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Abstract. Using the holomorphic geometry of the space of straight lines in
Euclidean 3-space, it is shown that every static monopole of charge k may be
constructed canonically from an algebraic curve by means of the Atiyah-Ward
Ansatz j/fc.

1. Introduction

It has been known for some time that the Bogomolny equations, describing static
Yang-Mills-Higgs monopoles in the Prasad-Sommerfield limit, may be solved by
twistor methods. Indeed, they can be reinterpreted as the self-duality equations in
Euclidean four-space which are in addition time-translation invariant, and the
methods of Penrose, Ward and Atiyah may be applied directly. During the past
year significant progress has been made using this line of attack by Ward [15,16],
Prasad and Rossi [12], and Corrigan and Goddard [7]. They all use a variant of
the Atiyah-Ward j/fc- Ansatz [3] to construct an SU(2) monopole of charge k. The
main purpose of this paper is to show that every solution of the Bogomolny
equations satisfying the appropriate boundary conditions can be constructed in a
canonical manner by this method.

Our approach is again twistorial, but instead of passing from a problem in
3-space to one in 4-space, we use complex methods intrinsically associated to the
Euclidean geometry of 1R3. We replace the set of points of IR3 by the space of
oriented geodesies (straight lines). This has the structure of a complex surface (in
fact, the holomorphic tangent bundle T to the projective line) and a solution to the
Bogomolny equations gives rise in a natural manner to a holomorphic vector
bundle over this surface. Actually, this approach to problems in Euclidean space is
by no means new - it was used by Weierstrass in 1866 to solve the minimal surface
equations.

Briefly, our method consists of defining a vector bundle E over the surface T of
geodesies by associating to each straight line the null space of the differential
operator
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where Vu is the covariant derivative in the unit direction of the line and Φ is the
Higgs field. The bundle is holomorphic if (P, Φ) satisfies the Bogomolny equations
VΦ = *F. The Atiyah-Ward Ansatz entails a description of the holomorphic
bundle E as an extension of line bundles. This means finding a distinguished
subbundle of E. We show that the bundle L+ of solutions to Ds = 0 which decay as
ί-> + oo is a holomorphic subbundle isomorphic to a certain standard bundle
L(—k) on T. It follows that E is an extension of L(—k) by its dual and hence that
the initial solution to the Bogomolny equations may be constructed by a canonical
application of the Ansatz j/k.

The space of lines for which Ds = 0 admits an 3? 2 solution forms an algebraic
curve of genus (k— I)2 in T. We call it the spectral curve, for it is a sort of non-
linear spectrum for the family of linear differential operators parametrized by T.
We use the global properties of this curve to give a geometrical description of the
approach of Corrigan and Goddard, realizing a 4k— 1 parameter family of
solutions. Finally we show how, with sheaf cohomology, the spectral curve
determines the holomorphic bundle E and hence the solution to the Bogomolny
equations.

2. The Space of Geodesies

If Mn is a Riemannian manifold, then the geodesies in a suitable open set (for
example, geodesically convex) are parametrized by a manifold of dimension
(2n — 2). The tangent space to this manifold at the geodesic y may be described as
follows. Take a curve of geodesies y(ί,s) with y(t, 0) = y(ί) and consider

This is a vector field along the geodesic y - a Jacobi field - which satisfies the
equation

0, (2.1)

dy
where U= — is the unit tangent vector of the curve and R(X, Y)Z the curvature

tensor of the metric.
The 2n-dimensional space of solutions to this equation contains the

2-dimensional subspace of Jacobi fields tangential to y. These are not tangent to a
deformation of the curve, but correspond to an affine reparametrization. The
(2n — 2)-dimensional space of Jacobi fields orthogonal to U does consist of genuine
deformations of y and the map

defines an isomorphism from the tangent space at y of the space of geodesies to the
space of Jacobi fields orthogonal to the direction of y.

Suppose M is now 3-dimensional and we consider the space G of oriented
geodesies (fix a direction for U). Now if V is orthogonal to 17, so is the vector cross
product UxV. Since U is constant along the geodesic,



Monopoles and Geodesies 581

and so if

R(U xV,U)U=Ux R(V, U)U, (2.2)

then we can define a linear map

j(V^=Uxγ (2.3)

which satisfies

J2(V)=Ux(UxV) = (U,V)U-(U,U)V=-V

since V is orthogonal to U.
In other words, we have an almost complex structure on the 4-dimensional real

manifold G. Note that we needed the orientation to fix U and define J. The
curvature condition (2.2) is only satisfied for a Riemannian 3-manifold if it has
vanishing traceless Ricci tensor. In such a case the metric has constant curvature
and the almost complex structure is integrable. Then G is a complex surface.
Before we consider in detail the case M = IR3 which is relevant here, let us note
some properties of G.

