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Abstract. An intimate relationship between Moser's regularization [1] and the
KS-regularization [3] of the 3-dimensional Kepler problem is established.
Explicit formulae linking Moser's and the KS-transformation are obtained in
the case of negative as well as in the case of positive energies. As a side result it
is shown that the KS-transformation owes its existence to the local isomor-
phism of SO (2,4) and SU(2,2).

1. Introduction

In [1] (see also [2]) Moser, starting from a stereographic projection in con-
figuration space, constructs a diffeomorphism that carries the geodesic flow on the
unit tangent bundle of the pointed n-sphere onto the flow of the ^-dimensional
Kepler problem on a surface of fixed negative energy. The missing point together
with an (n— l)-sphere of directions correspond to the collision states of the Kepler
problem. When the Kepler flow on a surface of fixed negative energy is replaced by
the geodesic flow on the unit tangent bundle of the n-sphere, the collision states are
"regularized", i.e. they loose their exceptional status and are indistinguishable
from all the other states. This "regularization" has the fringe benefit of exposing
the hidden SO(n+l)-symmetry of the Kepler problem. This symmetry in turn
makes it obvious that besides the jn(n—ΐ) components of the angular momentum
integral, the Kepler problem possesses n additional integrals which together make
up the Lenz-Runge vector (see in particular [2]).

A seemingly quite different procedure which achieves a regularization of the
Kepler problem was proposed by Kustaanheimo and Stiefel (KS) in [3]. Their
procedure has been explained in great detail in the monograph [4]. It is based on
the KS-transformation which generalizes the Levi Civita transformation from two
to three dimensions. The KS-transformation replaces the 3-dimensional Kepler
Hamiltonian (with fictitious time s) by a Hamiltonian of four harmonic oscillators
in resonance-denoted by J in the sequel - whose energy surfaces are 7-spheres
embedded R 8( = C4). However, only points that also lie on a certain seven-
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dimensional null-quadric /"^O) (/ = certain quadratic form) represent physical
states. More precisely, the physical states are in one-to-one correspondence, not
with the points of this quadric surface, but rather with the orbits induced on this
surface by a certain action of the circular group U(l). In analogy to a similar
situation in electrodynamics we shall refer to this group as "gauge group"
(compare [5]). Stated differently, the phase space of the KS-regularized Kepler
problem appears in the form of an orbit manifold of type 7~1(0)/U(l).

In the present note we shall establish an intimate relationship between Moser's
and the KS-transformation. This relationship between the two transformations
turns out to be of practical value when perturbation problems of the Kepler
problem (such as the three dimensional lunar problem [8]) are studied. Instead of
deciding from the outset for one of the two points of view inherent in the two
regularization procedures, their close relationship allows us to switch from one
point of view to the other, thereby enabling us to choose always the procedure that
is best suited for the investigation of a particular aspect of our problem.

Apart from the introduction (Sect. 1) the present paper is broken into four
sections. In Sect. 2 we present a review of Moser's transformation μ. In order to
avoid a switch of position and momentum variables (which seems to be an
ingredient of Moser's original version of his map), our point of departure is a
homogenous version of the stereographic projection in momentum - rather than
in configuration - space.

In Sect. 3 we review the KS-transformation which we write in terms of complex
variables and Pauli matrices. (According to a personal communication of J.
Waldvogel this was the way Kustaanheimo originally wrote his transformation
(see also [5]).) After giving it a group-theoretical interpretation we link the
KS-transformation to Penrose's twistor theory [9].

Whereas Sects. 2-3 of the present work contain essentially reformulations of
old results, Sect. 4 contains our original contribution to the subject. We show that
the "completed" phase space of the Kepler problem: 7~1(0)/U(l) is symplectically
diffeomorphic to T+S3 [ = (co-) tangent bundle of the 3-sphere from which the
zero-section has been removed]. This is done with the help of an "extension π of
the KS-map π" which explicitly reduces out the action of the gauge group U(l) on
all of I~ 1(0). The relation between π, π and Moser's transformation μ is capsuled in
the following diagram (see theorem of Sect. 4).

(R3\{0})xR3 - ί ί - U T+S3.

Here (£ [given in (4.2)] represents the injection of the circle bundle (J~ 1(0))f of non-
collision states into the circle bundle I~ί{0) encompassing all states.

The map π is closely tied to group theoretical concepts. It turns out that the
group leaving the quadratic form I invariant is U(2,2) acting linearly on (C4.
Moreover, this action is symplectic with respect to the very symplectic structure of
(C4 that in conjunction with the function J is the main ingredient in a Hamiltonian
description of the system of four harmonic oscillators mentioned earlier.
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Also, the map π is constructed in terms of certain "generators" of this group
action. In fact, the relationship between Moser's and the KS-transformation can
loosely be described as follows. If in Moser's transformation the momentum
variables are replaced by certain generators of 1-parameter subgroups of SU(2,2)
and the position variables by a quotient of such generators with denominator J,
then the KS-transformation is obtained (see Corollary 1 to theorem of Sect. 4).

Now π not only reduces out the action of the gauge group U(l) on I~ 1(0) but
also transfers the transitive action of U(2,2) = U(1) x SU(2,2) on Γι{0) to T+S3 so
that T+S3 appears in the form of a symplectic homogeneous space of SU(2,2) (see
Corollary 2 to theorem of Sect. 4). In fact it turns out that the action of SU(2,2) on
T+S3 coincides with the action of the identity component SO0(2,4) of SO (2,4) that
was previously described by Guillemin and Sternberg in [10]. [SU(2,2) doubly
covers SO0(2,4): see Appendix B.]

