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Abstract. From a Feynman-Kac formula in a Fermion Fock space for the
Schwinger functions of the infinite lattice periodic two-dimensional Ising model,
scaled and scaling limit Schwinger functions are defined and shown to admit an
absolutely convergent series representation. As the critical temperature is
attained, it is shown that the scaled Schwinger functions converge and that the
resulting scaling limit Schwinger functions obey the Osterwalder-Schrader
axioms.

I. Introduction

In [1] the transfer matrix for the two-dimensional finite periodic lattice Ising model
was diagonalized in terms of finite lattice Fermions. In [2], starting from a finite
lattice Feynman-Kac (F-K) formula, series representations for infinite lattice
correlation functions were defined. In [3] we showed that the /c-point infinite lattice
correlation functions Sk are represented by a F - K formula in a Fermion Fock
space. In this representation two sets of canonical Fermion operators, related by
a proper linear canonical transformation (plct), are utilized (see [4]) and energy-
momentum and spin operators are defined. In [5] a generalization of Wick's
theorem was proved for plct and used to obtain explicit series representations for
Sk. We also defined series representations for scaling limit Schwinger functions Sk

from above (T + ) and below (T~) the critical temperature Tc. The Sk are natural
candidates for the Schwinger functions of a Wightman field theory.

In this article we show that the Sk are the limits of scaled infinite lattice
Schwinger functions and that the Sk satisfy the Osterwalder-Schrader (O-S)
axioms [7].

In Sect. II we introduce scaled Schwinger functions Skλ = Sk(λ)/Zkλ, where
Λe[0,1] is a scaling parameter that depends on the temperature T; λ->0 as T-> Tc,
and Zkλ is a wave function renormalization. We prove absolute convergence of
the series representation for Skλ, uniform in λ, as well as convergence to the scaling
limit, i.e. lim Skλ = Sk. From these results the series for Sk manifestly

0010-3616/82/0084/0153/$03.60



154 R. Schor and M. O'Carroll

satisfies Osterwalder-Schrader (O-S) positivity; O-S symmetry also follows.

In Sect. Ill a factorization theorem for the scaling limit of Fermion matrix
elements of the spin operator is proved and used to obtain strict upper and lower
bounds on S2 which imply O-S temperedness. S2 is less singular than R~1/κ,
for small R, where R is the Euclidean distance. Bounds on Sk, k>2, which imply
O-S temperedness are obtained by combining the existence of the scaling limit
with bounds on S2 and using a result of [6]. For T+ a clustering property is
proved which implies the uniqueness of the vacuum of the reconstructed Wightman
theory.

Formally, Poincare invariance of the real time Schwinger functions, the
Wightman distributions, is seen most easily using rapidity variables. In these
variables we give a simple proof of rotational invariance of S2 in Sect. IV; for
fe > 2 a more technical proof is needed and is given in Appendix D.

A key ingredient in showing the convergence of the series for Skλ is a
combinatorial lemma for the expansion of Pfaffians which we give in Appendix A.
In Appendix B bounds and limits of various scaling functions that occur in Skλ

are obtained. In addition to the results of Appendix A, in order to prove convergence
of the scaled Skλ and rotational invariance of Sk9 k> 2, we use properties of scaled,
Hubert transforms and rapidity transforms given in Appendix C.

For other approaches to the scaling limit see [2-Π], [8] and [9].

II. Scaling Limit

We define scaled Schwinger functions, Skλ, k = 0,1,... oo, λe[0,1], by

Skλ(s'ί9 xί,..., 4 xi) = Sk(s[/λ9 x'Jλ9..., sί/λ, x'Jλ'9K(λ))/Zkλ (2.1)

for λe(0,l],s[,x[eR, 1 ^ i ^ fe, s[ < s 2 , . . . , <s'k9 where K(λ) = JT(λ)~\J >0f T
the temperature, and K(λ)^Kc (critical coupling) as λ-^0 (see Appendix B). Sk

are the infinite lattice Schwinger functions given by the Feynman-Kac formula
of [3] extended to the continuous s'ί9x'i. For T> Tc Zkλ = (xγx2ψ

2. ((|1 -
sinh2 2K|2)1 / 8/coshK*)\ tanhK* = e~2K. For λ = 0 set Sk0 = S£, the scaling limit
Schwinger functions defined in [5]. From the series representation for Sk for T> Tc

in [5] we have the following representation for S2Nλ, λe(0,1], in the difference
variables, denoted by {si9 xf}?= f1:

1

C _ V Γ T T A Γ Y C V C \flλ (y c ^ Π ?ϊ
J 9 \Γ 1 / I! -i *M m I Λ ϊ X 1 * W / ± 1 < Λ / J J / [ / * « l V̂ 1 % ̂  1 i^ \A*mJL\

^i> Λ U I I I I ^ J . JL f t l \ 4 - \ y W l l ^ (• 1* J . ' t i l ' t ' t/ ί?t 1 V J. ' i. / " ^ '

