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S. V. Pokrovsky and Yu. A. Bashilov
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Abstract. A regular method for analysis of lattice spin models with a nearest
neighbour interaction is proposed. Star-triangle relations in the form of
functional equations are used. Parametric families of transfer matrices commut-
ing due to star-triangle relations are constructed. The eigenvalues of transfer
matrices as functions of the spectral parameter are shown to obey two functional
equations. The solution of these equations for the maximal eigenvalue yields the
partition function of the model. The method is applied for evaluation of the
partition function of the critical Potts models, the Ising model, the Ashkin-Teller
model equivalent to the eight-vertex model.

1. Introduction

The star-triangle transform has served for the analysis of the exactly solvable lattice
statistical spin systems for a long time. It was briefly mentioned in the famous work
by Onsager [1] and used in his article [2]. Star-triangle relations (STR) combined
with dual transformation (DT) made it possible to determine the critical point of the
Ising models on the triangular and honeycomb lattices [3—-6]. Baxter and Enting
evaluated the partition function of the Ising model using only STR [7]. STR were
also utilized to construct the exact renormalization group equations for the Ising
model on the triangular lattice [8, 9]. Mittag and Stephen [10] applied STR to the
critical Potts models [11].

In the present paper we consider STR as functional equations. Their derivation
is based on the Yang-Baxter equations of triangles (ET) [12-15]. The solutions of
STR are used to construct parametric families of commuting transfer matrices
(TM). These TM are ascertained to be normal operators. This allows us in principle
to diagonalize the whole family by a single unitary transformation.

To find the eigenvalues of TM concerned one might use them to construct a
Baxter-type TM [13] and then employ the generalized Bethe-ansatz technique. The
latter was proposed by Baxter and elaborated to a standard procedure in [16, 17].
Unfortunately, the search of pseudo-vacuum that is the first step of this procedure
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has not been canonized yet. Only some particular solutions of the problem are
known so far [18].

For this reason we use an alternative approach in the present paper. It is based
on two functional equations that rule the behaviour of TM eigenvalues as functions
of the spectral parameter. The free energy of the model is determined by these
equations uniquely assuming its analyticity and periodicity.

The above method is applied to evaluate the partition function of all the spin
models on the rectangular lattice that are known to be exactly solvable. The
analogous approach for the vertex statistical Baxter-type models is developed in
[15,19].

This paper is organized as follows. General theorems and equations are
considered in Sects. 2—-6 while Sects. 7-9 are devoted to particular models. Section 2
serves to introduce basic ET in two interpretations: 1+ 1-dimensional scattering
theory and the spin statistical model. This comparison makes it natural to consider
ET as functional equations. In the same section STR are derived from ET. The
corollaries of STR called unitarity conditions are examined. In Sect. 3 we use the
solutions of STR to construct TM depending on the spectral parameter. A theorem
of commutativity for TM with different values of the spectral parameter is proved.
In Sect. 4 the diagonalizability of TM is discussed. The functional equations for its
eigenvalues are found with the help of unitarity conditions. Section 5 is devoted to
the symmetry of STR and ET under dual transformations. In Sect. 6 some of the
above results are formulated in the operator language. In the thermodynamic limit
TM is a generating functional of an infinite series of quantum local conservation
laws [207]. The solutions of STR are found : in Sect. 7 for the critical Potts models, in
Sect. 8 for the Ising model, and in Sect. 9 for the restricted Ashkin-Teller model. The
evaluation of the partition functions of the models involved is represented in
Sect. 10. The most cumbersome calculations of Sects. 7, 8 are given in Appendices
A, B. Some formulas concerning the eight-vertex model are collected in
Appendix C.

2. Equations of Triangles and Star-Triangle Relations

Consider a relativistic scattering theory including n kinds of particles with equal
masses in 1 + 1 space-time dimensions. The collision of two particles with rapidities
6, and 0, is described by a scattering matrix S#:62(@, ) (Fig. 1). The indices oy 5

a2

B2 B,

X

Fig. 1. A diagram of two-particle scattering. Imaginary time is directed along the t-axis. Imaginary
relative rapidity is denoted by 6, ,
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Fig. 2. Two possible variants of three-particle scattering. A graphical representation of equations of
triangles (2.1)

denote the kinds of colliding particles while f; , specify emitted particles. A pair of
rapidities 6, and 0, remains unchanged in two-particle scattering due to the identity
of masses of the particles and to energy and momentum conservation. S-matrix
depends only on the difference 6,,=0, —0, on account of Lorentz-invariance.

If a system possesses an infinite series of conservation laws, a set of individual
rapidities is conserved in any multiparticle collision. A number of works [15,21-23]
deals with S-matrices that may be represented as a product of two-particle
amplitudes. The resulting amplitude of the S-matrix must be independent of the
sequence of two-particle collisions. This is valid for any multiparticle amplitude if
and only if three-particle S-matrix elements constructed from two-particle ampli-
tudes in different ways are equal [12, 15]. Two possible variants are presented in
Fig. 2. The equalities of the depicted amplitudes are the factorization equations also
called equations of triangles (ET) [23]:

S0, 8820, )80,

L31°%) v1a3 V2v3

S)’z}'s(gz 3)SY1ﬁ3(91 3)Sﬁ1B2( 1 2) s

203 aLys3 Y1v2 (21)

Hik=0i_0k’ Oéaiaﬁi’yi<n’ l=1’2a3'

The summation over repeating indices is implied.
The absence of scattering of particles with equal rapidities results in the
following natural initial conditions for the S-matrix [21]:
511522(0) ai, ﬁzéaz,ﬂx . (22)
The conditions (2.2), further referred to as standard initial conditions, are
compatible with ET (2.1) provided that

S7172(0)§P2b1( — ) = F(6). (2.3)

[3T%) Y271 11 131 a2, 2

Equation (2.3) are known as unitarity conditions (UC)[15].
ET (2.1) admit the following symmetry restriction imposed on the S-matrix : the
crossing symmetry condition

Smﬁz() Sﬁzal(m 0), (2.4)

(2315 azpt
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PT-invariance

SE82(0) = S525.(0), 2.5)
CP-invariance
SEib2(0) = S5251(0) . (2.6)

The asterisk in formulas (2.4) and (2.6) denotes charge conjugation.
The sort of particle is adopted to be specified by its isotopic charge that is
conserved modulo n. In two-particle scattering:

o, +o,=p,+f,(modn). (2.7)
Define charge conjugation as a reversal of its sign:
o* = —o(modn). (2.8)

S-matrices obeying the above conditions are well suited to describe two-
dimensional spin statistical systems with four-spin interaction. Assume the
rapidities to be pure imaginary. Then their differences acquire geometrical meaning
of angles depicted in Figs. 1 and 2. If the vertices of the same type as in Fig. 1 form a
lattice, the plaquettes of the latter may be occupied by spin variables o and u (Fig. 1)
in a way to satisfy condition (2.7):

W =0y Op=p,—0y5  Bi=p,—0,  By=o,—py. (29)

The addition of indices in the present and further formulas is implied modulo .
The S-matrix element may be regarded as a statistical weight (SW) of a cor-
responding spin configuration:

SP2(0) = Ry 2(— i6). (2.10)

a1a2

Equations (2.9) and (2.10) show that Rj;!72(0) depends only on the relative
orientation of spins.

The requirements (2.4)~(2.6) appear to be rather natural in terms of the spin
model. Namely, PT-invariance (2.5) is equivalent to the symmetry in the indices o,

and 0,: e o
R:20) = R7T(O) (2.11)
while CP-invariance (2.6) converts into the symmetry in the indices p, and u,:
R1a(0)=RE730). (2.12)
The condition of crossing (2.4) takes the following form:
Ry (0)=RE 15 —0). (2.13)

ET (2.1)in terms of spin variables, taking (2.9)~(2.13) into account, are written as

follows:
n—1 n—1
> RO (ODRS (0)R7:(0)= Y Rb (0,)R42% (0,)R5%(05),
=0 =0
. (2.14)
0,+0,+0;,=m.

Equation (2.14) are graphically represented in Fig. 3.



Star-Triangle Relations 107

Fig. 3. Equations of triangles in terms of spin (plaquette) variables

As Baxter has shown [13, 14], if (2.14) is satisfied, the partition function of the
spin model is invariant under parallel translations of the direct lines forming the
lattice, thus depending only on the angles between them. This property is known as
Z-invariance [14].