The fundamental role that the Lie algebra so (4,2) plays in the
KS-regularization was also recognized by Baumgarte [11] who adapts some ideas
presented by Barut in his study of the quantum mechanical Kepler problem [12]
to classical mechanics.

Finally, in Sect. 5 we show how to attack our main problem under the
assumption of positive (instead of negative) Kepler energies. Whereas the
KS-transformation remains unchanged, Moser's transformation has to be mod-
ified in the sense of Belbruno [6] (see also [7]) at least if one still wants to
linearize the Kepler flow. Accordingly, the relation between the two maps,
although similar in nature as in the case of negative energies, is expressed explicitly
by a different recipe.

The case of zero energy will not be dealt with here. In fact, our success in
relating the two transformations in the case of non-zero energies is based on the
fact that in our version of Moser's and the Moser-Belbruno map the transfor-
mation of the momentum variables is - like in the KS-transformation -
homogenous of degree zero. However this property can no longer be salvaged in
the case of zero energy. Therefore, if in this case there exists any relationship at all
between the two regularization procedures it must be of a quite different nature
than in the former two cases.

2. Review of Moser's Transformation

Before we turn to the proper subject of this section, namely a review of Moser's
transformation, we shall make some general remarks.

We recall that a Hamiltonian system can be characterized as a triplet of objects
(M, ω, H), where M is an even-dimensional smooth manifold, ω is a closed 2-form
which is nondegenerate at each point of M, and H is a smooth real-valued function
on M, called the Hamiltonian. Via the associated vector field XH, which is defined
by the formula

XH-^ω=-dH, (2.1)

the Hamiltonian H induces (or generates) a flow (= action of the group IR) on M
(at least if M is compact). Since H is an integral of (i. e. invariant under) this flow it
carries each level ( = energy-) surface into itself. More generally, FeC^iM) is an
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integral of the flow if {#, F} = 0, where {H, F} =XH(F) = ω{XH,XF) is the so-called
Poisson bracket associated with ω.

The standard example is the Hamiltonian system (IR2", dθ0, H), where θ0 is the
1-form

θo = ydx. (2.2)

[Here x = (xv ...,xn), y — (y^ •• ?}
;«) a r e coordinates on R 2" and the dot in (2.2)

denotes the usual dot product of n-vectors.] In this example:

_dHJ__dH^d_
Xίl~ δy δx δx δf (I-i}

and the flow of H is obtained by integration of the Hamiltonian equations

dt dγ'dt dx { }

with general initial conditions.
The n-dimensional Kepler problem is the Hamiltonian system ((R"\{0}) x R",

dθ0, Ho\ where

H0 = ±y2-r-\r = \x\=(x-x)1/2. (2.5)

Notice that Ho is singular at r = 0. It is well known (see e.g. [4]) that the singularity
can be removed by fixing the energy and introducing the "fictitious time" s via the
recipe

so that XHQ is multiplied by r. On the energy surface H o = — \ the resulting vector
field rXHo agrees with XKo, where X o is the following function on IR2":

K0=
r-(γ2 + l). (2.7)

Moreover, Ko takes the value 1 there. Since the map that associates with each
point (e,y) (|e| = l) the point (x = 2(y2 + l)~1e,y) can easily be shown to define a
diffeomorphism from Sn~1xW onto the energy surface H0=—^(K0 = l)9 this
surface is not compact. Notice that it does not contain any collision states. Indeed,
these states would correspond to {0}xSn~\ where {0} denotes the origin in
configuration (i.e. x-) space and S"'1 respresents the "sphere of infinite radius" in
momentum (i.e. y-) space. As pointed out already in the introduction a "re-
gularization" consists in "completing" the energy surface in such a way that it
contains the collision states on the same footing with all other states. In order to
explain how this is achieved in Moser's regularization, we let q = (q0, q), p = (p0, p)
be vectors of IR"+1. Their inner product is denoted by

( 2 8 )
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We also use the notation ||p|| = <p,p>1 / 2 for the norm of a (n+ 1)-vector. In the
following the manifold

T+Sn={(q,p)eWL^+'\ \\q\\ = l, <p,̂ > = 0,p*0},

i.e. the (co-) tangent bundle of the π-sphere from which the zero-section has been
removed, will play a crucial role. T+Sn is a symplectically embedded submanifold
ofIR2 ("+ 1 ), i.e. if

0! = <P,ΛZ>, (2.9)

then dθ1\τ+Sn (the bar means: "restriction to") is non-degenerate at every point.
We introduce Moser's map μ as the restriction to T+Sn of the surjection:
WLl{n+1) = {(q9p)eΊBL2in+1): po+\\p\\ Φ0}-»JR 2 1 1 defined by t h e formulae

' p (2.10)

μ has the following properties :
(i) μ is diffeomorphism of {T+Sn)f= T + S " n R f + 1 } onto (RΛ\{0}) x R",

(ii) K0oμ=\\pl
(iii) μ*dθo = dθ1\(τ+sny.

Proof, (ii) and (iii) are established by straightforward computations. In order to
guide the reader through these computations we present the following hints:
Viewing x via (2.10) as a function on (T+Sn)' we replace in the expression for x 2 : q2

by 1 - ql, q p by - qopo and p 2 by | |p | | 2 - p2

0. We find r = p0 +\\p\\ and (ii) follows at
once. The same replacements supplemented by the additional one:
p dp-Hlpll d||p||— podpo in the formula for y dx yields the relation
y-dx = (p,dq} — d(qo\\p\\) from which (iii) immediately follows.

