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Abstract. It is shown that equilibrium states of classical particles with short
range interactions are Euclidean invariant whenever their correlation functions
have a clustering which is integrable. The relation between invariance and
clustering is analysed for spatial rotations and internal rotational degrees of
freedom. The analysis is then extended to the case of long range interactions,
including the Coulomb force and jellium systems.

1. Introduction

An equilibrium state which spontaneously breaks a continuous symmetry cannot
have an exponentially fast clustering: this is a general formulation of the Goldstone
theorem in statistical mechanics. However, to analyse the possible existence of
crystalline phases or the existence of phases with orientational order, a more
precise formulation of the Goldstone theorem is necessary.

In [1] we have proved a version of the Goldstone theorem for the translation
group, namely S£ ̂ clustering states are necessarily invariant under translation. In
the present paper, we shall be more specifically concerned with the rotation group;
we shall also improve some of the previous results concerning systems with short
range interactions. Furthermore, in addition to spatial rotations, we shall also
consider systems of particles with internal degrees of freedom, for example classical
gas of anisotropic molecules.

We treat separately the case of short range forces (Sect. II) and that of long
range forces (Sect. III). In the latter case, which includes N-component plasma
and jellium systems (i.e. charged particles with a rigid uniform neutralizing
background), the main idea is that the effect of the long range can be taken care
by means of sum rules which reflect the shielding property of such systems. [4, 12].

Our definition of equilibrium states and the starting point of our investigation
is the BBGKY-hierarchy for the correlation functions. For sufficiently well behaved
short range forces it is known that the BBGKY-hierarchy is equivalent to other
definitions of equilibrium states such as the classical KMS condition, the
Dobrushin-Lanford-Ruelle or the Kirkwood-Salzburg equations. (See [2] and
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the references quoted there for instance.) Furthermore, all those equations are
verified by the states obtained as the thermodynamic limit of finite volume Gibbs
distributions (for a direct proof of this fact in relation with BBGKY-equation, see
[3]). On the other hand, for systems with long range forces, it is known that
equilibrium states can still be defined by means of a BBGKY-equation [4]. For
this reason, we have taken the BBGKY formalism for our discussion.

The relations which we shall derive between clustering and symmetry breaking,
imply that in dimension v ^ 2 a phase with spontaneous symmetry breakdown
must have a clustering which can not decay faster than \χ\~() where δ is specified
in the Table 1:

Table 1

Short range N-Component Jellium
Force Coulomb Systems Systems

(without background)

Translation v - 1 v + 1 v + 1
Internal rotations v — 1 v + 1 v + 1
Spatial rotations v v + 1 v + 2

The values of δ obtained in our proof may not be optimal. Indeed, a recent
study of the planar rotator model reveals that the two point correlation function

decays exactly as — when v = 3[5] and similar behaviour is expected in the case

of the 3-dimensional anharmonic crystal [5-7]. Moreover, for short range forces,
there does not exist any equilibrium state which breaks the translation or internal
rotation in two dimensions [8, 9]. This result leads us to conjecture that for these
symmetries the optimal value of δ could be v — 2 instead of v — 1.

In fact it can be shown [14] with the Bogoliubov inequality that any crystalline
phase must have a clustering slower or equal to |x|~(v~2). However, the question
remains open for other inhomogeneous situations such as the interface.

Several papers concerning the Goldstone theorem for short range forces have
appeared recently. The same result as ours on the breaking of translation in variance
was obtained in [15, 16] on the basis of the KMS condition: an inhomogeneous
phase has a clustering slower or equal to |x| ~ ( v~1 }. Using the Bogoliubov inequality,
quantum lattice systems are treated in [10, 14] with similar results. Continuous
quantum systems briefly discussed in [10], are under current study and will be
presented in forthcoming publications.

II. Definition of the System

The system consists of particles in Uv having internal degrees of freedom. The
internal degrees of freedom are labelled by the points ω of some (locally compact,
Hausdorff) measurable space Ω with finite measure. We may think of a particle
as a rotator with ω a unit vector defining its axis; in this case Ω = S{v) is the unit
sphere in Uv and dω is the invariant measure on S(v). We could also think of a
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particle as a molecule and ω would label the specie and the relative positions of the
atoms inside the molecule.