From standard initial conditions (2.2) with the help of (2.9) and (2.13) one can
deduce standard boundary conditions (SBC):

R%:°2(0)=¢ RC(m)=§

13Y2% 01,02 Hipo

(2.15)

My, p2 "

The analogue of UC (2.3) is readily obtained from (2.14) if one of the arguments ; is
put equal to = and (2.15) is used:

n—1
GZO RS (ORT: (—0)=6,, ,,F(0). (2.16)

Equation (2.16) must hold for arbitrary u, and u,. F(6) is an even function of 6.

The spin model under consideration is actually built of two types of spins ¢ and
U, each type situated on its own sublattice [14] (Fig. 3). The absence of interaction
between different sublattice spins corresponds to the following factorization of SW
R%1°2 into the product:

Hik2

Ro72(0)=K

s OK, , (1—6). (2.17)
The factorized R-matrix (2.17) obviously obeys the crossing condition (2.13) while
restrictions (2.11) and (2.12) mean that SW K, , (0) is symmetric in its indices.

Substituting (2.17) into (2.14) one comes to star-triangle relation (STR):

G102 Bis2

n—1
Z Kala(al)Kcza(ez)Ka-3a(03)
c=0

=46,,0,,0.)K,, (n— 0K, (t—0,)K,  (n—0s), (2.18)

G203

where
0,+0,+05=m, (2.19)

and A(0,,0,,0,) is some function symmetric in its arguments.
We introduce a graphical representation of (2.18) denoting K, ,,(6) by the line
connecting the points o, and ¢,. Then Fig. 4 is equivalent to Eq. (2.18).
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Fig. 4. Graphical representation of star-triangle relations (2.18). Summation over index ¢ on the left-
hand side is implied

SBC (2.15) due to (2.17) lead to the SBC for K, ,.(0):
K, ,,0=v5, ,, K, (m=v""'. (2.20)

Setting one of the arguments 6; in (2.18) equal to = and taking into consideration
(2.20) one arrives at a unitarity condition (UC) that is expressed now by two

equations:
ZKm o —O=F£(0) 3, .., (2.21)

K, 0, (n=0)K,,,(n+0)=4¢(0), (2.22)

where f(0) and g(0) are some even functions.
Note that any two solutions of STR (2.18) and UC (2.21), (2.22) differing by an
arbitrary factor () may be regarded as equivalent. Really, multiplication of
0102(9) by ¢(0) leads only to the renormalization of A(6,,0,,0,) in (2.18) and f(0),
g(0) in (2.21), (2.22), respectively.

3. Construction and Commutativity of Transfer Matrices

It was shown by Baxter [13] with the aid of ET (2.1), (2.14) that transfer matrices
(TM) of Z-invariant models form parametric commutative families. The analogous
feature is exhibited by spin models possessing STR. Namely, TM along the diagonal
commute under certain boundary conditions. TM of this type were first introduced
by Onsager [2] and later used by Mittag and Stephen [24].

We construct the diagonal TM T, ,, using a graphical representation as a saw
depicted in Fig. 5. The algebraic expression for its matrix elements is the following:

(u a)(e H K ,u' al+ m(n_ 0). (3.1)
where {6} =(0,, 05, ..., ay)and {u} = (i, iy, --., pty)- Notice that a cyclic boundary
condition is assumed:

ON+1=0- (3.2)

The parameter 6 determines an anisotropy of the rectangular lattice model as it is
seen in Fig. 5. An isotropy is achieved when 0=m/2.
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Fig. 5. Transfer-matrix (3.1)

The partition function of the spin system on the rectangular lattice containing
2M saws as depicted in Fig. 5 is expressed via T, ,,(0) and the transposed matrix
TG (0)=T,, ,4(6) in the following way:

Z=tr[T~(n—O)T(O)]™. (3.3)

Using the construction of Fig. 5 with the cyclic boundary condition (3.2) and the
symmetry of K_ _(6) in its indices one can deduce

0102

T(x—6)=PT~(6), (3.4)
where
N
Poo= [T 00 ower=0s (3.5)

is an operator of the lattice spacing translation commuting with T(0):
[P, T(6)]=0. (3.6)
We are in a position to show that for arbitrary 6 and ¢’
[T(0), T(0")]1=0. (3.7)

Instead of Eq. (3.7) we shall prove another identity equivalent to (3.7) due to
Eq. (3.6):

T (n—TO)=TOT™ (z—0). (3.8)

Equation (3.8) is represented graphically in Fig. 6 where the summation is implied
over all indices 4 and v.

Multiply the product T~(n—0)T(0) in Fig. 6a by SW K, (t—0+0) de-
signated by a wavy line. Consider the graphical equality in Fig. 7 which is simply
STR in Fig. 4 repeated twice. Applying the equality of Fig. 7 successively to Fig. 6
one may carry the wavy line through the whole product T~ (n— 6')T(0) in Fig. 6a
and finally obtain T(9)T~(n—0') in Fig. 6b multiplied by SW K, ., = (n—0+6).
Due to the cyclic boundary conditions (3.2) the latter is equal to SW
K, . (t—0+0). Canceling the identical factors on both sides of Eq.(3.8) one
completes the desirable proof.

The above proof may be easily converted into a purely algebraic one but the
unwieldiness of the latter prevents us from producing it here.
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Fig. 6. a Product T (z— 0’)T(9). b Product T(6)T~(z—6'). TM T(6) is denoted by a solid line, T~ (n—0)
by a dashed line. Summation over all indices 4, v is implied

0y

Fig. 7. Graphical identity used for the proof of commutativity of TM. Here STR (2.18) is repeated twice

4. Functional Equations for TM Eigenvalues

TM (3.1) is a positive linear operator acting in the n"-dimensional Euclidean space.
Really, the components of the vectors in this space are labeled by spin con-
figurations in the row of the lattice and are equal to the corresponding SW.
Therefore, they are real and positive. TM elements have the meaning of SW ascribed
to the spin configurations in the two adjacent rows and so are real and positive as
well. Besides, due to Eq. (3.8) T(6) is normal and according to the general theorems
of linear algebra may be diagonalized simultaneously with its adjoint (transposed)
operator T'(0)=T"(6). The eigenvalues of T(6) and T~ (6) corresponding to the
same common eigenvector are complex conjugate [25, Chap. IX, Sect. 13].
Moreover, TM T(6) with permissible values of 6 form the commutative family of
normal operators. Therefore, there is some unitary transformation diagonalizing
the whole family and consequently independent on 6 [25, Chap. IX, Sect. 15].
SBC (2.20) applied to TM (3.1) look as follows:

TO)=1I, T(n)=P, 4.1)

where Iis an identity operator, while P is a translational operator (3.5). Therefore, P
may be diagonalized simultaneously with the rest of the family T(6). The matrix
equation (3.4) in the diagonal representation reduces to the following equation for
TM eigenvalues A(f) and translation operator eigenvalue-p:

An—0)=pA*@0), p =1. 4.2)

The second functional equation for A(6) arises for TM with distorted boundary
conditions, ie. in the thermodynamic limit (N—o0). Consider the product
T~(—0)T(0) represented graphically in Fig. 6a where ' =n+ 0. Substitute cyclic
boundary conditions (3.2) by the following ones:

ON+1=HN+1=0.
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The algebraic expression corresponding to the new variant of Fig. 6a reads:
[T (—OT(0)],. 0, =>.[K,, 1, (0K, (—O][K,,, (m—0K,,, (1+0)]
*

Ky OK, 0 (O] K,, (r—0)K,,; (n+0)]. (4.3)

Applying UC (2.22),(2.21) to the every factor in square brackets successively and
beginning from the end of the product (4.3) one comes to the following result:

[T (= O)T(O)]y, 0, =LSO)g(O)]"0,, 4, - Oy o - (4.4)

The coincidence of T~ (— 0)T(0) (4.4) and the corresponding operator with the cyclic
boundary conditions (3.2) in the thermodynamic limit (N—o0) seems to be a
reasonable conjecture assumed further. Thus,

T (= 0)T(0)=L/(0)g(0)1"L. (4.5)
In the diagonal representation Eq. (4.5) leads to the following equation for the
eigenvalues: .