{m^-ijyoddίm^even^2^-1

where Tm22V'm2JV_ 1 (x 2 i V ) s 2 N ;x 2 i V _ 1 ? 5 2 i V _ x ) = Tm2N_ι(x2N_us2N_1) and the linear

operators T^.mi (xj9 Sj: xi9 st) = Tji: L2{Rmi) -+Ί}(R"ί>) and Γi/x^ s£) = Tf: L2(Kmi) -^ C,
Ae[0,1], are defined as

=i... i m - ri

•exPi - 2 Σ Σ (ωλ(rfK + ΨW

)dmip\j > 0 even, i odd;
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ίe χ p \ - i Σ Σ (ωλ(pΊκ +

•f((pJ)Um)dmφJ,j>Qeven, i odd

Tff = {

for λe(0,1]. Also define θ^^s^x^) = θ{ by

For A = 0 define T? = Γ^ , T? = Tf and θJ = θx by using the A ̂  0 limit functions of
Appendix B.

In the above ωλ(p) = ε(λp)/λ, cosh ε(p) = cosh 2X* cosh 2X - sinh
sinh 2X cos p, ε(p) ̂  0,

p ) 1 J ( p ^

Ξ Pfaffian. Bx

λ is the (n + 1) x (n + 1) anti-symmetric matrix with entries

4fy , 1 ̂  ij g n, is the n x π anti-symmetric matrix with matrix elements

Afj = mλ_ij9 1 fg i<j^m,Afj= —mλ_ij9 m + 1 ̂  i<j^n,

Afj = miy, 1 ^ i ^ m, m + 1 ̂  j ^ w,

mλ

± =

χλ(k) the characteristic function of [ — π/λ, π/λ] and the function

where ΦA

±(^Aί7) ± ( ) , ± ( ) [ ( i ) ( 2 ) ]
with χx =ctnhK*ctnhK,x 2 = ctnhK/ctnhK*.

For λ = 0, S ^ is defined to be the series of Theorem II of [5] which is the
same as (2.2) using the Λ->0 limit functions of Appendix B. The above integrals
over the distributional kernels of Tfj are symbolic: the product of the singular
factors - iλ(l - e

iλ{Pi~Pj))~ 1χλ{pi)χλ(pJ) of mλ

+ij being defined as the tensor product
of # / s , the scaled Hubert transforms of Appendix C. The above holds for T> Tc,
and a similar representation holds for T< Tc (see [5]).

Concerning the convergence and λ -• 0 limit (scaling limit) of (2.2) we have

Theorem II. l . a) The series for Skλ converges absolutely and uniformly for Ae[0,1]
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and all st bounded away from zero, b) Sk is the scaling limit of Skλ, i.e.
lim Skλ = S£; the limit can be taken term by term, uniformly for all s. bounded

away from zero.
From Theorem II. 1 follows

Theorem II.2. S% manifestly satisfies O-S positivity, is invariant under
Euclidean translations and has O-S symmetry.

The proof of Theorem II. 1 will be given in a series of lemmas.

Lemma II.2. Letc = l-\-c1 + c3,c1 and c3 given by Lemmas B.2 and B.3 respectively
cx -f c2)

2,c2 given by Lemma B.2 Then
c / π ) ^

i + l)3fc/4(mj+ l)3 k / 4/k! wfcere mi;. = min{mί?mJ },

and let p(s) = (1 + cx -f c2)
2,c2 given by Lemma B.2 Then

a) || T£ j mJ| ^ c ( c / π ) ^

b)
c)

in Lemma B.I.
The proof of Lemma II.2 is given in Appendix A.

Let mi} = min {jnb m}),

F(m,,m) = X

and G(m,ξ) = ξm(m + l) ( m

c c
Lemma Π.3. Let ζx = -p(sλ Λ —, then

π CQS^U

Γ2N-1 ΠΓ2ΛΓ-1 η

Σ Π GK« Π % « I + I )
1

Proof Follows from Lemmas II. 1 and II.2.
To study the convergence of the series in Eq. (2.3) define

H{m29ζ)= Σ F(ml9rn2)G{ml9ξ).
mi = 0

Lemma II.4. H(m29ξ) <η{ξ)eviξ)m\ where

η(ξ) = yiexp{y2ξ
2 + yiξ413) and v«) = y 3ξ 4 / 3

for some numerical constants 7i,y2»y3

00 Wl2 ffi2 00

Proof Using the identity ^ ^ = ^ ^ we have
mi = 0 /c = 0 fc = 0 mi =fe

# K , « = Σ r r K + V3kl*I(k, ξ), I{k, ξ) = Σ —(m, + 1)<* + 1 +

fe = O f C ! m i = f c m l '
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Using the inequality