We shall assume that there is a representation of the rotation group SO(v) on

Ω which leaves the measure dω invariant. We denote Γ — W x Ω the configuration

space; q = (x,ω), xeUv, ωeΩ will denote a point in Γ and \dq = j dx j dω.
Kv Ω

We introduce furthermore V and J the generators of the translation and rotation
groups acting on differentiable functions/(g) on Γ; we then have:

J - L + S, (1)

where L and S are the generators of the rotation group acting respectively on Uv

and Ω.
The particles interact by means of two-body potentials Φ{q1,q2) which we

require to be symmetric under permutations, Euclidean invariant and regular. The
symmetry and invariance conditions are expressed by:

(2)

\/ReSO(v).

The regularity is the condition that the force F(qί,q2) = F(x1 — x2,ωι,ω2) = — Vx

Φ(#i?<?2) a n d J1Φ(q1,q2) be continuous for χι φx2

ι\ the Euclidean invariance of
the potential is then expressed by:

{Jι+J2)Φ(q1,q2) = 0. (4)

Combining the symmetry and the Euclidean invariance yields

(?2)= -J2Φ(q2><li)> (5)

The states p of the system are described by the set of correlation functions
p(q1,...,qn) = ρ(Q\n = 1,2,.... They are symmetric functions of (g1 ?...,qn) and are
assumed to satisfy the following regularity condition:

p{qx,..., qn) is continuous, uniformly bounded on Γ"; Vxp and Jγp are locally j ^ 1

and continuous in any open set which does not contain coincident particles.
Throughout the paper we shall always assume that the states are clustering in

the following sense:

/ M

(6)

for ω l 5 q2,...,qn fixed, n = 2,3,...

uniformly with respect to ωx and

uniformly with respect to q2 for n ^ 3.

1 With the notation Vj, J ; generators of the Euclidean group on the space of functions f(qj)
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pτ(Q) are the truncated correlation functions defined in the usual way and δ a
positive number to be defined later.

Let us recall that a state p is:

n

invariant under translations if £ Vtp = 0,
i= 1

n

invariant under rotations if £ Jtρ = 0,
i= 1

n

invariant under spatial rotations if ^ Lxp — 0,
z = l

n

invariant under internal rotations if £ Stp = 0.
{ = 1

III. Systems with Short Range Forces

In this section, we shall consider the case of short-range forces, i.e. we shall assume
that the force F(qί,q2)= —VιΦ(qi,q2) and J^(ql9q2) are integrable over
{Rv x Ω x Ω:

j dx j dωx j dω 2 |F(x,ω 1 ,ω 2 ) | < oo,
Uv Ω Ω

(7)
j dx j ίiω! j dω2\JΦ(x,ωlJω2)| < oo.

[Rv Ω Ω

Following the usual derivation of the BBGKY-Equations, the Equilibrium states
will be defined by correlation functions which are a solution of the following
hierarchy of equations:

n

-kTGlP(ql9Q)= Σ (GίΦ)(qί,qj)p(ql9Q) + ldq(G1Φ)(ql9q)p(ql9q,Q)9

(8)
where Q = (q2, q3,..., qn) if n = 2,3,..., Q = 0 if n = 1, and G denotes either of the
generators V, L, 5 or J.

The main result of this section, i.e. any 5£ι clustering equilibrium state is
necessarily invariant under rotations, is stated in the following proposition.

Proposition 1. Let T φO if Φ {q1,q2) satisfies Eq.(7)and

j dx j dωγ jdω 2 | xΓ + 1 |F(x,ω 1 ? ω 2 ) | < oo, (9)
Uv Ω Ω

then any equilibrium state which satisfies the clustering condition Eq. (6) with δ > v
is rotation invariant.

Proof. Using the BBGKY-Equations (8) together with Eq. (4), the equilibrium
states will be solution of the following equation:

~ k τ Σ Jjp(Q) = ίd<ii\ Σ (Jjφ)(<ip<ii) \p(<ii>Q)> Q = (<i2>--><in) ( 1 0 )
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O n t h e o t h e r h a n d , Eq. (8) with Q = (q2,...,qn) y ields:

Σ (JιΦ)(qιΛj)p(qi,Q)=-kTJ1p(qί,Q)-μq(JιΦ)(qί,q)p(qι,q,Q). (11)
j=2

We then integrate both sides of Eq. (11) on q1 with x1 restricted to a ball of radius
R centered at the origin.