A¥(=0)A0)=[f(0)g(0)]" . (4.6)

As it was stated earlier, in the initial representation TM is positive when
0 <@ <. Thus, the Perron theorem is applicable when 6 is inside the above interval
[25, Chap. XIII, Sect. 2]. In accordance with this theorem, TM must have a real
positive nondegenerate eigenvalue A, () exceeding the modulus of any other
eigenvalue. The corresponding eigenvector, the vacuum vector, ought to have
positive components. Since A,,(0) and A,(m— 6) are real and positive (0 <6 <m),
Eq. (4.2) fixes p=1. In other words, the vacuum vector is translationally invariant.

The partition function (3.3) in the thermodynamic limit is determined by the
vacuum eigenvalue in accordance with the formula

Z=[A,[0)]*". 4.7
It is helpful to introduce the density of the free energy per site of the lattice:
1 1
—BF6)= TMN logZ(0)= N—logA,,,(B):logC(G). 4.8)

Thus introduced the real and positive quantity {(0) obeys two functional equations
resulting from Egs. (4.2), (4.6) and the translational invariance of the vacuum:

{n—0)={(0), (4.9)
{(=0)X(0)= f(0)9(0)=G(6). (4.10)

These equations serve to evaluate the free energy (4.8).

5. Z,-Symmetry and Dual Transformation

The R-matrix (2.10) remains unchanged after adding 1 modulo n to each of its
indices. One can speak of the Z,-group as the group of R-matrix invariance.
However, we restrict ourselves with R-matrices posessing a higher symmetry:

Z,% Z,. Namely, we focus on Rj!72(6) which is invariant after simultaneous shifting
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of only upper indices or only lower ones. That means

R3172(6)= R~ 52(6). (5.1)

Hi1k2 H1— H2

Factorized and Z,-symmetric R-matrices (2.17) are forced to posess Z,x Z,
invariance (5.1) equivalent to the Z, symmetry of the constituent factors:

K, . (0)=K, _,.(0). (5.2)

The symmetries (2.11) and (2.12) in the new notations (5.1), (5.2) acquire the
following form:

R;(0)=R,°(0)=R~ (0), (5.3)
K, (0)=K_,(0). (5.4)
We define the dual transformation (DT) of SW (5.1) by the formula
n—1 n—1
R;%0)= L Y o™ TPRIG)= L Y, ot PRI(n—0), (5.5)
n o,u=0 n o,u=0
w=exp @ (5.6)
n
The corresponding DT for K _(0) agrees with (5.5):
n—1
K7 (0)= i Y 0 K (n—0). (5.7
a=0

Reciprocal relations expressing Rj(6) via R °(0) and K, (0) via K[ (6) are of the same
form as (5.5) and (5.7), respectively, for the well-known formulas of the inverse
Fourier transform are accompanied by symmetries (5.3) and (5.4).

Provided the solution Rj(6) of ET (2.14) or the solution K () of STR (2.18) is
found, the DT (5.5) and (5.7), respectively, convert the known solutions into the new
ones.

Just the following statements are valid:

Theorem 1. DT (5.5) of Z,x Z,-symmetric R-matrices (5.1) leaves ET (2.14), the
crossing condition (2.13), SBC (2.15), and UC (2.16) invariant once the above
conditions are satisfied.

Theorem 2. Let K _(0) obey STR (2.18), SBC (2.20), and UC (2.21), (2.22). Then dual
SWK_ () obeys the same constraints where the following substitutions should be
produced :

27(0,,0,,0,)=ni"10,,0,,0,), v =n?y71,

[ (0)=ng(6), g~ (O)=n""1(0).

One may conclude from two last formulas (5.8) that DT produces no change in the
functional equations (4.9), (4.10).

Both theorems are easily proved by the direct substitution of (5.5) and (5.7) into
the formulas enlisted in Theorems 1 and 2, respectively. The calculations are based
on the properties of the Fourier transform and essentially on the symmetries (5.3)
and (5.4), respectively.

(5.8)
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The above theorems allow the existence of the self-dual solutions of ET (2.14)
and STR (2.18): R:°(6)=R(0), (5.9a)
K7 (0)=x0K,0), x0xr—0)=1, (5.9b)

where the function in Eq. (5.9b) x(0) depends on the normalization of K_(6).
Physically, DT is a mapping of the initial spin system onto the dual one. Dual
spins are situated at the sites of the dual lattice and their interaction is described by
transformed SW (5.7) [26-28]. The system described by SWR{(6) contains two
sublattices dual to each other [13, 14, 29, 30]. Spins ¢ and u exchange their
sublattices after DT (5.5).
In addition to the full DT (5.5) we introduce a partial DT Rj(0):

1 n—1
K”(Q)ZW Z w“”‘RZZ(G), (5.10)
=0
where g
a=(o,0,). (5.11)

The above transform moves spins u from their sublattice to that of ¢. Thus,
SW K (6) describes a system containing two spins in every site of the lattice. Vector
index a (5.11) takes its values in the group Z, x Z,.

All the results hitherto obtained for SW K (0) may be naturally generalized for
K ,(0) with vector index (5.11). Namely, any scalar index in the relations (2.18),
(2.20)—(2.22), (3.1), (5.2), (5.7) should be substituted by a vector one. The addition of
indices must be accomplished componentwise, and the summation over the vector
index (5.11) is realized as the summation over o, and a, separately from 0 to n— 1.
Symbol J, ,, designates the product 6, g -6,, s, The product g in (5.7) should be
changed to a scalar product as=a, 0, +a,0,. If nappears in some formula it must be
substituted by n? except the expression (5.6) for w which remains invariant. Instead
of the symmetry (5.4) K,(0) are supposed to obey the following constraints:

K0)=K, ,(0=K, . (O)=K_, (0. (5.12)

However, vector index STR (2.18) posess some specific symmetries that may be
formulated as linear transformations of the vector index (5.11). Let us define two
elements 4 and B generating a modular group [31, Sect. 13.22]:

Aa=(a,, —ay), Ba=(og, 0, +a,). (5.13)

oy, 02

STR (2.18) remain invariant after substitution
Ka(g)—-)KEa(O) > (514)

where E is an arbitrary element of the modular group. Since any E is nondegener-
ate it cannot alter SBC (2.20). As Ea takes the same set of the values as a, the
partition function is an invariant of the modular group.

If K,(6) is determined by Eq. (5.10) where the R-matrix obeys Egs. (2.13) and
(5.3), SW K7(0) dual to K,(6) are connected by transformation 4 (5.13):

K (0)=K,,(0). (5.15)
For K,(0) defined by Eq. (5.10) the following theorem is true.



114 S. V. Pokrovsky and Yu. A. Bashilov

Theorem 3. If R;(0) obey ET (2.14), crossing conditions (2.13), SBC (2.15) and the
symmetry (5.3), then K (6) connected with R;(0) by (5.10) obey STR (2.18) with
M0,,0,,0;)=n, SBC (2.20) with v=n''* and symmetry relations (5.12). Certainly
R(0) satisfy UC (2.16) with some F(0); this fact results for K (0) (5.10) in UC (2.21),

(2.22) with 1O)=nF©O), gO)=n"1F®). (5.16)

Functional equations for evaluating the free energy of the system have the form
(4.9), (4.10) with G(0) = F*(0). Note that the maximal eigenvalue of Baxter-type TM
[13] obeys functional relations (4.9), (4.10) [15, 19] with G(6) = F(6). This fact may
be easily seen using the considerations analogous to that of Sect. 4.

6. Transfer Matrix and Quantum Commuting Hamiltonians'

The TM of Z, -symmetric systems may be expressed in terms of shift and
multiplying operators [32-34]. We introduce them in the following way. Consider
the vector of the spin configuration @, denoted by |o,,0,, ...,0y). The diagonal
operator of multiplication for the variable at the k™ site of the chain is defined
according to the formula

SO s Opy ey O ) =G, ooy Oy oy O (6.1)
while the shift operator ¢, is in conformity with the following one:

oy o O oy =loy, oo+ 1,08, (6.2)

where addition is performed modulo n as previously and the value of w is given by
(5.6).
The immediate corollaries from the definitions (6.1), (6.2), and (5.6) are
sSi=ti=s.5¢ =t =1. (6.3)

Any operators assigned to the different sites of the chain commute with each other,
while s, and ¢, do not commute. The commutation relations between the latter
may be easily obtained from (6.1), (6.2):

St =4S, Sty =¥t s, (6.4)

The expression (3.1) for TM provided Z, symmetry (5.2) is imposed takes the
form

N

T(M’ 0’}(0) B kl——_[1 K”" _O'k(e)Kﬂk ~Ok+ 1(n - 0) > (65)
which can be represented in terms of the above operators by introducing the

operator functions a1
P(0)=Y K00, (6.6)

a=0

and et
O+ 1/2(9)=”l_1/2 Z K;(H)(S;Sk+ D5 (6.7)

a=0

1 This approach is widely used in [10, 20, 35]. Nevertheless, Sect. 6 may be omitted without
prejudice to further understanding
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where K (6) are the SW dual to K (0) (5.7). The operators (6.6) and (6.7) have the
following matrix elements:

gy eoor s s Mgl PAON G, s O s o> =K, 5, (0) I;Ik O ies (6.8)
and
s oo i g 15+ | Qg 12001, - Oy O 45 - OnD

n—1 N N
=n"12 Y K7 (0)w 7 I Op =K, (m—10) I1 Opinir (6.9)
i=1 i=1

a=0

The latter equality in (6.9) was obtained with the help of the formula reciprocal to
(5.7).