Firstly it possesses a map τ:G-»G with no fixed points such that τ2=id,
obtained by simply reversing the orientation on each geodesic. By the definition
(2.3), τ takes the complex structure J to — J and is thus an antiholomorphic
involution, or real structure on G.

Secondly, consider a point xeM. The oriented geodesies through x are
parametrized by the unit 2-sphere in the tangent space Tx, via the exponential
map. Since U is the unit normal to this sphere, it is clear from (2.3) that J preserves
its tangent space and moreover defines the standard complex structure on the
Riemann sphere. Thus a point x corresponds to a holomorphic projective line
PXCG. Two sufficiently close points x and y are joined by a unique geodesic, hence
(taking both directions) by two oriented geodesies. This means that Px and Py

intersect in two points and so the self-intersection number of P^ (the degree of its
normal bundle) is 2. The line Px is also clearly preserved by τ and hence is real.

We thus have a real complex surface G with a family of real lines of self-
intersection number 2. It can be shown that any such surface may be obtained by
the above geodesic construction, but using a Weyl structure rather than a
Riemannian structure. The integrability condition (2.2) is then the analogue of
Einstein's equations (R(ίjl = Λgίj) for the Weyl structure (see [10]). This is the
general context of the description in this paper, but from now on we shall restrict
ourselves to the simplest case M = 1R3.

3. Straight Lines in 3-Space

In 1R3 the geodesies are straight lines. We may parametrize them by assigning first
the direction, a unit vector u and secondly by choosing an origin and taking the
position vector v of the point nearest the origin. Thus

and this is just the tangent bundle TS2 of S2. The line x = v+ίu corresponds to
(u, v).
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The complex structure constructed on G in Sect. 2 is, we claim, the natural
structure on the holomorphic tangent bundle of the projective line W1 = S2.

To see this, we may consider the standard Riemannian connection on S2 and
split the tangent space of TS2 into vertical and horizontal spaces, so that

where π:TS2-^S2 is the projection. The natural complex structure of TS2 is
obtained by taking the standard almost complex structure on S2 in both factors.

On the other hand consider the geodesic

y = {xeIR3 |x=v + £u with u v = 0).

A tangent vector to y is a pair of vectors (ύ, v) with

u ά = 0,

ά v + u v=0.

This defines the Jacobi field

(v u)u

orthogonal to the geodesic, i.e. a pair of tangent vectors (ΰ,v — (v u)u). However
this splitting coincides with the one above, since the Riemannian connection on S2

is obtained by projecting onto the tangent space using the flat connection in IR3.
Now the complex structure at (u,v) is given by taking the cross product with

the normal direction u in each factor. This is clearly the standard complex
structure on S2, so we have established our claim. From now on we shall denote
the space of oriented lines in IR3 with this complex structure by T.

Since the straight lines through a fixed point xelR3 are determined by their
direction u, the line Px is a holomorphic section of π : T-+ΠY Every such section is
a holomorphic vector field on 1P1 which (since the tangent bundle is of degree 2)
may be written in terms of a quadratic polynomial :

. (3.1)

The real structure is defined by

τ(u,v) = (-u,v),

and this is minus the natural action of the antipodal map α on the tangent bundle
TS2. In holomorphic coordinates α(£) = —ζ~l, and it follows that the section s(ζ) is
real iff

b = b\ a= — c.

Thus a point x = (x1,x2,x3)e!R3 may be represented by the real section

i x 2 ) ζ 2 ) - 9 (3.2)

and in these coordinates the natural conformal structure induced on IR3 by the
discriminant b2 — 4ac is the standard Euclidean one given by the metric
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We have just described IR3 as the space of real holomorphic vector fields on Π>

1,
i.e. as the Lie algebra of SO (3). The surface T should of course be thought of as an
affine vector bundle over IP1 with no distinguished zero section. Indeed a choice of
real section determines an origin in IR3.

The relationship between T and the twistor space Π^V?! of IR4 (see [1]) may be
described in terms of the action of time translation. Translation is an isometry of
IR4 and induces a free holomorphic action of the additive group IR on fl^YD^,
which is the real part of a holomorphic action of the complex numbers (C. The
quotient space of IP3^ by this action is the surface T.

4. The Bogomolny Equations

We shall see now how solutions to the Bogomolny equations, with no boundary
conditions imposed, may be represented in terms of the complex geometry of T.

Consider a principal SU(2) bundle with connection V on IR3, and a section of
the adjoint bundle Φ, the Higgs field. Let E be the associated rank 2 complex
vector bundle on IR3, and F the curvature. Now define a rank 2 vector bundle E on
T b y

Here U is the unit tangent vector along the oriented geodesic yz corresponding to a
point zeT. Thus for each line yz we have a system of ordinary differential
equations along that line. The finite-dimensional null space is the fibre of the
vector bundle E over the point zeT.