The integral on the left hand side of Eq. (11) exists in the limit R -» oo by the
integrability condition Eq. (7). Using Eq. (5) together with Eq. (10) and (11), we
obtain:

lim ί dq1l(

We shall prove that the right hand side Eq. (12) vanishes in the limit R -• oo, which
will thus establish the invariance of the state under rotations. In order to use the
clustering condition on the state, it is convenient to use the first equation of the
BBGKY hierarchy Eq. (8) to express the right hand side of Eq. (12) in the form:

λLJjP\(Q)=- l i m j dq^^piq^Q)-piqJpiQ))

-β lim J dq1jdq(J1Φ)(qί,q)(p(quq,Q)-p(q1,q)p(Q)).

The limit of both terms in Eq. (13) exists and is zero. Indeed: let h(q^) — p(qιQ) —
p(<h)p(β); the first term on the right hand side of Eq. (13) becomes

lim j dqί(Li +S1)/z(g1) = lim j dxί j dωι{Lι + Sί)h(xί,ω1)

and the clustering condition Eq. (6) implies h(x1ω1) = O\ ^) uniformly
with respect to ωv Using furthermore the regularity condition of p, we have

Q) = I dxί(xί Λ VJMx^ωJ

ί Λdσ h(x ω )= J l

asK->oo (14)
uniformly with respect to ωv

On the other hand since Ω has finite measure and dω is invariant under the
rotation group, the regularity condition of the state implies that

j dxι\dωί(S1h)(xί,ωί) = 0. (15)

This identity follows from the following consideration; let S be the generator of
the rotation around a given axis ή and let τφ denote the action of a rotation of
angle φ around ί o n Γ ; then
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\xί\ύR Ω Z π 0 Ixil^-R Ω

1 2 π 1
= j dxj j dω1— j dφlim-

2 π

where φ(φ) = h(τφqi).
We have thus shown that the first term on the right hand side of Eq. (13) is

zero; using Eq. (4) the second term can be written as

\ \ dqίμq(Jι-J)Φ{qί,q)ίp(quq9Q)-p(q1,<l)p(Q)'].
\xι\£R

To show that (16) vanishes in the limit K->oo we note that

pfai.fl, Q) - P(^Φ(Q) = p(«i)(pfo Q) - P(Ά)P(Q))

+ P(q)(p(qi, Q) - Ptei)p(β)) + Rtii,q, Q\

where R(qu q, Q) is a sum of products of truncated functions where the arguments
q or qγ (or the pair (q^q)) always occur in conjunction with some other argument
qieQ,i = 2,...n. (See Lemma 4, p. 219 [4].) Therefore, the clustering condition
Eq. (6) implies that

with Ml9 M2 independent of qί and q.
Let us write

g(ii,q) = ρ(Qi,q,Q)- p(Qi,q)p(Q)

and consider first the contribution of internal rotations (S1 — S)Φ to Eq. (16). It
follows from (7) and (18) that

is integrable over Γ2 so that we can take the limit R^oo to obtain:

ΪSdqίSdq(Sί-S)Φ(ql9q)lp(qί9q9Q)-p(ql9q)p(Q)]=O

because of the symmetry of the correlation functions and the antisymmetry of
(S1-S)Φ(q1,q).

Finally, we show in the Appendix that the contribution of spatial rotations
(Lι — L)Φ to Eq. (16) vanishes in the limit K-> oo which concludes the proof of
Proposition 1. •

The translation in variance of the state has been established in [1] when there
are no internal degrees of freedom.

By obvious modifications of the present proof (i.e. dealing with the generator



Euclidean In variance 61

of translation V instead of /), we obtain

Proposition 2. Let T Φ 0; if Φ (qv q2) satisfies Eq. (7) and

[ dx f dωγ \ dω2\x\v\F(x,ωuω2)\ < oo, (20)
Rv Ω Ω

then any equilibrium state satisfying the clustering condition (6) with δ > v — 1 is
translation invariant.