^ ( n + l)(B + 1)β-Λ,/(fe,ξ)g £ (ξe)m/(rn+ i)(m-

= {ξe)k f (ξe)M(m + /c + l) ( 1 + / c / 2 )/(m + / c + l ) m / 2

m = 0

g(ξe)* £ (ξe)V"+*)'2fct'VI" + 1)/7(m!)1'2 (2.4)
m = 0

From this we conclude, using Schwarz's inequality, that there are numerical
constants a 1 ? a 2 ,a 3 such that /(/c, ξ) ̂ α1(α2ξ)k/ck / 2exp(α3ξ

2). Therefore,

k = 0 \K[)

by (2.4). Thus, by Holder's inequality, there are constants such that

Finally the convergence of the series of Lemma II.3 is established in Lemma II.5
below. Define recursively ξi2 . by ξl2...j = ξjeπρ\v(ξί2,_j-ί)\.

2N-1

Lemma II.5. \S2Nλ\ ^ [1 ittu.J'

Proof. Summing over m1 in (2.3) and using Lemma II.4 we have

Γ2N-1 ΠΓ2N-1 Π

\S2Nx\£itii) Σ Π Giml9ξd\\ Π % % i )
w f - 1 L i = 3 JL ̂ =3 J

. f F(m2,m3)G(m2,ξ12). (2.5)
m 2 = 0

In obtaining (2.5) we have used the fact that G{m2,ξ2)ev{ξί)m2 = G(m2,ξi2). By
Lemma II.4 the sum over m2 is bounded by η(ξί2)ex{ξί2)m\ By repeated use of this
process we arrive at

00

| S 2 N λ l ^ ^ ( ί l ¥ ί l 2 ) ^ 1 2 . . . 2 N - 2 ) Σ G(m2N - iAl2...2N - ίl
W2N- 1 =0

and from Lemma II.4 with m2 = 0

00

Σ G(m2N-1^12...2iV-l)^^12...2N-l)
W2N- 1 =0

Lemma II.5 completes the proof of Theorem II.la. We now turn to the proof
of Theorem Il.lb. By the uniform convergence in λ of the series for S2Nλ (established
in a) it is sufficient to show convergence for λ -»0 of a general term of S2Nλ of
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Lemma II. 1 which follows immediately from the following lemma:

Lemma II.6. Let γ denote convergence in the strong L2 operator topology. Then as
λ->0.

a) Tfj7 Tip b) T\ r 7], c)θϊ->θt inL2

uniformly for all imaginary time difference variables bounded away from zero.
The proof of Lemma II.6 is given in Appendix A.

III. O-S Temperedness of S* and Clustering

The following lemma on the factorization of scaling limit Fermion matrix elements
of the spin operator is used to obtain upper bounds on S^ sufficient to guarantee
O-S temperedness.

Lemma III.l. Let D be the n + 1 dimensional anti-symmetric square matrix with

matrix elements Λ _ (pb pβ = (ωipj - ω{pJ))/(pi -f pj)9 0 ̂  / <j <^n, n odd. Then

Pfaffian D = ft

Remark. By taking po-> oo we obtain the Pfaffian appropriate for T + with Γs in
the first line after taking out an overall factor of

fliPi-imy1'2 from Pf Bx

0.
i = 0

Proof Introduce the rapidity variable θ by p = msinh20, then A_{pbPj) =
tanh (0. - θj). By definition the Pfaffian is then

(n-l)/2

peP k = 0

where P is a partition of {0,1,.. ., n) into two disjoint classes {PiO> Pii? > Pi ( I I - lyi}*
{Pioi P219 j Vi(n- \)ii} s u c ^ that pίk < p2k and (— l ) σ p is the sign of the permutation

{0,l,...,w}->{p l o,P2o» -,Pii,P21> jPl(Π-l)/2»P2(n-l)/2}»
Let f. = tanh θi9 then

(«-l)/2

D=Σ(-IY> Π ( 4 , - / P J / ( I - 4 J P J
pep k=0

Multiply D by the symmetric f | (1 -fjj) to obtain

(w-l)/2
δ Ξ f l Π d-/1/ J)=Σ(-1)" Π (/plk-/pj Π (/P,-4)

For fixed / the degree of fx is one in the first factor and n — 1 in the second factor.

B is an anti-symmetric polynomial of degree n in each variable fojλ,...,/„ and

£ = 0 if /. =fj for some i. Thus B has the form £ = c f | (̂ j - / , ) , where c is
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a constant so that D = c \\ tanh (0. — θ3). Taking successively the limits
0 ύ i < j < n

θ0 -> oo, θt -*• oo, . . . , θn —• oo we obtain c = 1.