The cyclic boundary conditions (3.2) require the corresponding projection
operators to be introduced on the auxilary chain containing N+ 1 spins:

n—1 n—1
p=D thers  a=n"1 Y (s{syer) (6.10)
=0 a=0

It may be readily verified using Egs. (6.5)—(6.10) that matrix elements of the
operators T(6) and pI(6)q coincide:
<,u17 R ,uN’ MN+ 1|pz(9)q|017 Ty GN: 0N+ 1> = 601,01\” ‘T{”’G_)(Q) H (61 1)

where
U0 =0y 1/2(0PyO)Qy - 1/2(0)Py_(0) ... Q3/2(0)P,(0). (6.12)

TM in terms of operators (6.1), (6.2) have been examined in [20]. They were
demonstrated to be generating functionals for a set of quantum commuting
Hamiltonians. Consider a Taylor series for operator I(6) in the vicinity of 8=0.

Due to SBC (2.20)
PO)=vI,  Qui1p(0)=v""T,
therefore,
F(0)=I. (6.13)
The next term of the Taylor expansion of (6.12) is linear in 6 with the operator

coefficient N N
A=v"" Y POy Y Oty 1)o0).- (6.14)
k=1 k=1

Here the prime denotes the derivative with respect to 0.
Thus,

O =1+#0+ i (6.15)

One cannot surely state whether the expansion (6.15) is convergent. Yet formally
all the coefficients of the Taylor series (6.15) must commute in the limit N— co.
Their commutativity is a straightforward corollary of Eq.(3.7). Really the
boundary conditions imposed by operators (6.10) become inessential in the limit
N— 0. So the operators themselves may be neglected.
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However, 7, obtained from (6.15) are not local. The standard way to construct
local motion integrals is to rearrange the series (6.15) in the form:

logZ(0)= ) %,0", €,=H. (6.16)
n=1

The quantities %, represent a set of quantum quasi-local Hamiltonians [20, 35].
For n=2 %, are motion integrals with respect to the operator # (6.14) [20].

We finish the present section describing DT in terms of TM (6.11). As in
[33, 34], we introduce dual operators . ,,, and s;, , , related with ¢, and s, as
follows:

o~ ~+ ~ o~ + ~ o+
B=Ses 125125 tre12=Sk+1S »  1SKSN,  t7p,=sy.5;. (6.17)

Dual operators form the algebra isomorphic to that of ¢, and s, (6.4) with the
substitution t,—1;, 5, S, 8,4 ,,,- The operator functions (6.6), (6.7) after the
change of variables (6.17) may be rewritten as

n—1

PAO= 3 KfOi= T, K05 aser ' =0PQ70). (619

a=0
n—1
Qk+1/2(9)=”_1/2 Z K;(B)(S;Sk+1)a
a=0
n—1
=n" 12 Zo K;(Q)t,:fl/zEn—l/szNH/Z(G). (6.19)

TM I(0) (6.12) in terms of dual Q;” and Py, , , is rather similar to that in terms
of initial P, and Q. ,,:

O =Py 1120005 (0P, 20005 1(0) ... P3,(0)Q7(0), (6.20)
and n—1 n—1
a=nt L a=n T, p= X (heasiafomaT (620

Here the last equality is valid only in the invariant subspace defined by a
projection operator
n—1 /N+1 a
Pnt'y (n tk) . (6.22)
a=0\k=1
In the thermodynamic limit DT reduces to the interchange

K=K (0).

7. STR in the n-State Potts Models

The following simplest ansatz for SW (5.2) when 0<a<n—1 is known as the case
of the n-state Potts model [11]:

K(0)=1+0(0)5, . (7.1)
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The Ising model is included in this class (n=2). STR (2.18) accounting for (7.1)
reduce to a set of functional equations for the function v(6):

n+v(0,)+v(0,)+v(0;)=40,,0,,0,), (7.2)

v(ei)v(ej) =4(0,.,0,,0,)v(n—0,), (7.3)
v(0)v(0,)0(03)=A(0,,0,,0,) [v(r—0,)v(r—0,)v(r—6;)

+u(n—0,)v(n—0,)+ v(r—0,)v(r— 05) + v(r— 0,;)v(n—0,)]. (7.4)

Here (i, j, k) is an arbitrary permutation of (1,2,3). For n=2 only two linear
combinations of Eqgs. (7.2)~7.4) are independent. This case will be considered in
the next section.

Note that SBC (2.20) in terms of the function v(6) are singular:

lim y(@)=0c0, wv(m)=0. (1.5)
90

The solution of Egs. (7.2)(7.4) is given in Appendix A. It is helpful to introduce

a parameter p instead of n by the formula (A.10). For n>4 pis real, forn=4 u=0,

for n<4 p is pure imaginary. Namely, for n=3=i/6 and for n=2u=i/4 Quoting
(A.11) we write

v(0) =2 cosh pm sinh u(m — 6)/sinh u6 . (7.6)

Parametrization (7.6) was obtained in [36].
One may perform DT (5.7) using (7.1), (7.6):

K;(0)=n'25, o+n~'?u(n— 0)=[sinh uf/sinh u(n— 6)]K (6). (7.7)

The relation (7.7) agrees with the definition (5.9b), so K,(0) is self-dual. In other
words, the solution involved describes the critical point of the Potts model in
agreement with the previous results of the Potts models’ integrability [10, 20, 36—
39]. The quantum Hamiltonian and the involutory conservation laws were
examined in [10, 20].

The straightforward substitution of (7.1), (7.6) into UC (2.21), (2.22) gives the
functions on the right-hand side of UC:

FO)=v(@u(-6); gO)=1. (7.8)
The function G(6) on the right-hand side of (4.10) is the product of f(6) and g(0):

sinh p(r — 6) sinh y(m + 6)

{OU= O =v(O)p(— )= —n: Sinh? 0 (7.9)

The system (4.9), (7.9) will be solved in Sect. 10.

8. The Ising Model

The Ising model is a particular case of Potts models (n=2) as it was mentioned in
the previous section. However, the number of independent STR in this peculiar
case is less than in the general one. So the class of permissible solutions is wider.
The Ising model is integrable outside its critical point [1].
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According to the conventions assumed in Sect. 7 K,(0)=1. The model is thus
characterized by a single function K,(0)=x(0). STR (2.18) read:

14 x(0,)x(8,)x(85) =0, 0,,03)x(mr— 0,)x(n— 0,)x(m—0,), 8.1)

x(0;) +x(0,)x(0,) = A0, 0,, 03)x(n—06,), (8.2)

where (i, /, k) is an arbitrary permutation of (1,2, 3).
Equations (8.1), (8.2) are solved in Appendix B. We quote formula (B.13)

0

Here k, and k are complementary moduli of elliptic functions (see [31, Sects. 13.9,

x(0)=ky*cs (ggl k) = (8.3)

13.19, 13.207)2. Perform DT (5.7): 0
Kg(9)=2“1/2[x(7r—9)+1]=exp<—ig)—, (8.4)
3 n—0
91( 4 ‘L')
3 (g r+1/2)
K;(e)zz—”z[x(n—e)—lj=exp(—i§)—————. 8.5)
8 n—0
5 ("5

DT (8.4), (8.5) may be represented in the form analogous to (5.9b)
K (0l)=9g(0)K,(01T+1/2), (8.6)

where g(0)=K7(0) in (8.5).