Corollary 1. Any equilibrium state satisfying the conditions of Prop. 1 is invariant
under the full Euclidean group.

Remarks. 1) For short range interactions any equilibrium state which breaks the
translation invariance must have a clustering which decays slower or as |x |~ v + 1

whereas to break the rotation invariance we need only to have a clustering slower or
equal to |x|~v.

The reason for this difference is that, L = x A V being linear in x, one more
power in the decay of correlation functions is needed to control the convergence
of integrals (see the Appendix, in particular (A4)).

This indicates that in the transition from a Euclidean invariant state to a state
of lower symmetry, rotation invariance is likely to be broken before translation
invariance.

2) Two dimensional systems are of particular interest in this respect: they are
known to be translation invariant irrespective of any clustering condition (for
short range forces) [9]. However, they may have phases noninvariant under spatial
rotations with clustering decaying slower or as |x|~2.

3) If the force satisfies only the integrability condition (7) (but has no finite
moments as assumed in (9)), then the rotation invariance (respectively the translation
invariance) can still be proved provided that the clustering (6) holds with δ > v + 1
(respectively δ > v). Indeed, in this case, the integrand of the expression (Al) in the
Appendix is integrable in qλ and q over Γ x Γ and antisymmetric, showing that
the integral (Al) exists and vanishes.

4) The same result will also hold if the force has a nonintegrable repulsive
singularity at x = 0. Then, the correlation function should vanish at coincident
points in such a way that p(q1,q2,Q)F(quq2) is still integrable in qλ = q2 (at finite
volume, this follows from an integrability condition on exp( — j5Φ(^1,^2))^7(^i^2)
in qγ = q2). In this case, the additional assumption (supplementing (18)) is therefore
natural

ί M M
\p{<li,Q2> 6) - p(ii><l2)p(Q)\ ύ ζ(*i - * 2 ) \ Γ ^ 3 + ΓΠ^

\l*ll \X2\

with M independent of x 1 ,ω 1 ,x 2 ,ω 2 and ζ(x) is a bounded function such that
ζ(x)F(x, ω l 5 ω2) is locally integrable in x = 0. It is then easy to check that the proofs
of Prop. 1 and Prop. 2 can be carried out in the same way. Finally, the case of
strict hard cores can be treated with the same results [11].

If the potential is separately invariant under space rotations and (or) internal
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rotations, i.e.

ς[2) = 0 (21)

and (or)

(Sx+S2)Φ{ql9q2)9 (22)

we deduce the corresponding invariance properties of the states as corollaries of
Proposition 1, i.e.

Σ U P(6) = 0 (23)
\ i = i /

and (or)

/ Σ

Corollary 2. Let Φ(g l5 q2) be invariant under spatial rotations. Then any equilibrium
state satisfying the conditions of Proposition 1 is also invariant under spatial rotations.

Corollary 3. Let Φ(q1,q2) be invariant under internal rotations and verify

\dωx\dω2 j dx\x\v\S1Φ(x,ωuω2)\ < oo. (25)
Ω Ω Kv

Then, any equilibrium state satisfying the clustering condition (6) with δ > v — 1 is
invariant under internal rotations.

Corollary 2 follows immediately when one deals only with the generator of
spatial rotations in Prop. 1.

Corollary 3 is proven as Proposition 1 with the antisymmetric function (Sι—S)
Φ(ql9q) replacing (Lι — VjΦiq^) in the estimates given in the Appendix (here a

clustering which is 01 —r 1 δ > v — 1 is again sufficient since S does not introduce
\\x\ J

an additional power of x).

Remarks. 1) If the potential satisfies the integrabilίty condition (7) (but not (25)),
the result of Corollary 3 is still true provided that the clustering (6) holds with
δ > v (see Remark 3 following Corollary 1).

2) All these results can be generalized to the case where the internal degree of
freedom consists in the elements of an arbitrary compact Lie group. Indeed, besides
the integrability and clustering hypothesis, one uses only the fact that the internal
symmetry group has generators acting in differential form and an invariant measure
with finite total mass.

