, y)ε Π ^^(l\ and assume that dist
fe> q(y)) > 3 dι . Then (5.4) holds. ί = l
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Proposition 5.12. Let v = 1, let (xl9 . . . , xs, y) e ./X and assume that dist (qs, q(y))
>3^. Γften(5.4) ftoWs.

Proposition 5.11 can be proved as was Proposition 5.7. However the ine-
quality dist(#s, q(y)) >3dί replaces the condition that qs is an external point
in x 1 ? u. . . ux5uj. Moreover, the fact that for t, / '>0 the point
#ι (0 = tf i + ^ sign (̂  - q2) is external in (q1 (t)9 vj u *2 u . . . u xs- 1 u (#s (/')> ^s)>
where #S(O = #S +

 ί /sign(#s-#s-ιX allows the arguments to be simplified.
The proof of Proposition 5.12 is similar to that of Proposition 5.8.
The following proposition completes the proof of the Basic Lemma for v = 1 .

Proposition 5.13. Let v = 1 and (xi9...9 xs9 y) e Λ/. ΓAen (5.4) holds.

Proof. Let J^ be the configurations satisfying the assumptions of Proposition 5.12
and let ̂  , i = 1 , 2, . . . , be the configurations (xl9 ...,xs,y)e ^$4 for which there
exist q0, ...,q_i + ίeRl such that (a) l/'d^-^ + i D Φ O , - i + 1 ̂ j^O; (b) when

x'. = (qj9Vj)9 v'jeR\ for j ^ O and when x'j = Xj for j>Q9 (x'j+l9 . . . 9 x r j + S 9 y ) e
,/X -zgj^-l , and the (x'^i + l9 ...9xLi + s9y) satisfies the assumptions of
Proposition 5.12. By the latter proposition fs = 0 on ̂ . We go from Jf to Jf+1

using the method adopted in the proof of Proposition 5.10. It remains to note

= y g\. αthat
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