Theorem (4.2). // (ί7, Φ) satisfy the SU(2) Bogomolny equations FΦ = *F, then E is
in a natural way a holomorphic vector bundle on the space of geodesies T such that

(i) E is trivial on every real section.
(ii) E has a symplectic structure.

(iii) E has a quaternionίc structure, that is an anti-holomorphic linear map

such that σ2 = — 1.
Conversely, every such holomorphic vector bundle on T defines a solution of the

Bogomolny equations.

Proof. We shall construct on £ a δ-operator, that is a linear differential operator

such that
(a) d_(fs) =
(b)_a 2=o,

where d2 is defined in terms of the natural extension of d to an operator

d :

It is a corollary of the Newlander-Nirenberg. theorem (see [1], for example) that E
then has a holomorphic structure for which this operator is the natural δ-operator.
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First, we paraphrase the construction of the complex structure on the space of
geodesies, by considering the unit sphere bundle S(TIR3). The flat Riemannian
connection splits this into a product S2 x IR3. The geodesic flow X is a vector field
which is horizontal relative to this splitting and the space of geodesies T is the
quotient space of S2 x IR3 by the flow :

p(u, x) = (u, x — (x u)u) .

The orthogonal complement oΐ X in the tangent space at (u, x)eS2 xIR3 projects
isomorphically to the tangent space of p(u, x) in T. The almost complex structure
we defined consists of taking the standard complex structure of S2 in the fibre
directions and the standard one (cross-product with X) in the horizontal direction
orthogonal to X. The integrability condition on the curvature is equivalent to the
invariance of this structure along the flow.

This interpretation makes it easier to describe a section of E over T. If we
denote by p1 and p2 the projections onto the two factors of S2 x IR3, then a section
seΓ(T, E) consists of a section seΓ(S2 xlR3,p|E) which satisfies the equation
Vxs — ίΦs = Q, using the connection pulled back from IR3 by p2.

We now define the ^-operator by :

φy^F0'^. (4.3)

This means we consider the (0, 1) component of Vs relative to the complex
structure in the orthogonal space to X in the tangent space of S2 x IR3. We must
show that this is well-defined, i.e. that ds is a section over T rather than on S2 x IR3.
Now since the holomorphic tangents to the real sections span the tangent space to
T at each point, it is enough to check this on each such section.

Thus, we pick an origin OeIR3 and consider all the straight lines through it. The
exponential map at this point is

exp : S2 x IR-^IR3

(u,ί)-»fu,

and is the projection p2 applied to the translation of S2 x 0 by the geodesic flow.
We have a section seΓ(S2 x IR, p|E) which satisfies

and from (4.3)

dx dy]

2where z = x + iy is a holomorphic coordinate on S2. We need to show that

_
δx dy
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for then we shall have a genuine section over T. But

9 -
ot ox] fy

and this vanishes because of the Bogomolny equations VΦ = *F and the definition
of the complex structure. Hence since

dy

and we have a well-defined operator d which clearly satisfies condition (a). As for
condition (b), note that

from the definition (4.3). But the fibre of p2 :S2 xR3-^R3 is a holomorphic
direction, so any (0, 2) form on T must be a multiple of ΰΐ Λ ΰ2, where u2 is in the
fibre direction. On the other hand the connection V on S2 x R3 is pulled back by
p2, so the ΰ1 A ΰ2 component of F must be zero. Hence <32s = 0, and the bundle E is
holomorphic.

We must now check properties (i)-(iii) of the theorem.
(i) A real section of T-^IP1 consists of the geodesies that pass through a fixed

point OeIR3. Take a fixed vector e0eEQ, then there is a unique solution to

(Vr_ — ίΦ\s = 0 with initial condition s(0) = e0. This defines a section s of E on the

projective line P0, and since eQ is independent of the direction,

Thus s is holomorphic, and letting e0 vary in £0 we have a trίvialization of E on
P0, and similarly on every real section.

(ii) The connection V preserves the SU(2) structure on E and in particular a
symplectic form. The Higgs field Φ also preserves the SU(2) structure but iΦ being
self-adjoint does not. However since Trace (ι'Φ) = 0, the symplectic form is pre-
served so the form on E is inherited by the solutions of (Vυ— z'Φ)s = 0. Thus E has a
symplectic form, which is clearly compatible with the d-operator and hence
holomorphic.