Concerning S£ we have

Theorem III.l. The S£ satisfy O-S temperedness. In particular, let S\{s) =

$2(0,5), s > 0, denote the difference variable 2-point function and S{(s) =

1 °r _ dp— Γ e sω(p) ^ the free particle 2-point Schwinger function for mass m. Then
2π _o0 ω{p)

00 / c/\n

0 < Si - 1 < X ^ - < e s { — Si— 1 for T-,

« even

GO (<?f\n

S{<SL

2< £ ^ J L < e s { - l for T\
nodά H-

and for T+ and T" , se(0, l],Si(5) < φ 1 / π / ^ some constant c.

Proof As |zl_(p,g)| ^ 1 for all p,qeR, the upper bound on S£ follows by using
Lemma III.l to bound the Pfafϊians P/J3oW>l(p)i(m,) occurring in the series represen-
tation (2.2). By rotational invariance (see Theorem IV. 1) the bounds hold in the
s, x plane where s is now to be interpreted as the Euclidean distance.

From the existence of the Λ->0 limit (Theorem II. lb), and using the upper
bounds on S\ in the inequalities of [6], it follows that S{ satisfies the O-S
temperedness axiom E — 0' [7]. In order that the inequalities of [6] apply, the
λ-+0 limit is taken, with sί9;χ. rational, through a sequence {λj} such that
sjλpxjλp i^i^k-1 are integers; by continuity the bounds on S£ hold for all
si9 xf, st > 0.

We now give a cluster decomposition property in the space-imaginary time
variables for T+ which implies the uniqueness of the vacuum of the reconstructed
Wight man theory (see [10]).

Theorem III.2. For T \ let feC${R2

+

n),geC£{R2

+

m) with the supports strictly
contained in R^.R2^1 where

R2l = {(x[,s[;...;x'ι,s'ι)eR2l,O<s[<s'2<...<s'ι},R°+=C.

Then

lim S!;+n(θ~f®Ttg) = SΪ(θ~f)Sm(g\ (3.1)
f-*oo

where

θ~ f(x[, si ... x'n, s
f

n) =f(xf

n, - sf

n ... x\, - s[)

and

Ttg(xf

ίts[ ... \x'm,s'J = g{xf^s[ - t;... ;xm,s'm - t), t > 0.

Proof Si is approximated by S£ uniformly for all s[ -s'i_ί bounded away from
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zero (by Lemma II.6) and Skλ satisfies pointwise clustering; thus Sk satisfies
pointwise clustering and as Sk is uniformly bounded for all s'i+1 — s[ bounded
away from zero (3.1) follows from the Lebesgue bounded convergence theorem.

IV. Rotational Invariance of Si

Writing the series representation for Sk in terms of the rapidity variables
p = msinh 20, ω(p) = mcosh 2Θ, we give a simple proof of rotational invariance for
fc = 2. For k> 2 the same idea is used but the singular Hubert transform Ho in
rapidity variables is regularized using the operator Hf of Appendix C and we
give the proof in Appendix D.

Theorem IV.1. Let Sk(x1,s1;...; xk-ι,sk_1) denote the Schwίnger function in the
difference variables. Then

and the derivatives can be calculated term by term in (2.2).

Proof 2-point function. Let θn = (θ1,...9θn) denote the rapidity variables. Then
S\ can be written

where ln = In{θn) is a function of the difference variables only, since (ω(pf) — ωζpj))/

(Pi + Pj)= tanh(0f — Θj) and dp/ω = 2dθ, and

n n

Kn = Kn(s, x, θn) = —ms Σ cosh 20f + imx ^ sinh 20ί5 s > 0.
i = 1 i = 1

With n = ( l , l , . . . , l ) and \θ = (d/dθ1,...,d/dθn\ upon differentiating inside the
infinite sum and integral and integrating by parts, we have

dS\ dS\ i ™ κ i ^ κ

ds dx 2^ n 2 n

To justify the term by term differentiation and the interchange of derivative and
integral, consider for example dS2/ds. For b > 0, using Taylor's theorem for

/ « \
exp( — 5 £ ωt ),ωi = ω(pf), we can write

\ /

- Σ ωi e χ p ~ s Σ ^i + ίx Σ

•expj -t Σ ωf )dί μ"p. (4.1)
i = l
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0 0For 0 < δ < s,ue su and u2e su are bounded by Mδe'is~ό)u for some 0 < Mδ <
so that the series on the left of (4.1) is absolutely convergent since

p is (by Theorem Il.la); the series on the
ί = l

oo Γ n "I

right side is bounded by (b/2)MδΣ j |/Jexp - (s - δ) ]Γ ωf dΛp and is
n L i=l J

absolutely convergent (again by Theorem Il.la) so that the HO limit of (4.1) exists
and is zero. A similar analysis holds for b < 0 and d/dx.