IV. Systems with Long Range Forces

In this section, we consider systems which consist oϊN species of "charged" particles
and we denote by σα, α = l,...,iV the charge of the specie a. To simplify the
following discussion we consider point particles without internal degrees of freedom
other than the charge. We shall then add a few remarks at the end of this section
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concerning the extension to systems of particles with internal degrees of freedom.

We denote by <̂  = (x,α)e(Rv x {1,..., N} the position and specie of the particle and

a.

The particles interact by means of a two-body potential of the form

Φtei^2) = σ α i σ α 2 Φ ( | x 1 - x 2 | ) , (26)

where Φ(χ) is of class C 3 on W. The long range of the interaction is characterized
by the asymptotic behaviour of the force F{x) = — VΦ(x) as |x| -> GO :

1 \ x

M
(27)

The case of main interest is the Coulomb force corresponding to γ = v — 1 another
case of interest is the system of electrons confined to a narrow layer above the
surface of liquid helium which corresponds to y = v = 2. In the following, we
consider general values of γ such that v — 1 ^ γ ^ v and we recall the notation:

The equilibrium states are now defined by their correlation functions which are
clustering solutions of the BBGKY hierarchy written in the following manner:

kTV1p{qi9Q)=\σaιEp(x1) + t
L j=2

ιqQ) - p(q)p(qί9 β)], (28)

where Q = (q2,... ,qn) if n ^ 2, Q = 0 if n = 1,

- y) - F( - y))cp(y) (29)

is the average electric field in the state p and cp(x) = ]Γ ^aPa(χ) ~ PB *S ^
α = 1

average charge density.
Eo = Ep(0) and pB are parameters describing the systems. Systems with ρBφ§

are called "Jellium"; they correspond to systems of charged particles in the presence
of a rigid, uniformly charged background, with charge density — ρB.

In the case of Coulomb systems (γ = v — 1) we consider only states which are
invariant under some discrete subgroup of the translation group; this condition
on the equilibrium state will then imply that the state is locally neutral and that
the field Ep(x) Eq. (29) is well defined.

We refer to [2, 4] for a discussion of Eq. (28) as the definition of equilibrium
states for systems with long range forces.

Proposition 3. Let T > 0, v ^ 2 and assume that Φ(g1? q2) verifies Eq.(26)t(27) Then
i) any equilibrium state satisfying the clustering condition Eq. (6) with δ > v -f 2
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and

j dx, j dx2\xί\\pZUmmian(χί,...,χn)\<ao V n ^ 3 (30)

is invariant under rotation.
ii) for N component Coulomb systems with pB = 0 the same result will also be

valid if the equilibrium state satisfies the clustering condition with δ > v + 1.

Corollary. Any equilibrium state satisfying the conditions of Prop. 3 is invariant
under the full Euclidean group.

Indeed it was already shown in [1] that a state verifying the clustering condition
with δ > v + 1 is necessarily translation invariant.

Proof of Prop. 3. Since we know that the state is translation invariant, we have
cp(x) = cp and E (x) = Eo. Furthermore, in the Coulomb case, cp = 0 (see Prop. 6
and Lemma 3 of Sect. 4 in [4]) which expresses the local neutrality of the state.

As we have recalled in Sect. II, this proposition will be established as soon as
we have shown that:

n

X LjP(Q) = 0 where L, = Xj Λ V,-.
J = I

Using then Eq. (28) together with the assumption that the force is antisymmetric
and radial, i.e. xx A F(qί,q2) = — x2 Λ % ^ ) , and the fact that Ep(x) = E0, we
obtain:

n n n

kT X LjP(Q) = X σΛXj Λ Eop(Q) + \dq £ x Λ F(qp q)
j = 1 j = 1 j = 1

'ίp(q,Q)-p(q)p(Q)l (31)

It is also known [12] that, under the same clustering hypothesis on the correlation
functions, any equilibrium state for a system of particles interacting by means of
long range forces satisfying Eq. (26), (27) with v — 1 ̂  y ̂  v will obey the following
sum rule:

Σ *αΛ P(β) + ίdqσaxlp(q9 Q) - p(«)p(β)] = 0. (32)
7 = 1

In fact, this sum rule will be satisfied as soon as the clustering condition holds
with δ > v + 1.