Let us elucidate the relations between the elliptic parameters 6, v and the
physical parameters of the Ising model f;=J,/T with T denoting temperature and
J,,, denoting interaction constants. Since K,(0)=1 (see Fig. 5), one may con-

1 :
clude exp(2B,)=x(0), exp(2B,)=x(m—0)=y(0). (8.7)
Here the dependence of x(6) and y(6) on 7 is implicit.

Excluding 0 from Eq. (8.7) one may express t via ff; and f, directly. For this
purpose combine the formulas (B.10) and (B.12):

[xX20)—11[y*(0)—1]  1+k,
4x(0)y(0) T2kl

The quantity on the right-hand side of (8.8) may be expressed via 7 in a direct way
in accordance with [31, Sects. 13.20, 13.23]:

sinh(28,)sinh(28,)=

(8.8)

_92027)
T 82(0120)°

2 Note that we use theta functions that differ from those defined in [31, Sect. 13.19] by
multiplication of their argument by a factor =

sinh(28,)-sinh(28,) (8.9)
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The relationship (8.9) is simplified in the vicinity of the critical point. The latter is
fixed by the Kramers-Wannier condition [26]:

sinh(2f)-sinh (265)=1. (8.10)

Therefore, for T sufficiently close to T,

T—T

sinh(2f,)-sinh(28,)—1= [2B9 coth2p + 2 coth2f5], (8.11)

c

while (8.9) gives [31, Sect. 13.23]:

93(014)
93(0127)°

The right-hand side of (8.12) vanishes at t—>ioo. This limit corresponds to the
critical point. In the vicinity of the latter the right-hand side is exponential in 7 [31,
Sect. 13.19]. That allows us to express t as a function of temperature in a
transparent way:

1 T.—-T

1
e T 4

c

sinh(28,)-sinh(28,)—1=2

(8.12)

1 B coth2f + B coth 25
1 pgficoth2hi+Fycoth2fs |y w13)

In the vicinity of the transition point DT (8.6) is reduced to a reversal of the sign
for (T—T,) [26]. The latter is equivalent to the shift of t—1t+41/2 in agreement
with the general formula (8.6). Reversing the sign of (T—T,) twice, one shifts
t—1+ 1. However, SW (8.3) do not change under this transformation since the
right-hand side of (8.3) is periodic in 7= with a period equal to unity [31,
Sect. 13.22].

SW (8.3) are double-periodic in 6 with periods 47 and 8zt [31, Sect. 13.19]. The
more subtle property worth attention is their quasi-periodicity analogous to that
discussed in [23]:

K 0+2m)=(—17*"1x"YOK,. ,(0); K,0+4n0)=(—1"1K (0). (8.14)

The correctness of (8.14) may be checked directly with the aid of (8.3) and [31,
Sect. 13.19, Table 8].
The functions f(0) and g(0) in UC (2.21), (2.22) obviously are

fO)=1-x%0), gO)=1. (8.15)

Recall that x(6) is odd. Rewrite f(6) in a more suitable form [31, Sects. 13.23,
13.19]:

(0 -0 7+ 0|

33 (— T 91( r) 91( r>
FO)=1—x0) =1 —2 >=— 530l 1 4 | 4 17 g1

92(9 T) 92 (5 f) 92(9 1:)

1\4 '\4 14

This function should be inserted instead of G(6) in Eq. (4.10) since G(6) = f(0)g().
The evaluation of {(6) based on Egs. (4.9), (4.10), and (8.16) is performed in Sect. 10.
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9. STR in the Ashkin-Teller Model

The Ashkin-Teller model [40] is a spin model with Z,x Z, symmetry in
conformity with the conventions of Sect. 5. The matrix of SW K, , (0) is represent-
ed by four quantities since either of the indices takes the values 0, 1 separately.

The solution of STR for this model may be extracted from the known solution
of ET in the Baxter model [14, 15] by virtue of Eq. (5.10) (Theorem 3, Sect. 5). An
explicit calculation (C.9) is carried out in Appendix C.

A rather cumberous inspection of STR shows that all the solutions of STR for
the Ashkin-Teller model are exhausted by (C.9) and the factorized ones:

K,,.,(0)=K, (0K (0),

where either K};l((?) is some solution of the Ising model (8.3). The solutions
obtained from the above ones by applying the symmetry (5.14) must be taken into
consideration as well. Really, if some solution K,(6) is found, any permutation of
Ky 1(0), K;0(0), K, ,(0) leads to another solution of STR. STR (2.18), SBC (2.20),
and UC (2.21), (2.22) remain unchanged after the above permutations.

The following renormalization of (C.9) is convenient for further developments:

3,(v2n— 0)|27) 3;(v(2n— 6)|27)

Koo(0)=0,(0) Ko (0)=0,(0)

3,00127) 3,0v0127) o.1)
3 9,(v2n— 6)[27) 3 9,(v2n— 6)[27) '
K1o(9)-—01(9)——94(v9|21) > Kll(g)—Ql(‘g)W’
0,(0)=23208,(v6]27)9,(v0]27)9,(v0|27)9,,(v6]27)
=21208,(2v0]27)3,(0]27)3,(0[27)9,(0[27) . 9.2)

Abstracting from the obvious variations of ¢,(6) we find out that the above
permutations are closely related to a group of modular transformations of 2.
Namely,

K, 0;v]2t+1)=K ,,(0;v]21), (9.3a)

K, (0;v|—1/21)=exp[i8tv}(n— 0)]1K 5,(0; 2v7|27). (9.3b)

Here transformations A and B are defined by Eqs. (5.13). The notations coincide
with that in [31, Sect. 13.22]. The relations (9.3a, b) demonstrate the free energy
of the Ashkin-Teller model to be changed by an inessential additive function
after the modular transformation of 27.

SW (9.1) exhibit quasi-periodicity analogous to (8.14) and that described in
[23]. An easy examination of formulas (9.1) leads to the following symbolic
equalities® (see [31, Sect. 13.19, Table 8]):

K0+ m/2v)= (=17 PHIK, 5 q(0),

9.9
K, (04 7t/v)=(—1)F* 'exp2riv)K, . ; 4(0) .

3 We neglect trivial variations of ¢(6) in (9.4)
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We define the physical parameters x,(0), x,(0), x5(0) of the Ashkin-Teller
model by the formula

K 5(0)=explr,(0) (— 1 +1,(0) (= 1) +15(0) (= 1)**7]. ©.5)

The general anisotropic Ashkin-Teller model is described by six independent
interactions. In the particular case under consideration these six quantities reduce
to three «,(0) and three x(z—0) (i=1,2, 3). Certainly, since only three parameters
describe the solution (9.1) adequately, the above six quantities are not indepen-
dent.

Just as in the case of the Ising model one may express t via x,(6). For this
purpose insert SW R#(0) and dual SW Ry *(0) expressed via K ,(0) by virtue of Egs.
(5.5), (5.10) into (C.13) and use the definition (9.5). The result reads:

93(0]27) _ coshdx, —cosh4,
940]21)  coshdx, —coshdxk,

(9.6)

This formula is considerably simplified, becoming explicit with respect to t when
1100 (Or Ky —K,):
t=(1/2zni)log(x, —x,)+const+o(i; — k,). 9.7

Note the similarity of Eq. (9.7) and the analogous expression (8.13) in the case of
the Ising model.

The self-dual region x, =k, is of special interest since the symmetry of the
Ashkin-Teller model here is increased from Z, x Z, to Z,. Introduce a scalar
variable 6 =0, 1,2, 3 instead of a vector one a=(a, ) by the rule

exp(ino/2)=2"12{exp[in(o.— 1/4)] +exp[in(B + 1/4)]}. 9.8)
Substitution of (9.8) into (9.5) gives the result
K, p(0)=K,_,(0),

9.9
K (0)=exp[2x,(0) cos(na/2)+ k4 (O)(—1)7].

When k, +x, SW K, (0) is not Z-invariant depending on its indices ¢ and p
separately. The limit t—ico in (9.1) yields [31, Sect. 13.19] the following parame-
trization of the Z,-symmetric solution:

K (0) K, sinvf K,(0)  tanvf

K(0) - Kq(0) ~ sin y2r—0)" K0 tanv2r—0) (9.10)

To finish this section we derive the functional equations for the maximal
eigenvalue of TM. It is readily seen from (9.1):

g0y =K, (n+ 0K (t1—0)=9,(n—0)o,(n+0). 9.11)
Now using the relationship between f(6) and g(6) (5.16) we obtain:

9,2v(z—0)21)9,2v(n + 0)27)
92(2v0]27) ‘

J(0)=4g(0)= —4¢,(0)e,(—0) (0.12)
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Here the factors o,(6) and ¢,(—0) are extracted by virtue of the formula (9.2) for
convenience in further calculations. After all, Eq. (4.10) reads:
LO)(—0)=—40,(0)0,(— 0o, (n— O)o,(n -+ 0)
. 3,2v(m—0)127)8,(2v(m + 0)[27)
92(2v6|27)

(9.13)

10. Evaluation of the Partition Functions

In this section we evaluate the partition functions of the models discussed
previously. In fact, we solve the functional equations (4.9), (4.10) that rule the
behaviour of the maximal TM eigenvalue as a function of the spectral parameter 6.
To solve these equations uniquely, we appeal to the quasi-periodicity properties of
TM and its eigenvalues that will be discussed for specific models a little later.
Recall the models under consideration : the critical Potts model (Sect. 7), the Ising
model (Sect. 8), the Ashkin-Teller model (Sect. 9). The latter is described by a
maximal number of parameters: 6, v, t. Functional equations (4.10) specified by
Eq. (7.9) for the Potts models and by Eq. (8.16) for the Ising model coincide with
that for the Ashkin-Teller model (9.13) when parameters v and 7 are fixed properly.
The same may be stated as far as quasi-periodicity properties are concerned.