Appendix A

In this appendix we prove Lemmas II.2 and II.6. The key to the proof of Lemma II.2
uses the combinatorial Lemma A.I below which is an expansion of Bx

λ in the
number of singular functions. In bounding Tλ

n the singular functions are bounded
by using the norm non-increasing property of the scaled Hubert transforms of
Appendix C and the non-singular Pfaffians are majorized by Hadamard's inequal-
ity. In this appendix we abbreviate mλ

±(eiPί,eipj) by miip^p) and let Λh if(p)ln

denote the set {pl5 p 2 , . . . , pn) with ph,..., ph deleted. We have

Lemma A.I. Let n2 > 0 be even and nι odd. Then

pfBm-p\n2\(p\ni)= Σ Σ; (-iptiU)-^

m

where, with q1 =pί,q2 = — p2,

t (Bλ(Δkι k (qι)ί nι), if m is even and or m is odd and 1= 1

BiAk^kM ^1 ^ = { β 5 ( φ μ k i " k J ^ ) ^ J , if m is even and 1 = 1 or m is odd and 1 = 2

and Bλ((p)ι n) (n even) is the n x n anti-symmetric matrix with elements mi(p t ,Pj)
for 1 = i <j ^ n. The second summation in (A.I) is over all possible configurations
of m pairs (ij) with l=^i=^n2 and l^j-=nί; (— iγ^^^ ^J^ is the sign of the
permutation bringing together the pairs (ijΊ),.. >ΛiJk) starting from the arrangement
{1,2,..., w2, Γ,2,...,«!} and n12 = min {n1,n2}.

Proof. Group the points (— p2)ini into a set A and (pί)ίnι in B. Then, PfBx

λ

((— P2)i,n2l(p1)i MX)
 c a n t>e pictured as a sum of graphs involving contractions of

points in A, B and a point outside A and B, call it 0. The contraction function
within A or B is mi . The contraction between a point in A and one in B is m+,
and the contraction between 0 and a point in A or B is Φλ_. The proof of the
lemma follows by resummation of all graphs with 0, l,2,...,n 1 2 contractions
between the points of A and B.

Proof of Lemma II.2. a) Expanding PfB\ of Tλ

j{ according to Lemma A.I we
have
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~ pj)1,mji(pi)1,mi) = Σ Σ ( - \r"iβi)-Mιd

k = O(oiίβί)...(akβk)

i . . β J l ή i M ) if k is even)

(PfBt{φ\Δa^Λk{-pi)ljM)PfBλ(Δβi...βJίPt)ιJ if fe is odd j •

The k = 0 term above is PfBλ((-PJ)1,mj)P/B*W)l(Pi)i,m,) a n d t h e k = mu t e r m i s

) if m7. < m;,

L e t Tm(;mfl)'(°"</i't>(^sJ.;xi,si) (abbreviated Γ ^ ) be defined by

^ . . . ^ ) ! ^ ) if /c is odd j

{--2 Σ Σ (^Pι)sk + ipUk)\f((P\rn)dmψ (A.3)

Then

J λ = V V ' j/L(α/?)k/_ ĵ \σ(αijβi)...(αk/3k) (A 4)

fc = O (αi/3i)...(α k^ k)

Since clearly \\Tj^aβ)k\\ is independent of the particular sequence (oi1β1)...(oίkβk)
we have

\\n\\ύ Σ \\τ^\\ Σ i' ( A 5 )
k = 0 (a1βί)...(akβk)

where Tjf is T$aβ)k for the particular choice at = βt = I Noting that

I ' 1 = (1/fc 1 ^ - 1)... K - k + lϊm/m,. - 1)... (m, - k + 1)

and substituting from (A.6) below in (A.5) gives

The sum is bounded by

m^ + 1 ) X (/el)"x(mf + l)(3'4)k(m./ + l) ( 3 / 4 ) k
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Now from Lemma B.2b,c-

\\Ai,(sj)\\£ Π i *
s= 1

|]Br

A(s;)|| g Π II * £ « P { " WJII/.«<«) ^ ( 1 + C l +c2)
k,

f = 1

and letting p(s)1/2 = 1 + cx + c2 we have ||JR*k|| g 2kp(Sj)
k/2p{s^12.

Using Lemma B.3 and Hadamard's inequality to bound Wλk and Lemmas B.2b,
B.3 and Hadamard's inequality with c 4 = ct + c3 to bound Ffk we have, for /c even,

| |Tjf|| S \\Wjk\\ \\Rf\\ || Kfk|| ^ ( 2 π ) - m - / 2 ( m 7 - ! ) ~ 1 /

For k odd the factor ( m j . - k ) 1 ' 4 ^ " ^ - k + l ) 1 / 4 ( I f I f " k + 1 ) is to be replaced by
{mj^-\-k)ll^m^ι'-k\mi-kγl^m~k). In both cases the factor is majorized by
(m i-fc + l ) 1 / 4 ( m i - k + 1 ) (rn j -k + l) 1 / 4 ( w-'- k + 1), and upon letting c = \+cλ+c^ we
have

| T]k\\ Sc{c/π)il/2)imi+m^p{Sj)m^12pis^inii \m} !)