Finally, (i) is a consequence of the fact that μ possesses an inverse μ'1

described by the formulae

y2)]- i (_ 2 χ .y , ( l + y 2 )x-2(x y)y),

P = £Kl-y2),ry).

In view of (iii) μ~1 can be interpreted as a symplectic injection of (IRn\{0}) x IR" into
T+Sn.

This injection maps the energy surface Ho = — \{K0 = 1) onto the manifold

( Γ i S « y = τ ^ n I R 2 ( n + i ) ? w h e r e ^S" = {(q,p)eT+Sn:\\p\\ = ί} is the unit (co-) tan-
gent bundle of the rc-sphere. Points of TxSn outside the image of μ" 1 have
coordinates qo = 0,p = (—l, 0). Obviously they correspond to the collision states of
the Kepler problem. By adding them in, the energy surface is replaced by the
compact manifold T1^".

Summarizing we see that in Moser's regularization, the flow on a surface of
fixed negative energy of the Kepler problem is replaced by the flow that the
Hamiltonian system

(T+S\dθ1\τ + sn,K1 = \\p\\\τ+sn) (2.12)

induces on the surface K1 = l(= T1^"). In order to obtain a description of this flow
we observe that quite generally, given any Hamiltonian / on 1R2("+1), the vector
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field Xf associated with the Hamiltonian system (T*Sn, dθ1\τ+sn, / = / | r + 5 n ) [see
(2.1)] is the restriction to T+Sn of the following vector field on R2 ("+ υ :

Here,

op \dp / oq \oq

are the covariant derivatives (along S") and Γ v̂ = gμpv — gvpμ is the "generator" of a
rotation of the μv-plane in configuration space (see below). Specializing to the case
/ = ||p||, i.e. f = Kv the recipe (2.12) yields a vector field that on T1Sn gives rise to
the differential equations

q = p,p=-q. (2.14)

Hence we see that K1 induces on TλSn the geodesic flow (compare [1, 2]).

Observe that as a consequence of the fact that our Hamiltonian system

(2.12) is invariant under the obvious action of SO(n+l) on

lR2 ("+ 1 ):(^p)-^(0^0p)(0eSO(π+l)), all functions Γμv are integrals. This is in

particular true for the ^-vector:

= f̂op —poq, (Z.IJ)

which if pulled back to the original phase space via μ~x [see (2.11)] takes the form

R = i ( y 2 - l ) x - ( x y)y. (2.16)

It follows that {Ko,R} = 0, where { , } is the Poisson bracket associated with the
2-form dθo[θo defined in (2.2)]. Since K0 = r{H0 + %) + U we conclude

is an integral of Ho. Of course, this is the well known Runge-Lenz vector. (For
more details see [2].)

Another integral of Ho [having its origin in the obvious SO (τt)-symmetry] is
the angular momentum. In the case n = 3 it is also a 3-vector given by the
expression

L = q x p = x x y . (2.17)

3. Review of the KS-Transformation

The canonical KS-transformation is a map π: (IR4\{0}) x IR4-+(IR3\{0}) x IR3. Here
the target space is the phase space of the 3-dimensional Kepler problem
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[parametrized by (x5y)]. Introducing variables (uv u2, u3, t/4), (vί9 v2, v3, vA) in the
domain space it is written in [4] in the following form

x3 = 2(u1u3 + u2u4\ y3 = (2\\u\\2) 1(u1υ3 + u2v4 + u 3 v 1 + u4υ2),

where \\u\\2 = ul + ul + ul + ul.
Introducing complex variables in (1R4\{O}) x IR4 by means of the formulae

- [u2 + u4 + ί(u1 +1/3)]\

u2-u4-i{u1-u3) y

it becomes a map π:((C2\{0})x (C2->(IR3\{0})xIR3 which in terms of the usual
inner product of (C2:

(z,w} = z1w1+z2w2 (3.3)

(bar means complex conjugation) and the vector of Pauli matrices

can be written in the following form

x=<z,σz>, y = <z,z>"1Im<w,σz>. (3.5)

π is a canonical extension of the Hopf-map

π o : x = <z,σz> (3.6)

in the following sense: Let C4\{0} be endowed with the symplectic structure that is
canonically associated with the 1-form

0 = 2Im<w,dz>, (3.7)

and let /"^(O) be the 7-dimensional quadric surface in (C4\{0} on which the
quadratic form

7 = Re<w,z> (3.8)

vanishes. Then π has the property

where θ0 was defined in (2.1) and θ\(I-ί(0)y is the restriction of θ to the manifold

(3.10)

In order to prove (3.9) we first note that the following formula holds for arbitrary
elements w, w, ze(C2.

<w, σz> σw = 2 <u, w> z — <u, z> w. (3.11)

(The dot denotes the usual dot product of IR3.)
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Adding to (3.11) the relation obtained from it by interchanging u and z yields

w, σz) σw = (w, w}z + (z, w}u — Re<z, u)w. (3.12)

Multiplying both sides of (3.12) with z f = (z1? z2) from the left and taking real parts
we obtain

Re <z, σw> Re <z, σw> = (z,z} Re <M, W> - Im <z, w> Im <z, w>. (3.13)

Replacing in (3.13) u by dz and w by jw gives

Re <z, σdz> Im < w, σz> = <z, z> Im < w, dz> — Re <z, w> Im <z, dz>.