The Ashkin-Teller model (Sect. 9). SW (9.1) are real and positive for

0<2v0<m, O0<2v2r—-0)<n. (10.1)

Quasi-periodicity of pair SW (9.4) causes the analogous properties of TM (3.1) of
the Ashkin-Teller model T(0+1/2v) =V, V,T(0), (102)
T(O+nt/v)=V,T(0), (10.3)

where operators V, and V, are defined in the following way:
Vdam= ﬂ Oaimpre k=12, €,=(0,1), e,=(1,0). (10.4)

The corollaries of the deflmtlon (10.4) are
Vi=I, V;/=V,, k=12. (10.5)

If TM is normalized according to (4.1), V, and V, belong to the commutative
family of TM:

V,=T(=t/v), V,=T(n/2v+nt/v). (10.6)
Therefore, both operators may be diagonalized simultaneously with the rest of the
family. The eigenvalues of V, due to Eq. (10.5) are equal to + 1. Any eigenvector of
T(6) with its eigenvalue may be thus ascribed to one of the four categories
according to the corresponding eigenvalues of V, and V,.

Quasi-periodicity (10.2), (10.3) causes the same quasi-periodicity of the total
ensemble of eigenvalues for every of the above four categories separately.
However, it does not mean quasi-periodicity for any given eigenvalue, since an
arbitrary exchange of individual eigenvalues might occur after translation of 6 by
some quasi-period.
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The above transposition of eigenvalues might be expected to occur in the
points where T(0) becomes degenerate, i.e. two or more of its eigenvalues become
equal. By virtue of SBC (4.1) the points of degeneracy for T(0) are =0 and 6=mn.
Certainly, these points translated by any quasi-period are degeneracy points as
well. Since Eq. (10.1) dictates v<1/4, any point in the interval 0 <6 <= translated
by the quasi-period (10.2) n/2v is sure to pass through some degeneracy point.

The requirement of quasi-periodicity (10.2) applied to the eigenvalues seems to
be too severe for the above reasons. Just as nothing is known about degeneracy
points besides the facts above mentioned, the following hypothesis seems to be
reasonable:

Hypothesis. The eigenvalues of TM — A() have a quasi-period nt/v:
A0+ mt/v)= + A(0). (10.7)

The maximal eigenvalue A, (0) is periodic (10.3) [15]. The firee energy (4.8) being its
logarithm has also a period nt/v:

logl(6+ nt/v)=1log{(h). (10.8)

Note the last assumption (10.8) is more restricting than that of periodicity for

(o).
Rewrite Eq. (9.13) using the Jacobi modular transformation [31, Sect. 13.22]:

U= 0){(0)= —40,(0)0,(— O)o,(n— O)o, (n + 0) exp(— i4nv?/7)
3, (v(m—0)/7| — 1/20)3, (v(z + 0) /7| — 1/27)97 *(vO/| — 1/27).
Substitute for the unknown function the following one:

3, (v(m—0)/7]—1/27)
3,(v0/t|—1/27)

(10.9)

{(0)=2¢,(0)¢,(n—O)exp(—i2nv*/7) @(0).  (10.10)

Since log{(0) is assumed periodic, it may be expanded into a Fourier series:
log{(0)=1log[20,(0)0,(m— O]+ > cpexp(i2vOk/z). (10.11)
k=—o

Using a Fourier expansion for theta functions which converges in the region (10.1)
(see [31, Sect. 13.19])

3, ((m—0)/7|—1/27) v(n 26) > sin[7(1—2v)k/27]

1 =
8|7y (o= 120 | i kzl I sin (rk/27)
-sin [v n—20)k/t], (10.12)
and Eqgs. (10.10) and (10.11), we obtain an analogous expansion for log(6):
logp(0)=2iv0/t+ Y bexp(i2v0k/7). (10.13)
k=—o

Here b, are related to ¢, in the following manner:
by=co—inv(1—2v)/t
sin[n(1—2v)k/2c] 0 (10.14)
ksin(rk/27) )

b,=c,+exp(—invk/1)
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The Fourier series (10.13) is supposed to converge in the interval — <6<~ that
will be justified by subsequent calculations.

Equations (10.9) and (4.9) after substitution (10.10) read:
Z, sin[n(1—2v)k/27]

logotn—0)~logp(0) =idv(n—20)/e+4i ¥ T s

-sin[W(z—20)k/7], (10.15)
log p(0) +logp(—0)=0. (10.16)

Inserting the expansion (10.13) into Egs. (10.15) and (10.16) and comparing
Fourier coefficients on both sides of the system, we get
sin[7(1 —2v)k/21]

b= k sin(nk/27) cos(nvk/7) for k+0,  bo=0. (10.17)

Now one can readily verify that the series in (10.13) is really convergent for
—n<f<m.

Finally, inserting (10.17) into Eq. (10.14) to find coefficients c,, we obtain that
forv<1/4,0<0<n

log{(0)= — BF 41(0)=log[2¢,(0)¢,(n— )] + inv(1—2v)/z
. & sin[7w(1—2v)k/21]
2 ,,; K sin(mk/27)

-tan(nvk/t) cos[v(m—20)k/t]. (10.18)

The following natural relationship exists for the free energy of the Ashkin-
Teller model and the same quantity of the eight-vertex model:

— BF 47(0)= —2B3y(0), (10.19)
where the expression for — ff;,(0) was obtained by Baxter [14]:
0 12
B O=loaR0—41 3, ¢
-sin(vOk/t) sin[v(n— O)k/7]. (10.20)
The Ising model (Sect. 8). Quasi-periodicity of SW (8.14) causes the same quasi-
periodicity of TM:

TO+2n)=[—x(r+0)-x"YO)]VTO), T(O+4nt)=T(O), (10.21)

N
Ven= H 5!11"'1,/71"
i=1

Just the same reasoning as in the case of the Ashkin-Teller model applied to the
case of the Ising model allows us to suggest the same hypothesis concerning
periodicity of the eigenvalues with the period 4nt instead of #z/v in Eq. (10.7). Note
that Eq. (8.16) is a particular form of Eq. (9.13) after the following substitution:

20,(0)0,(n—0)=9,0[7)/9(n/4l7); v=1/8, 1-71/2. (10.22)
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Thus, Ising free energy may be extracted from Eq. (10.18) by the above substitu-

tion (1022) 92(()'.[) J o sin(37rk/4‘f)

— BF(0)=log [92(71/411) + 371:1‘/161-k2ik;1 Ksin (k)

-tan(nk/4t) cos[(m—20)k/4t]. (10.23)

Potts models n>4. Parameter p in the solution (7.6) is real according to its
definition (A.10). SW (7.1), (7.6) possess a pure imaginary period Q=in/u.
Equation (7.9) results from (10.9) after the Ashkin-Teller parameters are substi-

tuted as follows
v=—iut, 20,(0)0,(n—0)=n?exp(—2intu?), (10.24)

and subsequently the limit t—0 is taken. The above substitution and subsequent
pass to the limit =0 do not violate the periodicity (10.8) with the above period Q.
This allows us to conclude that the expression for the critical Potts (n>4) free
energy may be extracted from that of the Ashkin-Teller model (10.18) by the above
substitution and proceeding to the limit t—0 (Imt>0)