Proof of Lemma 11.6: a) By the expansion of Tλ

}i of (A.4) it is sufficient to show
the strong operator convergence of the general term T^ of Lemma A.2. By the
norm boundedness in λe [0,1] of the factors in the decompositions Tjf = Wf R]k

Vfk and Rf = YJA
λ

τ, H\Bλ

r (see (A.7)) strong convergence of T)k follows from the
r

strong convergence of the factors Wj, VfA*, Hk

λ and B*. The multiplication

operators converge strongly by the pointwise convergence of Lemma B.4. Note

that the convergence is uniform in the sf variables bounded away from zero.
k

H\= γ[ Hλi, where Hλi is the scaled Hubert transform Hλ of Lemma C.I

acting on the i-th variable. Since \\Hk

λ\\ ^ 1 it is enough to show pointwise
convergence for a dense set D which we take as finite linear combinations of
product functions. The strong operator convergence of Hλ on L2(R) given by
Lemma C.lb implies the pointwise convergence of H\ on D which in turn implies
the strong operator convergence of H\.

b) follows from the pointwise convergence of the integrand of TJ using
Lemma B.4 and the Lebesgue bounded convergence theorem using B.2b, B.3 and
Hadamard's inequality and Lemma B.I.

c) follows from Lemma B.4 and using B.2b, B.3 and Hadamard's inequality
and Lemma B.I.

Appendix B

In this appendix we establish bounds and limits of various scaling functions used
in Sect. II. For completeness we give all pertinent definitions.
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and Lemma Π.2a is proved.

b) follows from Lemma B.I, 2b, 3 and Hadamard's inequality.
c) follows from Lemma B.2b and B.3 using Hadamard's inequality and

Lemma B.I.

Lemma A.2. Let T]k be given by (A3) with α, = βt = I Then

c\{mι+mJ)l2

|i T]k II rg c I - \

. - fe
where c = 1 -f c x + c 3 , c 1 αnίi c 3 gfiί βn £>y Lemmas B.2 and B.3 respectively and

p{s) = (1 + c x 4- c 2 ) 2 , c 2 ̂ fiz en fc^ Lemma B.2.

Proof. Assume k even (an analogous argument works if k is odd) and write
Tft = WfRftVfk, where Wf and Ffk are multiplication operators by the
functions

j

and

(2π)-w*/ 2(m f!)-1

respectively, and Rf:L2{Rmi)-+L2(Rmή is given by

2 Σ (ω>/χ + φ/χΛ j-2 Σ
1=1

where the symbolic integral is to be interpreted as in Sect. II.
Taking into account the form of mλ

+ we write Rjf as the sum of a product of
operators as

Rf = X ̂ ί.ίsj.x^HSBίίsj.x,), (A.7)
Γ

w h e r e r ' = ( r ' ^ r ^ . - . r ^ ) , r = ( r 1 , . . . , r k ) , r π = ± , r ^ = + , 1 ̂ n ^ / c , a n d ]Γ is t h e s u m
r

over all 2k sequences r. Ar{Sj, Xj) is the multiplication operator

Bx{s{,x^) is the multiplication operator

k [ 1 mι ]
[ ] Φr

λ

f (pj) exp { - ^ω^s, + ipjx J exp ^ - - ^ {ωλ{p\)si + ip1^) V,
t = .l I Z l = k+1 )

and H^ is the product of k scaled Hubert transforms H; of Appendix C in the

first k variables. Thus ||jR^|| ^ ^ | | ^ r

A , | | | |5 r

A | | , where we have used \\H\\\ S 1.
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Let K(λ) be a smooth, monotone decreasing function of λe[0,1] such that

K(l)>0, inf {-K\λ))>0 and K(O) = KC, where Kc is the unique solution of
λe[0.1]

£ 2 * = c o t h K . Let K* and ε(k)^O be defined implicity by e2K* =cothK and
cosh e(k) = cosh 2 ( K * - K ) +sinh2K* sinh2K(l - cos k). Let m= inf 2(K* -

λe(0, 1]
X)/A ^ 4 inf ( - K'(Λ)) > 0 and - 4K'(0) = m > 0. All constants appearing in the

λe(0,l]

subsequent lemmas depend only on the choice of the function K(λ).

Lemma B.I Let ωλ(k) = ε(λk)/λ, then

inf inf ωλ{k)(m2 + k 2 )~ 1 / 2 = c0 > 0.

Proof ε(λfc) = log(fj + (^2 - 1)1/2), where yj(λk) = cosh 2(K* - K) + sinh 2K*
sinh2K(l — cosAk). Clearly, there is a constant y1 such that l^r\^yv Let

y2 = inf {x- ι log(l + x):0 < x < (γ2 - 1)1/2},

then

e(Ak)^y2(^2 - 1)1/2 ^ v

/ 2 7 2 (sinh2K(l))1 / 2(l -cosλk)1/2.