On account of (3.5) this relation becomes for (z, w)e(/~1(0))/:

y dx =

However, this is precisely the content of formula (3.9).
The physical states in the KS-regularization are the orbits induced on the

manifold (/"^O))' by the action: eis(z,w)-*(eisz,eίsw) of the "gauge group" £7(1)
whose "infinitesimal generator" is the Hamiltonian 21. In fact, the KS-map π
establishes a diffeomorphism between the orbit space (/"" 1(0))'/U(l) and the phase
space (IR3\{0}) x IR3 of the Kepler problem and formula (3.9) can be interpreted as
saying that this diffeomorphism is symplectic. In accordance with this in-
terpretation we seek a Hamiltonian J = J(z,w) such that J = K0°π on (I~1(0))\
where Ko was defined in (2.7). In order to construct this Hamiltonian we first
express r and y2 in terms of the variables (z, w). Replacing u and w in (3.13) first by
z, then by iw we find on I~x(0):

| x | - r = <z,z>,y 2-<z,z>- 1<w,w>, (3.14)

so that

J = ±l<z,z} + <w,wyi. (3.15)

J is not only defined on (I~ί(0))f but on the entire surface I~ί(0) which
encompasses the collision states. In fact, in the KS-regularization the collision
states with energy — \ are represented by the orbits

(z = 0, eίSw)selR«w, w> = 2 since J=l) of the gauge group U(l).

Accordingly, the "completed" phase space of the KS-regularized Kepler problem
appears in the form of the orbit space J-^OyL^l). In Sect. 4 we shall prove that
7~1(0)/U(l) is symplectically diffeomorphic to T+S3. Moreover, the explicit map
π:/~ 1 (0)-^T + 5 3 which accomplishes the reduction of the group U(l) can be
viewed as an extension of the KS-map from (7~ 1(0))/ to I~ 1(0) in the sense of the
diagram of Sect. 1.

Points of /"HO) are called "null-twistors" by Penrose [9] who uses them in
order to compactify the manifold of null-lines N of Minkowski space. Like a
surface of fixed negative energy of the Kepler problem this manifold possesses the
topological character S2 x IR3. Indeed, selecting a fixed space-like hyperplane IR3 in
Minkowski space a null-line is determined by the following data:

(i) a directional vector = point of S2,
(ii) a point of intersection with the hyperplane IR3.
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Thus, the manifold N can be identified with a surface of fixed negative energy of
the Kepler problem which in turn we have identified with the orbit manifold

[(/-'(OFnJ-Hlfl/Ull) (3.16)

via the KS-transformation. Its compactification is achieved by dropping the prime
in (3.16). This process which corresponds to filling in the collision states in the
Kepler problem is interpreted as "attaching a null-cone at infinity" in the case of
the manifold JV.

Before we close this section we want to express the angular momentum in the
variables (z, w). To this end we recall the relation

(a σ)σ = aσ0 4- i(σ x a), (3.17)

which is valid for all 3-vectors a. Here σ0 is the 2 by 2 unit matrix. We apply both
sides of (3.17) to i?eC2 and simultaneously set a = <M, σz>. We obtain

«w, σz> -σ)σv = <w, σz> v 4- i(av x <M, σz». (3.18)

Replacing w by σv in (3.11) yields a relation which allows us to replace the left side
of (3.18) by 2<w, σi;)z— <w5 z>σίλ If the resulting identity is multiplied from the left
by wf the following relation is obtained

<w, ι;> <w, σz> + z<w, σι;> x <w, σz> = 2<w, z> <M, σy> — <w, z> <w, σι;>. (3.19)

Setting u = v = z in (3.19) and simultaneously replacing w by iw yields

<w, σz> x <z, σz> = — iζw, z> <z, σz> + i(z, z> <w, σz>.

Comparing imaginary parts on both sides of the last identity we obtain

<z, σz> x Im <w, σz> = Re <w, z> <z, σz> - <z, z> Re <w, σz>. (3.20)

On account of (3.5) and (2.17) this relation reduces on I~1(0) to the simple form

L=-Re<w,σz>. (3.21)

Actually, a much more elegant derivation of this formula based on group theory
can be presented: Observe that the action of SU(2) on C4\{0}:
U:(z, w)->(ί7z, Uw) (l/eSU(2)) is exact symplectic [i.e. leaves θ (defined in (3.7))

/ is \
invariant] and also that Lfe(s) = expl — — e σ eSU(2)(|e| = l) induces via π a

simultaneous rotation of x and y about e through the angle s. It follows that the
Hamiltonian inducing the flow s-*Ue(s), i.e. —Re<w,σz> e and the Hamiltonian
L e inducing the corresponding rotation must be π-related. Since this is true for all
unit vectors e relation (3.21) follows.

4. The Relationship between Moser's and the KS-Regularization

In this section we carry through the program announced in the last section. Our
point of departure is the recognition that the group U(2,2) acts symplectically on
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the space (C4\{0}. In order to see this we subject (z, w) to the transformation

' H O with inverse Q- e (j). (4.1)

where & = (£~1 is the matrix

<£ = 2 - W σ ° σ° ) . (4.2)
Wo ~σo/

(Remember σ0 is the 2 by 2 unit matrix.)
Expressing the 1-form (3.7) in the new variables it becomes cohomologous (i.e.

equal up to an exact form; in symbols ^ ) to one of the following forms

= \ [<>?, dη) - <f, dζy] = l- (η\ C f)3 ( ^ ) (4.3)

Here 3 is the 4 by 4 matrix

The right side of (4.3) is manifestly invariant under the obvious action C/eU(2,2):

- °f U(25 2). Since the expression (3.8) in the new variables becomes

the same holds true for / and the null-quadric I~1(0). The gauge group U(l)
(generated by 7) appears now as the center of the group U(2,2) = U(l) x SU(2,2).