Combining the 1st and nth equation of the BBGKY hierarchy Eq. (28), together
with the sum rule (Eq. (32), the symmetry of force, i.e. x A F(X — Xj) = Xj A F(X — Xj)
and the definition Eq. (17) of R(q,q,Q\ we can express the integrand of Eq. (31)
in the following manner:

x A F(qp q) [p& Q) - p(q)p(Q^ (33)

= -kTx A Ws\j>(q9 Q) - piq)p{Q)~\ (33a)
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+ σ-ax Λ E0\j>(q9 β ) - p(q)p(Q)~] (33b)

+ I Xj Λ (F(x - Xj) - F(x))σΈσajp(q)p(Q) (33c)

+ j dq σax A [F(x - x) - F(x)] σ^p(q) [p(q9Q)

(33d)

:,β) (33e)

To obtain the integral which appears in Eq. (31), we integrate both sides on
q = (x, α) with x in a ball of radius R. We shall then evaluate all terms (33a-e) in
the limit R-+ oo.

As in Eq. (16), the gradient term (33a) is 0 ( —jz~ ) by the clustering hypothesis.
\ R I

It thus vanishes as R -* oo as soon as δ > v. The term (33b) is integrable over all
space and gives, using the sum rule, Eq. (32):

- Eo A \dqσ-axlp{q, β) - p(q)p(QΪ] = Eo A f σaj xjP(Q). (34)

By the assumption Eq. (30), the integrand in (33e) is integrable over W x Uv and
thus, in the limit R^co, (33e) yields:

Λ F(ί, ̂ )) R(q, q,Q) = 0

Since F(^, g) is antisymmetric and R(q, q, Q) is symmetric in (q, q).
Using the definition of c , the integral over q of Eq. (33c) is for finite R

(cp + PB)P(Q) Σ σ*jXj Λ Γ ί dx(F(x - Xj) - F(x)) 1. (35)
7=1 L |x|^Λ J

Using Lemma 1 and 3 of [1], the expression (35) converges in the limit R -• oo to

^ = 0 when γ > v — 1, and for y = v — 1 ^ = { r̂s} is the depolarization tensor. For
a general domain Vo, %> is defined by

lim j dx(Fr(x -x)- Fr( -x)) = Σ « » ^ ( 3 7 )

where Vλ = {x|x = Ay,ye Vo, λ > 0} is a dilatation of Fo. In particular if Fo is a sphere,

(€γs = ~^δrs (ω2 = 2π, ω 3 = 4π) and Eq. (36) (i.e. the contribution (33c)) gives zero.

On the other hand, before the limit JR-> oo, Eq. (33d), gives:

j dx\dqσax Λ [F(x - x) - F(x)](cp + p β )[p(^ Q) -

Using the clustering condition together with Eq. (37) and the fact that

j dx\F{x -x)~ F(x)| = O(\x\) uniformly in R (see Lemmas 1 and 3 in [1]), the
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term (33d) yields, in the limit R -• oo:

(38)

which will be zero by our choice of Vo.
Combining these results Eq. (33) leads to:

\dqx Λ F{qp q)lp(q, Q) -

+ f dqσax Λ Vxlp{q, β) - p(ί)p(β)] j .

Thus it follows from Eq. (31) that:

PB)\ Σ σ α / ; A Vxj
U i

+ \dqσax Λ *x[p(β,β)-pte)p(β)] j , (39)

i.e. /cTΣ Ljp(Q) = 0 which concludes the first part of Proposition 3.

To prove the second part of this proposition we recall that for any periodic

state of a Coulomb system c = 0. Since the clustering condition 0 ( —- I with

δ > v + 2 has been used only to control the term (33d) in the limit K-> oo, our
proposition will remain valid when ρB = 0, assuming that the clustering condition
is satisfied with δ>v + l. Π

Remarks. 1) The sum rule Eq. (32) is essential for the derivation of Proposition 3

and thus a clustering faster than — ^ y is necessary for our proof.

2) It is conjectured that the two-dimensional jellium has a low temperature
phase with orientational order. Our analysis shows that in such a phase, the

clustering should decrease as or slower than —-τ.