Therefore,

inf x - ^ l - c o s x ) 1 / 2

Since ωλ(k) ^ m, the proof follows at once. Let

and

so that

Lemma B.2. a) There are positive constants c[,...,c'5 such that for all

b) sup sup \λll2θ~x(eiλk)\ = cx < oo.
λe(0,l] |fc|̂ π/λ

c) sup sup μ- 1 / 2 θ;V U f c )exρ(-ω A (k)s) | = «
Ae(0,l] |k|^π/λ

if s > 0.

Proo/ a) follows directly from the definitions, and b) and c) follow from a). We
consider c):

Λ - eiλk)(x2 - eίλk) 1 / 2

- 1 1 - eiλk

— j _
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The proof is completed by using Lemma B.I.
Let

Lemma B.3. sup sup \mλ_(k,q)\ =c3 < oo.
λe(O,l] |fc|,|«|<π/λ

Proof. Let

k An- 1

nλ_(k,q) = Θ~1 {eίλk)θZ'[eiλq) -θ'1 (eiλk)θZ*(eiλk) = ΘZX(eiλq) j —±-(e i λ u )du

q df)'1

Now,
- 1

= -e

iλuΘZ

From Lemma B.2 it follows that there exists a constant <χί such that \nλ_(k,q)\ ^

f|, hence \mλ__(k,q)\^oιί
. Let a2= inf \(eix - l)/x| > 0.

0 < | x | ^ π

Thus, mi(/c,^r)^— if |k + ^ |λ^π. To handle the region π^λ\k + q\^2π, note
α2

that nλ_(k,q) can also be written as
k dθ~1

ni(fc, g) = θ-\eiλq) - θ~ V λ k ) + ΘZ \eiλq) f-^-{e i λ u)du - ΘZ \eiλk)

By direct computation, using Lemma B.2, we can show that ——(e ι λ u ) is

uniformly bounded in A. Therefore, there exists a constant α 3 such that \mλ_
(k,q)\ ^ 0L3\k - q\λ/\eiλ{k+q) - 1 | . A s s u m e π ^ λ ( k + q)<> 2π a n d l e t ε1=π- λ k , ε2 =
π — λq. Since A/c, A<j ̂  π, εf ^ 0 (z = 1,2). Also, εi + ε2 ^ π, hence

Similar considerations hold for the region — 2π ^ A(fc + f̂) ^ — π and the proof
is complete.

Lemma B.4. Let ω(p) = (p2 -f m 2) 1 / 2. T ι̂̂ « we ftαi e ίfee following pointwise conver-
gence as A -• 0:
a) mλ_(p,<z)-» -(p-zm)~ 1 / 2((3 - im)~1/2(ω(p) - ω(^))/z(p-f q),

d)ωλ(p)->ω(p).

Proof. Follows from the definitions.
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Appendix C

The scaled Hubert transforms, Hλ, λe[0,1], used in the proof of Theorem I I I , are
defined as the closure of the operators associated with the forms

π/λ Γ~ p π/λ jjl ~~|

tλ(gj)= ί g(k)\- j Π _ iλ{k-q)λf(g)d(i \dk> Ae(0,i],
-π/Λ L π -π/A \* e ) J

where g,feC$(R). t0 is the form associated with the Hubert transform /ί 0 on
the line. We have

Lemma C.I. Let χλ = χ[-πjλ>πlλ], the characteristic function of ,— . Then
|_ λ λ]

a) \tλ(gj)\ <. |/|L2(R)|gf|L2(Λ); the associated operator, Hλ, satisfies Hλ = χλHλχλ,
|iϊA|L2_>L2 ^ 1 and extends by continuity to L2(R).

b) Hλ

λ^? Ho in the strong L2 operator sense.

Proof, a) follows by the change of variables u = λq9 v = λk and the fact that the
norm of the Hubert transform on [ — π, π] is one.

b) By a) it is enough to show the result for a dense set. Suppose / e C ® . Then

\(Hλ - H 0 ) / | L 2 ( Λ ) ύ \(Hλ - χλH0)f\L2 + |(/ - χ A ) H 0 / | L 2 ,

so that the second term goes to zero. Suppose that s u p p / c {q:\q\ <n/λ0}, then
for all λ < λ0

\(Hλ - χλH0)f\LO0{R) S sup \iλ(eiλ*-<» - 1)- * - (k - « ) " M I / I L W
\q\<π/λo,\k\£π/λ.

For λ < λo/2 the sup can be taken over the set λ\k-q\<3π/2; but

\iλ(eiλx-l)-1-χ-1\:

for A|x|g3π/2, since y~1smy>2y/2/3π for y < 3π/4, so that for all λ<λo/29

\(Hλ - χλH0)f\L*(R) ^ cλ |/ | L i ( Λ ) . Thus

\(Hλ-χλHo)f\2

HR)^ "j \cλ\f\LHR)\
2dk^c2λ2π\f\2

LHR)

λ^°0.
-π/λ

For JeC^(R), define the approximate rapidity transform, Hf, ε>0, by

(Hff)(x) = (2πO-α J [(sinh(x - y) + iε)" 1 + (sinh(x - y) - is)" ^
- oo

and the rapidity transform, H*, by taking the principal value integral in the above.