Our goal is the construction of the map π entering the diagram of Sect. 1 in
terms of generators of 1-parameter subgroups of SU(2,2) which in turn are labeled
by members of the Lie algebra su(2,2). The Lie algebra

u(2,2) = u(l)Θsu(2,2), (4.6)

as well as its dual u(2,2)* will be identified with the Hubert space of all complex 4
by 4 matrices 31 for which 3^1 is Hermitian, equipped with the inner product
(2I,23eu(2,2))

<2I,S> = tr(32r333). (4.7)

Since u(l) in (4.6) is spanned by the 4 by 4 unit matrix 1 and the members of
su(2,2) are characterized by zero trace, the decomposition (4.6) is orthogonal.
The appropriate bracket for the Lie algebra u(2,2) is (2l,33eu(2,2)):

[M,S] = -(2KB-S3I) 9 (4.8)
i

and the 1-parameter subgroup corresponding to 2ίeu(2,2) is {exp(is 2Ϊ)}S6R. Its
action is generated by the Hamiltonian

0 = (n\ 0391Q = (ψ(η, ζ), 9l>, (4.9)
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where

is the so called "moment-map": (C4\{0}->u*(2,2) associated with our action of
U(2,2). (For this notion see [13-17].)

In particular, denoting the generators associated with the following (ortho-
gonal) basis of su(2,2)

0

Q = I ( ; ( 0 σ o W ° σ ) ) , φ = i ( ( ° σ°χ 1 / 0

by the corresponding Roman letters, we find

(4.12)

X σ O , (4.13)

(4.14)

Remark. Taking the transformation (4.1) into account the expressions for J in
(3.15) and (4.12) agree.

Our map π will now be defined as the restriction to I~1(0) of a map:
<C4\{O}-*1R8 whose coordinate expression has the form

q = J-ίQip = P. (4.15)

The significance of the map π is summarized in the following theorem and its first
corollary.

Theorem. The map ft:I~ ^ O ) - ^ 8 obtained by restricting the map defined in (4.15) to
I~ι(0) has range T+S3. π induces a symplectic diffeomorphism between the
"completed" phase space 7"1(0)/U(l) and T+S3. In fact, the relation

^βi = 0\^Ho) (416)

holds.

Remark, θ in (4.16) denotes the last expression in (4.3) [which differs from the
expression in (3.7) by an exact form]. θ1 was defined in (2.9).

Corollary 1. The K.S-transformation π in the form (3.5) is the composition of the map
π°e| ( J- 1 ( 0 ) ), and Mosefs transformation μ:(T + 5 3 ) ' = ]R8nT+5 ί3-^(lR3\0)xlR3 de-
fined in (2.10). In other words, the diagram of Sect. 1 holds.

More informally, this means: If in Moser's transformation (2.10) p is replaced
by P and q by J~1Q and the variables η,ζ are replaced by 2~1/2(z + w) and
2~1/2(z— w), respectively, then the transformation (3.5) results.

The proof of the theorem and its first corollary is based on the
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Lemma. The following relations exist between the generators (4.5) and (4.12)-(4.14):

2 = {(J-I)\ (4.17)

= J 2 - J 2 , (4.18)

<P,β> = 0 for J + / Φ 0 , (4.20)

P.

Remark. In (4.18) and (4.20) we used the notation of Sect. 2 according to which

Proof of the Lemma. Setting all variables in (3.13) equal to η or ζ, respectively and
taking (4.5), (4.12) into account, the relations (4.17) result. Replacing in (3.13) and
(3.20) z by η and u = w first by ζ, then by iζ the relations (4.18) and (4.19) are
obtained. Forming the dot product of the first of the Eqs. (4.19) with P and of the
second with M thereby taking (4.17) into account provides us with two equations
from which (4.20) is deduced by elimination of the term P M. Setting in (3.19)
w = z = ζ, v = u = η yields the first of the relations (4.21). The second is obtained
from the first by an interchange of η and ζ. The proof of the Lemma is complete.

Proof of Corollary 1. Substituting p = P, q = J~xQ into the right side of (2.10) and
taking (4.18), (4.21) into account yields on /"^O):

Furthermore, since

we also have

Comparing these expressions with (3.5) verifies the statement of Corollary 1.

Remark. Setting 7 = 0 in (4.21) and adding and subtracting the two relations yields

QxP, (4.22)

- N ) = β 0 P - P 0 Q . (4.23)

A comparison of these relations with (2.15) and (2.17) yields the following
KS-representation of the angular momentum - and the Lenz-Runge-vector

(4.24)

= M-N. (4.25)
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Of course, (4.24) can also be obtained by subjecting the expression (3.21) to the
transformation (4.1).

Proof of the Theorem. In view of (4.18) and (4.20) it is clear that the image of π is
contained in T+ S3. It remains to prove

(i) π actually maps Γ\0) onto T+S3.
(ii) The inverse image of each point of T+S3 is an orbit of the gauge group

(iii) Formula (4.16) holds.
In order to prove these statements we first write π as a composition of three

maps π=j°(idx πo)°F. Here, F is the map which associates with each point
(η/ζ)eΓ1(0) the point (J~xQ,n) of S3 x (<C2\{0})? π 0 is the Hopf map defined in
(3.6) applied to η so that (id x π0) maps S3 x (<C2\{0}) onto S3 x (R3\0), taking the
point (q, η) into (q, - 2M) [see (4.13)] and finally the map; : S3 x (IR3\{0})->T+S3 is
defined by the formula: j(q,m) = (q, (q m, — gom + qxm)). Indeed, we have on
/"HO)