—BF,(0)=3logn+un+2 Y k~'exp(— punk)tanh(unk)
k=1

-cosh[u(n—20)k],

n>4, 0<O<mn, u>0, 2coshurn=n'?. (10.25)
Potts models n <4. Designate u=iy (y =0). SW (7.6) in this case possess only a real
period n/y. However, we assume the aperiodicity in the second direction to be a

limit of an infinitely large imaginary period of SW (7.6). This assumption allows us
to obtain the solution of functional equations for log{(#) from (10.18) substituting

v=y/2, 20,(0)0,(n—0)=n"?, (10.26)

and subsequently passing to the limit Imt— + oo.
Substitution (10.26) alters the form of (10.18) in the following way:

sinh | _V)k]

0

log{(f)=%logn+ 3,

k=—-o

(m— 29)11 (—2it)
(—2it) k-
(—2i1)

osh (10.27)

The last expression in (10.27) in the limit Imt— o0 coincides with the usual
definition of the Riemann integral :

— BF (0)=3%logn+ _j ?x_smT[:l‘(l(#M

n<4, 0<fO<m, O0=<y=<1/2, 2cosyn=n'2. (10.28)

tanh(nyx) cosh [y(m— 26)x],
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Potts model n=4 is a special case corresponding to the limit y—0 in Eq. (7.6).
Substituting the variable in Eq. (10.28) x=z/y and proceeding to the limit y—0,
one gets the expression for the free energy in the present case:

—PBF,(0)=log2+2 }O %exp( —nz)tanh (rz) cosh [(n— 26)z]
0

=1ogz+10g[@:_9l} +210g[ [(6/2mI(1/2—6/27)

(2m)? I'(1/2+0/2m)['(1 —6/2x)

Here an integral representation for logI'(x) [31, Sect. 1.9] is used. The formulas
(10.27)-(10.29) coincide with the corresponding expressions by Baxter [39] who
exploited the equivalence of the partition functions for the Potts models and the
staggered six-vertex model [37, 38].

(10.29)

Appendix A

This appendix is devoted to a solution of functional equations (7.2)—(7.4). At first
consider Eq. (7.3) written in the following form:

v(03)u(m—0,;)=1" 1(91> 0,,03)v(0,)u(0,)v(05). (A1)

The left-hand side of Eq. (A.1) does not depend on 6, while its right-hand side is a

symmetric function of 0,,0,,0; provided 0, +0,+0,=m, so both sides cannot
depend on 0,, 04 either, being equal constants:

v(Ov(n—0)=a, (A2)

MOy,0,,03)=a" 10(91)17(02)17(93)- (A3)

Having expressed v(n—6) via v(f) with the help of (A.2), inserting this

expression into Eq.(7.4) and using Eq.(A.3) simultaneously the following re-
lationship may be obtained:

MO, 0,,0,)=a+0(0,)+v(0,)+v(0;)=a~10(0,)0(0,)(05). (A.4)

A comparison of Eq. (A.4) with Eq. (7.2) yields the value of a=n. Now Eqgs. (7.2)
and (A.3) with the condition 6,=n—0,—0, allow us to derive an addition
theorem for the function v(6):

v(0,)v(0,)—n

0,+0)=———2 A5
o0, +0,) n+v(0,)+v(0,) (A-5)
The following linear-fractional substitution
1, [ =42 =0 2 u(0) + [(n—4)'* +n'?]
v(0)= S W0)—1 (A.6)
converts the addition theorem (A.5) into a trivial one:

u(0, +0,)=u(0,)u(d,). (A7)

Note that SBC (7.5) for v(0) in terms of u(6) read:

1/2 a2

W0)=1, umy="_ 0= (A.8)
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The unique solution of (A.8) is obviously

u(0) =exp(2u6), (A9)
where the parameter y is fixed by the second SBC (A.8):
nt’2=2coshun. (A.10)

Inserting Egs. (A.9) and (A.10) into (A.6) one gets a final answer for v(6):

sinh u(n— 0)

v(f)=2coshun Sinh 0

(A11)

Appendix B

STR (8.1) and (8.2) are solved in this appendix. Eliminating A(6,,0,,0,) from
Egs. (8.1), (8.2) one comes to a single equation
14 x(8,)x(6,)x(8,)
x(0,)+ x(0,)x(65)

provided 0, +0,+6,==n and any permutation of 0,,0,,0, is admissible. Since
x(0)= K (0) and the normalization K,(f)=1 is adopted, SBC (2.20) for x(6) read:

=x(n—0,)x(n—0,), (B.1)

x(m)=1 and gin(l) x(0)= o0. We find it convenient to introduce the function
¥(0)=x(n—0). (B.2)

Equation (B.1) may be rewritten as a system of two functional equations for two
functions x(0) and y(6):

14x(0,)x(0)9(0, + 0,) = 1(0,)(0,) [0, +0,)+ x(0,)x(0,)], (B.3)
14+x(0,)x(0)9(0, +0,) = x(0, +0,)y(0,) [x(0,)+ (0, +0,)x(0,)]. (B.4)

Having expressed x(0,) from (B.3) and having passed to the limit 6,—0, one
readily sees that for any given 6,

lim [6x(6)]=x"(0,) [y'(0,) — y(O)(0)] ' [y*(0,) - 1]. (B.5)
The possibility y*(§)=1 contradicts the SBC lim y(g) = oo, and another possibility
0—-mn

Y (0)=y'(0)y(0) due to SBC y(0)=1 means y(6)=exp[y'(0)0] and contradicts the
same SBC. Thus, Eq. (B.5) leaves the only variant of singularity for x(6) at 6—0
that is a simple pole. Denote the residue in that pole by o

x(0)lg-o=0/0+0(1), (B.6)
and the derivative y'(0) by f. Then Eq.(B.5) combined with (B.6) gives a
differential equation Y0~ 1
Y (0)=pBy(0)+ ————. B.7)
ax(6)

Another differential equation may be obtained in the limit ,—0 from (B.4):
x*(0)—1
ay(0)

x'(0)= — px(60)— (B.8)
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The latter is equivalent to Eq. (B.7) on account of the condition (B.2). Another
limit 6, —0 in the same Eq. (B.4) leads to the third differential equation

x(0)y'(0)—x'(0)y(0) =o' [x*(0)y*(0)— 1]. (B.9)

Substituting the expressions for the derivatives x'(6) and y'(d) from Egs. (B.7) and
(B.8), respectively, into Eq. (B.9) one may get an algebraic relationship between
x(0) and y(6)

[x*(0)— 11 [y*(6) — 11 =2apx(0)1(0) . (B.10)
Squaring both sides of Eq. (B.8) and using Eq. (B.10) one can eliminate y(6):
x'(0)= —a " H[x*0)+ (22f*—2)x2(0) + 1112, (B.11)

The sign minus is chosen here in agreement with Eq. (B.6).

Equation (B.1) may be solved in terms of Jacobi elliptic functions [31,
Sects. 13.9, 13.17]. Two parameters k, and 4 are better suited for this solution than
o and f:

ki +1/k,=a?p2=2, A '=ak}?. (B.12)

The solution of Eq.(B.11) may be expressed via elliptic functions having the
modulus k=(1—k?)"? complementary to k, [31, Sect. 13.17]:

x(0)=k; V? cs(A0]k).

SBC x(n)=1 fixes A= 25, K is a complete elliptic integral of modulus k:
2

x(0)=k; '1* cs(K0/2nlk) = 3,(0/4|7)/9,(6/4]7), (B.13)

where 9,(z]t) and 9,(z[r) are conventional Jacobi theta functions [31,
Sect. 13.197%.

The solution of differential equations (B.13) satisfies the functional relation
(B.1) at the same time. The simplest proof of this fact is based on Liouville’s
theorem. Both sides of Eq. (B.1) due to Eq. (B.13) are double-periodic functions of
0, provided 6, is fixed (6, =n—0,—0,). A comparison of zeros and poles of these
functions shows their coincidence. Thus, both functions may differ only by a
multiplicative constant. Putting §, =0 one maintaines its value equal to unity. The
proof is thus completed. We do not wish to present the details here because of the
lack of space.