Lemma C.2. a) For εe[0,1), Hf extends to a bounded operator on L2 and

b) Hf ^ H% αsε-> 0.
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Proof, a) By contour integration the Fourier transform, Hf, of Hf is found

to be Hf(fc) = (l -ε2)-1 / 2sinh/c(π/2-sin-1ε)(cosh(/cπ/2))-1, εe[0,l). Thus

| H f | L « £ ( l - 8 2 Γ 1 / 2 .
b) follows from a) and the pointwise convergence Hf (fc) -* H%(k), as ε-»0.

Appendix D

We will need the following lemma in the proof of Theorem I V.I:

Lemma D.I Let A^fa, st) = T^Sj + bδjk, st + bδik) - T^Sj, sf), fc = i,; and Dk7}f ίfte
operator defined by taking the derivative d/dsk inside the integral defining Tji of
Sect. II. Then for 0 < δ < si5 Sj and some Mδ, 0 < Mδ < oo,

Wϊί/l

yc/Sj - δjkδ, s. - δwδ),

c ; ί is ί/ie rίgfΛί side of Lemma 11.2a.

Proof. We give the proof for fc =; , the case fc = i being similar. By the decomposition
(A.4) of Tλ

μ and the decomposition T]l=WfRfV? of Lemma A.2 it is
sufficient to consider the term R^ given in (A.3). A typical term of Λjf can be
written, for λ = 0 and suppressing the A = 0 index, b'1(Λrf(sj + i>) - ^(s;)) HkBr(sf).
Using Taylor's theorem, with 6 > 0, we obtain

6" H^r ίSj + b) - Ar,(s)) = ( - k
1 = 1

, 2

For any <5,0 < δ < sp te\_spSj + fc], ue~s>u and w2e~s>" are bounded by Mδe"^~δ)u,
0 < M5 < oo, so that with u = ̂ ω we have the bound

| ί r ^ ' ( S + &) - Ar.(sj))\ ύ Mδ\AΛsj - δ)\ + (b/2)Mδ\Ar,(Sj - δ)\.

The case fc < 0 is treated similarly and the result follows from Lemma A.2 and its
proof.

Proof of Theorem I V.I. We first justify the passage of the derivatives through the
infinite sum and integrals of (2.2). Consider, for example, the derivative dS\N/dsr,
1 < r < 2iV, where S^ is given by Lemma II. 1. We have, suppressing inessential
arguments in the functions for notational simplicity and abbreviating the sum by
00

l = 2N-l
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r mrmr- \)

• Π Tmk^mkθmi(Xι,Sl), (D.I)
k=r-2

where AkΎji is given by Lemma D.I. Substituting for ΔrTmr + ιnlr, using Lemma D.I,
we see that the right side of (D.I) is equal to the sum of two absolutely convergent
series. The first series is independent of b and is given by the series for S^ with
E>rTmrmr^ and DrTWr + l l i l r replacing 7 ^ ^ and Tmr + ιTtlr, respectively. The absolute
convergence follows from the bounds in Lemma D.I and Lemma Π.2. The second
series is bounded by b times an absolutely convergent series with bound independent
of b again using Lemma D.I for the remainder terms and Lemma 11.2. Thus the b-+0
limit of (D.I) exists and is given by the series obtained by differentiating the series for

S\N term by term inside the integral.
k-i

We now write the generic term, call it Go, of £ (xiδSk/dsi - s£dSk/dχ.) in
i = 1

terms of rapidity variables and let Gε, εe[0,1], denote Go with terms of the form

(ω(Pi) + ωiPjMPi - pj) = coth(0 f— Θj) replaced by

πϊ(cosh Θ.H? (θi9 0,.)cosh θj - sinh θ^f (04, 0,)sinh θ),

where Hf(θi9 θj) is the kernel of the operator of Lemma C.2. By following the proof of
Lemma II.6 in Appendix A, boundedness (uniform in ε) of Gε follows by using

Lemma C.2a. By using Hf A H* (by Lemma C.2b) in place of H\ Λ Hk

Q we have

lim Gε = G0. Gε can be written in the form

where

(-sf X cosh20^-Hx Σ sinh20y')\

Vθ and n are now the J] nt dimensional vectors of Sect. IV, n is a multi-index and Jn

i=ί

is a C00 function of tanh(0 f — Θj), cosh(0. — θj) and sinh(0f — θj), i.e. of the difference
variables. By integrating by parts Gg = 0 which implies Go = 0 and the result follows.
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