(Mid x π0)oF)(η, ζ) =j(J- 1 β , - 2 M )

where in the second to last equality the relations (4.19) and the first of the relations
(4.17) have been used. Now F and j are actually diffeomorphisms onto their target
spaces. Indeed, one easily checks that the map G:1R4 x (C2\{0})->(C4\{0} defined
by G{q,η) = (η,(q a)η-ίqoη) restricted to S3 x(<C2\{0}) is an inverse of F.
Similarly, the map ρ: R 8 ->IR4 x (R3\{0}) defined by ρ(q9 p) = (q9 poq - qo\> + p x q), if
restricted to T+S3, provides us with an inverse of j . Since F and j are
diffeomorphisms and id x π 0 is a surjection statement (i) is now obvious. We turn
to a proof of statement (ii): Given (q,p)eT+S3 we compute n~1(q,p)
= [G°(idxπQ1)°ρ~](q,p) = (η, (q-σ)η — ίqoη), where ^eC2\{0} is the general
solution of the equation (j\, σ^) = PoQ~^oP + P x Q Abbreviating the right
side of this equation by m and setting m = |m| we find for the general solution

(2 ~ 1/2(m + m3) ~ 1/2(m + m3, m1 + ίm2)eia, m^neg m3-axis

[2~1/2(m — m3)~ 1 / 2 ( m 1 — im2, m — m3)eίa, m^pos m3-axis

(α arbitrary real number), i.e. π'1(q,p) is an orbit of the gauge group U(l). It
remains to prove (iii), i.e. formula (4.16): On account of (4.20) we first compute:

Replacing in (3.13) u by — zζ, z by η and w by dζ yields:

Im <η9 σζ) Re <η9 σdζ) = - ζη9 η) Im <C, dζ) + Re </?, ζ> Im (η9 dζ).

Since P dQ is obtained from the left side of the last relation by antisymmetrization
in (η9ζ) we find on /"^O):

F dQ=-J(Im(ζ,dζ)-Im<η,dη))
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or in view of (4.14)

The Theorem is proved.
It is clear that we can use the map π to transfer the action of SU(2,2) on /~ 1(0)

to T+S3. Corollary 2 tells us more about the transferred action.

Corollary 2. T+ S3 is a symplectic homogeneous space of the group SU(2,2). More
precisely, the fundamental linear action of SU(2,2) on (C4 is transferred by π to
T + S 3 , where it can be regarded as a (non-linear) transitive and symplectic action of
the identity component SO0(2,4) of SO(2,4).

Proof By Witt's theorem U(2,2) acts transitively on /"^O). Hence the action of
SU(2,2) on Γ 1(O)AJ(1) is transitive and the transferred action on T+S3 must have
the same property. Formula (4.16) also guarantees that this action is symplectic.
Since C/eSU(2,2) and —U induce the same symplectic automorphism of T+S3

and since SU(2,2)/(l, — i) is isomorphic to SO0(2,4) (see Appendix B) the second
statement of the Corollary follows and its proof is complete.

Remark. Starting from the formula (4.10) for the moment map it is not difficult to
see that /~1(0)/U(l) can also be realized as the orbit {2Iesu(2,2)*:
391 = orthogonal projection onto a line of C4} of SU(2,2) in su(2,2)*, equipped with
the symplectic structure that was discovered for such orbits by Kirillov [18]. (Here
we think of C 4 as being equipped with the inner product associated with the norm
2 J.) Combining this result with the insight expressed in Corollary 2 we recover the
result of Guillemin and Sternberg [10] according to which T+S3 can be realized as
a certain orbit of SO0(2,4) in so(2,4)*. Actually, the constructions of the last
named authors generalize to arbitrary dimensions n^2, i.e. T+ Sn can be regarded
as a symplectic homogeneous space of SO0(2, n +1). From the point of view of Lie
group theory the existence of the KS-transformation in the case n = 3 is due to the
local isomorphism of SO0(2,4) and SU(2,2): The action of SO0(2,4) on T+S3 is
implemented by the fundamental linear action of SU(2,2) on (C4 via the existence π
of the KS-map. [Similarity, the existence of the Levi Civita transformation in the
case n = 2 can be understood as being due to the local isomorphism of the groups
SO0(2,3)andSp(2,IR).]

5. The Case of Positive Energies

So far we have concerned ourselves with the regularization of the Kepler problem
on a surface of fixed negative energy. (Actually, we only treated the case with
energy —\. However, the general case can be reduced to this case by an
appropriate scaling; see [1,2].) In this section we address the question of the
relationship between the two regularization procedures in the case of positive
energies. Again it suffices to study a special case, e.g. HQ = \. The Hamiltonian (2.7)
is now replaced by

κ o = ~(y 2 -i) (5.1)
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and the surface Ho=^, i.e. K0 = ί is diffeomorphic to SII~1xIR!J., where
IRζ = {y: |y| > 1} is the outside of the unit ball in momentum space. Subjecting the
Hamiltonian (5.1) to Moser's transformation (2.10) and to the KS-transformation
(3.5) we obtain — p0 and — P o respectively. Applying the recipe (2.13) to / = — p0

we find the following equations of motion

io = <ll-lA = qo<l,Po = 09p = poq-qof. (5.2)

On the other hand the Hamiltonian — P o gives rise to the linear flow V( — s)
defined in (A7) (see Appendix A). It follows that the integration of (5.2) yields the
non-linear flow described in (A9) and (A10) (with s replaced by — s). Whereas the
KS-transformation still linearizes the Kepler flow it is necessary to modify Moser's
transformation in order to achieve this property for positive energies. How this
should be done has been explained by Belbruno in [6]. However, for our purposes
we need a modification of his procedure that imitates the procedure for negative
energies as closely as possible. All computations and proofs are left to the reader.