Appendix C

In this appendix some formulas concerning the eight-vertex model are collected.
On one hand, the aim is to illustrate the general theorems of Sect. 5 and on the
other hand to apply these calculations to derive some results needed in Sect. 9.
The eight-vertex model in the notation of Sect. 5 is the Z, x Z,-symmetric
model described by the matrix Rj(6) where o and u take the values 0, 1. There are

4 See footnote 2
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only two spin configurations leading to different functional equations (2.14) for

SW (5.0): 0\ =0,=03, My FHy=li5,
RG(0)RY(0,)R7(05) + Ro(0,)R1(0,)R1(05) (C1)
=RO(0,)R5(0,)R5(03) + Ro(0)R5(62)R5(65).
and

01 =0,%03, [ FH,=H3,
R3(0,)RY(0,)R}(03)+ R5(0,)R1(0,)R(6;) (C2)
=R(0,)RY(0,)RY(05)+ RI(0,)R}(0,)RL(0,).

Any other equation of the system (2.14) that does not degenerate into an identity
reduces to either Egs. (C.1) or (C.2) by some transposition of angles 0,,0,,0,.
The crossing condition (2.13)

RYO)=RY(n—~0), R{(O)=Rj(r—0), RHO)=RJn—0), (C.3)
together with SBC (2.15)
R3(0)=R}0)=1, R;(0)=Rj(0)=0 (C4)

determines a unique solution of Egs. (C.1), (C.2) up to an arbitrary normalization
factor o(f) obeying, however, both conditions (C.3), (C.4). That means
0(0)=o(n— 0) and o(0)=1. The above freedom takes its origin in the uniformity of
the system (2.14) both with SBC (2.15) and the crossing condition (2.13).

The solution becomes unambiguous if normalization R§(0)=1 is assumed. It
was obtained by Baxter [13, 14] who manipulated purely algebraically and by
Zamolodchikov [15] who, assuming in turn 6, 0,, 0, infinitesimal and linearizing
Egs. (C.1), (C.2), came to a system of differential equations instead of functional
ones. The reader who is interested in details may find them in the above references.
Here we quote the result: 0

RO(G) =1 ’

sn(4,0k,))  3,(v,7t)S,(v,0|7,)

R1(9)=RO(TE—-0= 1 17 _ 74\"1 171\ 1 , C5

0 ! ) sn(Amlk,)  9,(vywlt)3,(v,0l7,) (©3)
3,017 )9, (v, (m—0O)y)
3,(v101t )3, (v, (m—0O)Iz,)’
where A, =2K(k,)v,/m and t, =iK'(k,)/K(k,). Here K(k) and K'(k) denote elliptic
integrals of modulus k (see [31, Sect. 13.20]).

In subsequent calculations we return to an arbitrary normalization instead of

RY(0)=1 and make a modular Jacobi transformation [31, Sect. 13.22]

t=—1/t,, v=—v/7,. (C.6)

Ri(0)= —k, sn(4,0k,)sn(A,(n— O)|k,)= —

The resulting form of SW we use is the following:
R{(0)=0(011)9,(00)3, (va|)3, (vBI7)9,(v(m — O)}1),
RY(0)= 0(617)8,(011)8,(v|1)9,(v0]7) 8, (W(n — O)[1),
R4(0)=0(017)3,(01)3,(val )3, (vOI7)3,(v(m — O)I) ,
R}(0)=0(67)3,(0|10)3, (v )3, (v|1), (v(r— O)|7) .

(C.7)
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DT (5.5) converts the solution (C.7) into another one according to Theorem 1
of Sect. 5. Dual weights R;*(0) should be expressed via R}(0) (C.7) according to
Eq. (5.5) with w= —1. First, we prefer to deduce some intermediate formulas
useful both for DT and for the Ashkin-Teller model (Sect. 9). These formulas were
previously mentioned as partial DT (5.10) where w= —1, n=2. Using addition
formulas for Jacobi theta functions®

,(x+yl0)9,(x = 1)+ 9 (x + Y[1)9, (x — yIt) =285(2x]27)8,(2y|27),

9, (x + y1)3,(x — ylt) + 9, (x + yl1), (x — ylt) =29, (2x127)9,(2y127),, ©8)
for Eq. (C.7) substituted into Eq. (5.10) we obtain:
Ko(0)=20(0]7)3,(v0|27)3,(v0|27)3 ,(v0|27)3,(v(2r — 0)|27) ,
Ko 1(0)=2%2%0(6]7)9,(v0]27)3,(v6]27)3,(v0]127)9,(v(2% — 0)|27) (C9)

K, o(0)=2%20(0]7)3,(v0]127)3,(v0|127)35(v6|27)3 ,(v2r — 0)|27) .
K (6)=2%20(0]7)9,(v0]27)9,(v0]27)3,(v6]27)3,(v(27 — 0)|27).
Now perform a modular transformation 2t—2t+1 [31, Sect. 13.22] that leads to

an exchange of K,(0) and K ,(0) neglecting the change of ¢(0|7). This allows us to
use Eq. (C.8) once more in the form

3, (x + y127)95(x — y127) + F5(x + y127)3,(x — y127) = 3, (x|}, (y]7),,
3,(x + y27)95(x — y127) — F5(x + yI27)3,(x — yI27) = — I, (x[7)3, (¥I7), (C.10)
91 (x + y20)8,(x — y[27) + 9, (x + yI20)9  (x — yI27) = 3, (x[ )3, (y7),,
3 (x4 y127)9 4 (x — y127) — 34 (x + ¥[27)9, (x — ¥|27) = 3,(x|1)9, (¥]7) .
The final formulas for dual SW read:
R %(0)= —io(0]1)3,(0]t + 1/2)9, (va|t + 1/2)3,(v0lt + 1/2)9,(v(r — )|t + 1/2),,
R} %)= —ig(6]1)3,(0]t + 1/2)9,(valt + 1/2)3,(v|t + 1/2)3,(W(r — )|t +1/2),
R51(0)= —ig(6]1)9,(0lt + 1/2)3,,(vrlt + 1/2)3,(v0]t + 1/2)9 ,(v(m — O)|t + 1/2),

R7Y(0)= —ig(0])9,(0lt + 1/2)3, (valt + 1/2)3,(v0lT + 1/2)8,(v(r — O)|t + 1/2).
(C.11)
These expressions may be summarized in the following way:

0™ HOR)R; *(B1t) = — i~ (Bt + 1/2RYOlc +1/2). (C.12)

An important invariant (i.e. a quantity independent of §) may be constructed
by virtue of Egs. (C.7) and (C.11):

Rg (010)Rg ' (Ol)RT *(Ol)RT (Ol7) _ 95(0[2¢ +1)95(07+1/2) _ 93(0[27)
RSOIDRYOIROIDRYOr)  — i95(0120)9%01t) 9%(020)
Here we used Eq.(C.10) several times: the third equation to obtain the first

equality (C.13) and then the first formula for x=y=0. Modular transformation
27+ 1-27 [31, Sect. 13.22] completes the calculation.

- (C13)

5  These formulas may be established by direct algebraic manipulations with Fourier series for Jacobi
theta functions [31, Sect. 13.19]
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By means of the invariant (C.13) parameter T may be expressed via physical
parameters of the model. The latter determine SW in the following way:

R}(0)=A(0) exp[B1(0) (— 1)*+ B(0) (— 1) + B5(0) (— 1)**7]. (C.14)
Inserting Eq. (C.14) into Eq. (C.13) and using Eq. (5.5) we obtain:
9%(0]27)/94(0]27) =sinh?2p, -sinh?2f, +sinh?2f, -sinh?2f, +sinh?2, -sinh? 2,
+2sinh2p, -sinh2f, -sinh2f,(cosh2f, -cosh2f, -cosh2f,
+sinh2f, -sinh2f, -sinh24,). (C.15)

Equation (C.15) plays the same role in the case of the eight-vertex model as
Eq. (8.9) for the Ising model. A critical point is achieved when the right-hand side
of (C.15) turns to unity [13, 29]. In the vicinity of the critical point the relationship
between 7 and temperature becomes transparent. Just as in the case of Eq. (8.13),
an expansion near T, gives

1 T
r=2—m,log(1— 7) +0(1) (C.16)

c

in agreement with the general formula (C.12).

The above relationship (C.15) for the eight-vertex model is totally equivalent to
Eq. (8.9) for the Ising model when the interaction of the Ising sublattices
constituting the eight-vertex model vanishes. This is the ;=0 case. In other
words, that means RYR} =R{R}. This requirement imposed on Eq. (C.7) means

2 (vm|t)=93(vrl7). (C.17)
The latter is fulfilled when v=1/4.
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