Corollary 1. For Jellium systems pBi=0 and y — v — 1 ̂  1, any equilibrium state
which satisfies the clustering condition Eq. (6) with δ > v + 2 obeys the following
sum rule:

" p(q)p(Q)) = η(Q)δn (40)

Indeed, in the proof of Proposition 3, we can integrate on any sequence of volume
Vλ obtained by dilatation of some fixed arbitrary volume Vo.



Euclidean Invariance 67

Using the result KT^Ljp(Q) = O together with Eq. (39), we thus conclude
j

that for γ = v — 1 ̂  1 and for any Vo we must have:

PB\ Σ WJ A VxjpiQ) + \dqσax A Vxlp(q, Q) - p(q)p(QΏ j = 0. (41)

Furthermore, the bracket in (41) vanishes if and only if \_^,ξ] = 0 , where:

n

Therefore, ξ will commute with all symmetric matrices ^ and is thus a multiple
of the identity.

Let us recall that the sum rule Eq. (40) has been established for arbitrary ρB

in [12] under the same clustering condition, but using an entirely different method.

Corollary 2. Equilibrium states of Coulomb systems in dimension greater than 1

can not carry an internal electric field Eo if the clustering is 01 —-j j with δ > v + 1

when pB = 0 and with δ > v + 2 when ρB φ 0.
This corollary follows from the rotation invariance of the state and the

properties of the BBGKY equations (see Prop. 4 (iii) in [4]).
This result should be compared with the one dimensional Coulomb system

which is known to have exponentially clustering states with nonvanishing internal
electric field [13].

Remark. The results presented in this section will remain true for more general
systems with internal degrees of freedom, such as described in Sect. II, whenever
the particles interact by means of a two-body potential

i, q2) + <rωί *

such that the short range part of the force F{S) = — VΦ(S) satisfies the integrability
condition Eq. (7).

Appendix

We show that the contribution to (16) of space rotations vanishes, i.e.

limi J dql$dq(L1-L)0(q1,q)g(q1,q)=O. (Al)

Denoting fs{qu q) = (x\ + xs)g(qu q) we have

(Lλ - LYΦ(ql9q)g{qί9q) = - / % 1 ^ ) F ί ( ^ ^ ) + ft(qlίq)Fs(qliql (A2)

(r, 5, ί) = cyclic permutation of (1,2,3).

Since both terms of (A2) give a similar contribution to (Al), it is sufficient to
evaluate the first one which is
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\ \ dqί\dqFt(q1,q)fs{qί,q)=^dx J dωx \ dωF\x9ωί9ω)

' ί dyfs(y9ωί9y-x9ω)

= — ̂ dx j dω1 j dωF\x,ωί9 ω)

We have used the antisymmetry of F(ql9 q) and the symmetry of f(ql9 q) under the
exchange of qγ and q.

Therefore, one has

\ j dq1^dqFt(q1,q)fs(qί,q) ^ Jjdx j dωλ J dω\F\x,ω1?ω)|
I J C I I ^ K Ω Ω

idy\f8(y9ωl9y-x9ω)\, (A3)

where Δx = {y\\y\SRΛy-χ\^R}^{y \\y\^R,\y-χ\ SR}
In (A3), we divide the integration on x into the regions |x| ^^R and |x| ^^R.

R R
When \x\<*^R, yeΔx implies — ̂ \y\^^R and § K ^ |y — x| ^—, and therefore,

according to (18)

|/s(y, ω l 9 y - x, ω)| - | 2 / - xs|\g(y9 ωl9 y-x9 ω)\ ̂  — ~ γ ,

M1 being independent of x,y9ωί9ω. With this, one finds that the integral (A3)
on the region |x| ^^R is less than

>i,ω)| = θ ί —jz7 ) ( A 4 )

since the volume \ΔX\ of zdx is Odxl^""1).
n

When |χ| ^ — , we use the fact that the correlation functions are bounded, hence

This implies that the integral (A3) on the region |x| ^ — is majorized by

j dx^dωJ<MF(x,ω1?ω)| f ^(2|);| + I

f 1 (A5)
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since now |j;| ^ R ^ 2\x\ and \ΔX\ = 0{\x\v).
This last quantity tends to zero as R -» oo by assumption. (A4) and (A5) establish

that the limit (Al) vanishes.
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