Let IR"+ * be equipped with the Lorentz metric (q, p} = qopo — q p and consider
the submanifold T+Hn = {(q,p): <q9 q}=-l9 (q9p) = 0, p0 > |p|} of lR2(n+ υ . Notice
that for {q,p)eT+Hn p is "time-like" so that the definitions ||p|| = <p,p>1/2,
]S^n+1) = {(q,p):^p,py>0po+\\p\\} make sense. Now define the Moser-Belbruno
map β:{THΎ=Έίlin+ί)nT+Hn^{W\{0})x1Rl by means of the formulae

χ = ( p 0 - llpll)q-*oP> y = ( p 0 - I I P I I ) " ^ - (5.3)

This map has the properties:
(i) β is a diffeomorphism of (T+Hn)f onto (Rn\{0}) x 1RJ whose inverse is

described by the formulae:

^ r ( y

2 - l ) - 1 ( - 2 x y , (y 2 - l )x-2(x y)y),

^(l + yVyj,

(ii) K0°β=\\p\\ [Ko given in (5.1)],
(iii) β*dθo = dθ1\iT+Hy,

where

θ o = y dx,θ 1 = -<p,dβ>. (5.5)

Moreover, setting

(/-1(0)), = /-1(0)n{(z,W):<w,w>><z,z>}

= Γ^0)0{(η,ζ):P0<0,Po defined in (4.14)}

and (Γ1(O))'stι = (Γ1(O))^n{(z,w):z + O} the diagram of Sect. 1 is replaced by the
following diagram

1*
T+H3.
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The extension π of the KS-map is now described explicitly by the following
formulae

q=-p-\Q0,RXp = (J,P), (5.6)

where Qo, P o , P were defined in (4.14) and the η — ζ-expressions of J and R are
found in (4.12) and (4.25), respectively. The map ft has the property

[with θ, θ1 defined in (4.3) and (5.5), respectively] and therefore it induces a
symplectic diffeomorphism between (I'1(O))JU(1) and T+H3. Finally, the re-
lation between the MB-map β and the KS-map π can be described as follows: If in
(5.3) the substitutions (5.6) are made (keeping in mind that P o < 0 ) then the
KS-transformation (3.5) is obtained.

Appendix A

In this appendix we explore the action of SU(2,2) on T+S3 in greater detail. First
we show that the subgroup SU(2) x SU(2) of SU(2,2) acting on η,ζ separately

η' = Uiη,ζ'=U2ζ;Ul9U2eSυ(2)

induces on T+S3 the fundamental action of SO (4) that was described in Sect. 2.
[See the subsection following formula: (2.14).] To that end observe that a pair of
elements Ul9 £72eSU(2) induces a linear norm-preserving correspondence
a! = aθ(a = (a0, a) is thought of as a row with 4 entries) of R 4 onto itself by means
of the formula

U\(aoσo — ia σ) U2 = a'oσo — m' σ . (Al)

Since SU(2) is connected 0 must belong to the identity component SO (4) of O(4)
(compare [19]). Now sandwiching both sides of (Al) between η and ζ yields

ao<r\\ O - ia (η\ σζ'> = af

0(η, ζ} - iar (η, σ(> .

Equating real and imaginary parts of this relation we find in view of the definition
(4.15) of π (in obvious notation)

<α, qf) = <α', q) = (aθ9 q) = <α, Oq)

(q is thought of as a column) and on analogous identity with q replaced by p. Since
the two identities are valid for all rows αeIR4 we conclude q' = Oq, p' = Op, where
0 = O(UVU2)eSO(4). Hence, SU(2)xSU(2) acts on T+S3 via the fundamental
action of SO (4) that was described in Sect. 2. In order to study this action on an
infinitesimal level we first observe that quite generally (see [13-18]) the association
2ίesu(2,2)-^φ3IECoo(C4\{0}) defined in (4.9) is a homomorphism of Lie algebras
in the sense that

(A2)

Here [51,33] was defined in (4.8) and { , } is the Poission bracket with respect to
the 2-form idθ, i.e. for fi ̂ eC°°(C4\{0}) we have:

(A3)
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where

is viewed as a column and
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h9 dη2

9 dζt

9 dζ2

'/ df df df
η^ dη2 dζ^ dζ2/

is viewed as a row.
Returning to our SU(2) x SU(2)-action we observe that it is obviously

generated by M and N as defined in (4.13). In view of (3.17) an application of the
recipe (A2) provides us with the following Poission brackets between these
generators

{Mκ, M J = iBkljMp {AΓk, JVJ = iεujNj, {Mfc, JVJ = 0. (A4)

Here and in the following k, I vary freely over 1,2,3 whereas over j a sum is

extended from 1 to 3.1 Also, εfcίj. = 0 unless klj is a permutation of 123, in which case

ίeven] \

Zhij— ± 1 depending on whether klj is an < > permutation of 123. Another
[odd J /

distinguished subgroup of SU(2,2) is the group SU(1,1) consisting of matrices
U=\r _ , where \a\2 — \b\2 = l. (Here we use slightly abusive notation: all four

\b a)
entries should actually be multiplied by σ0 so that U is indeed a 4 by 4 matrix.) A
basis of the corresponding Lie algebra su(l, 1) is ^ 3 , 9β0, Qo. Its members obey the
bracket relations

£i2 5 φ ] = — Q ? [Q 5 Sβ ] = — ̂ 3 , [~3, G o ] = ̂ 5 0. (A5)

Applying the recipe (A2) to these relations we find the corresponding Poisson
brackets

{J, Po} = iQ09 {β0, Po} = iJ9 {Qo, J} = iP0. (A6)

The 1-parameter subgroups of SU(1,1) generated by J, P o , Qo are

U(s) =

.S

V(s) =

exp z-

0 exp ( -f-Λ

s s
cosh - i sinh -

2 2

s s
, —/sinh- cosh-

W(s)=\

cosh- — sinh-\

s s
, — sinh - cosh -

(A7)
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Using the definitions (4.14), (4.15) we find that U(s) induces on T+S3(via π) the flow

ίq'\ I coss sins\ ίq\
MI. (A8)

p) \-sms coss/ \PI
If restricted to T 1 ^ 3 this is the geodesic flow which in turn-via Moser's
transformation-corresponds to the Kepler flow (compare Sect. 2). Similarily, we
find that the flow V(s) after transferring it to T+S3 via π becomes

q'o = [coshs4-q0 sinhs]~*(sinhs + q0 coshs) q' = [coshs + q0 sinhs]~ x q, (A9)

One checks by direct computation that (A9) represents a conformal map of S3

onto itself whereas (A10) makes the combined transformation a symplectic
automorphism of T+S3. In fact, we easily recognize that the transformation (A9)
together with SO(4) generate a conformal action of SO0(l,4) on S3 (compare [10,
p. 177]). 9JI, 91, ψ form a basis of the corresponding Lie algebra so(l,4). The
associated generators M, N, P obey the Poisson brackets (A4) supplemented by the
following bracket relations [see also (4.24) and (4.25)].

{ P o , L H 0 , {R,Po} = ιP, {P9Po} = ίR,

{Rk, P J = 0, {Lfc, PJ = ίεkljPp {Pk, Pz} = - iskljLj.

The transformation W(s) [see (A7)] together with SU(2) x SU(2) give (via π) rise to
another action of SO0(l,4) on T+S3, a "complete set of generators" of this group
action being M, N, Q. These generators obey bracket relations that are obtained
from (A4) and (Al 1) by a systematic replacement of P's by β's. Finally, for the sake
of completeness we write down the remaining 27 of the total 105 Poisson brackets
involving the generators (4.12)-(4.14) associated with our basis (4.11) of
su(2,2)( = so(2,4)):

{J, M} = 0, {J, N} = 0, {Q, J} = iP, {J, P} = zQ

Appendix B

In this appendix we study the relationship between SU(2,2) and SO0(2,4). For this
purpose we first define an action of SU(2,2) on the space of complex anti-
symmetric 4 x 4 matrices so (4, (C) by means of the formula

*7eSU(2,2),2leso(4,C). (Bl)

Now each matrix 5ίeso(4, C) has a representation
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where^Egl(2, C) α, de(C, ε= 1 π On so(4, (C) we define a conjugation * and a

complex-valued function λ by setting

/ dε — εAε

\εA^ε aε

and λ(9I) = d e t ^ - a d for 21 given in (B2). 21 in (B2) is real, i.e. *9I = 2ϊ if and only if

d = a and A has the form A=\ - _ I (α,jf?e(C). The function Λ, on such an element
\-j8 α/

takes the value A(2ϊ)= — |α|2 + |α|2 + |/?|2. Breaking down a,a9β into real and
imaginary parts we recognize that the space of real elements
so(4,(C)IR={2l6so(4,C): *2I = 2I} can be identified with R 2 ' 4 . Our goal is to show
that the action φ of SU(2,2) defined in (Bl) induces transformations of SO(2,4) in
so (4, (C)R. For this purpose it is sufficient to prove that the following two
statements hold for all matrices 2leso(4,(C)

(i)

(ϋ)

(i) is an immediate consequence of the formula det2( = (/l(2I))2, the proof of which
we leave to the reader: Since obviously φ preserves det2X we have
λ{φΌ(W))= ±λ(<Ά). However for U = ί (i = unit matrix) the plus sign holds. Since
SU(2,2) is connected, the plus sign must hold for any Ue SU(2,2). We prove (ii) for
invertible 21 e so (4, C) for which the formula

*2I = /l(2i)32ϊ~13 (B3)

is valid. Indeed, in view of (B3) and statement (i) we compute

Now statement (ii) follows for any 2ίeso(4, C) by continuity. Formula (B3) is an
immediate consequence of the following two formulae whose proof is left to the
reader:

Sft. (B4)

Here,

dε εAε

\ — εAιε aε

if 21 has the representation (B2). Whereas the first of the formulae (B4) holds for
any 2ίeso(4,(C) the second requires that 2ί be invertible.

The relation between SU(2,2) and SO (2,4) is most succinctly expressed in the

Proposition. SU(2,2)/(1, - l)^SO 0 (2,4).

Here = means (analytically) isomorphic. As a consequence SU(2,2) doubly
covers SO0(2,4). Sketch of a proof: Let φ be the induced-action of SU(2,2) on
lR2'4(so(4,(C)IR) that was constructed above. h:U-+φjj is a homomorphism of
SU(2,2) into SO (2,4) with kernel containing 1, —1. By a straightforward com-
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putation one shows that the kernel contains no other elements, i.e. h(U) = t implies
U= ± ί In particular, h is a local isomorphism so that fc(SU(2,2)) is an open
subgroup of SO (2,4). Since it is the complement of the union of its cosets it is also
closed. Hence h(SU(2,2)) = SO0(2,4) and the statement of our Proposition follows.

Addendum. After this manuscript was completed the paper [20] appeared in print.
Using different methods from ours this paper anticipates some minor results of the
present paper. However, it neither touches upon the role which the group SU(2,2)
plays in the KS-regularization nor on the main topic of the present work, namely
the (explicit) relationship between Moser's and the KS-transformation.
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