(iii) The bundle E on IR3 has a quaternionic structure σ :EX-+EX. So, if

(F^
then applying σ,

and so

Thus, recalling that changing the direction U of the geodesic is the real structure τ
on T, we see that σ defines an antilinear map

with σ2= — 1, easily seen to be antiholomorphic.
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To prove the converse part of Theorem (4.2) we must consider the geometry of
the complexification C3 of R3. In our twistor representation a point (a, b, £)e(C3 is

represented by a holomorphic section (aζ2 -f bζ + c) — of T which is not necessarily

real. Take a local coordinate system (η, ζ) on T defined by

where C is a local affine coordinate on 1P1? and consider all sections which pass
through a fixed point (η0, C0)

GT. This is the set

and is thus a plane Π in C3. The conformal structure on C3 was defined in Sect. 3
by the discriminant, so the complexification of the Euclidean metric is

g^(db)2-4(da)(dc).

Now if

dc=

and so

g = db2 + 4da(ζ0 db + ζ2 da) = (db -f 2ζ0 da)2 .

Thus the induced metric on the plane Π is degenerate : 77 is a null plane. So from a
holomorphic point of view a point in T represents a null plane Π in C3. The plane
Π and its conjugate Π intersect in a straight line (the geodesic of our original
construction) and the orientation is determined by the ordered pair (J7, Π).

Now suppose £ is a holomorphic vector bundle which is trivial on every real
section Px of T. It will be trivial on the complex sections sufficiently close to xe(C3

and we can define a vector bundle E on a neighbourhood of x by

Ey = H°(Py,E). (4.4)

The fibre consists of the holomorphic sections of E along the projective line Py.
Furthermore, for all lines which pass through the point zeT, we have a canonical
trivialization of the bundle E defined by the restriction isomorphism

H°(Py,£)=Ez. (4.5)

Thus on a neighbourhood in Π of the geodesic yz, E has a natural flat connection
Pπ. If E is endowed with a symplectic form, then clearly E inherits one and this is
preserved by the connection.

Since every null line lies in a unique null plane, we can use this connection to
define parallel translation along a segment of each complex null geodesic through
x. This defines, by differentiation at x, a matrix valued function A of null directions
which is homogeneous of degree 1 and holomorphic. However, the space of null
directions is a conic C in P(TX) = IP2, the projective space of the tangent space to (C3

at x, and every homogeneous function of degree 1 defines a section of the bundle
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0(1) on IP 2 restricted to C. It follows, using the Kϋnneth theorem, the fact that
Hl(C,0(ΐ)] = 0 and that every holomorphic section of 0(1) on C is the restriction of
a linear form on Tx, that A is in fact linear in the null direction. Thus the notion of
parallel translation is defined by a connection V in a neighbourhood of x. This is
analogous to Ward's original construction [14].

Now restrict this connection to the null plane Π. It agrees by definition with
the natural flat connection Vu in the null direction, so

(4.6)

for some endomorphism Φ of E, where the null lines in Π are defined by y = const.
If we make y a linear coordinate and dy of unit length, then dy is uniquely
determined (up to a sign fixed by the orientation of IR3). If we now consider all the
null planes through x, then Φ(x, Π) is a holomorphic matrix valued function of the
null directions, homogeneous of degree 0. This means it must be constant as a
function of Π and so gives a well-defined endomorphism of the bundle £ in a
neighbourhood of IR3C(C3. Furthermore, since V and Vπ preserve the symplectic
form on E, so does Φ.

Now since Vπ is flat, we obtain from (4.6) the equation:

(4.7)

The real structure σ on E defines a quaternionic structure on the bundle E over the
real points IR3 CC3 and makes V and Φ compatible with it. With this real structure
the Eq. (4.7) leads directly to the Bogomolny equations. Indeed let ( e { , έ?2, e$) be an
orthonormal basis of tangent vectors in IR3 such that eί +ίe2 is the null direction
of 77. Then (4.7) implies that

and hence that

which, for all null directions, yields the Bogomolny equations. Let ze T, and yz be
the corresponding geodesic, in the direction e3. Then

from (4.4) and (4.5). But this is isomorphic to the sections of £ along the line yz in Π
which satisfy FJ7s = 0. This however, from (4.6) is the null space of F3 — z'Φ, and so
we have inverted the initial construction.

The theorem is now proved. Although it was phrased in terms of SU(2)
solutions, with minor modifications to the real structure, it is valid for any real
form of a complex Lie group.

5. The Line Bundle L

To illustrate the preceding construction, let us take the simplest case of a solution
to the Bogomolny equations. Here we take the group to be (7(1), the bundle E to
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be a trivial line bundle with flat connection, and the Higgs field Φ to be the
constant i. We shall obtain a holomorphic line bundle L on T, trivial on each real
section and where in this case the real structure gives an antiholomorphic
isomorphism

Following theorem (4.2), we define

, , ds

Thus s = conste *. Now define the function / on S2 x IR3 by

ϊ(u,x) = e-» *. (5.1)

On each straight line this defines a multiple of e~\ so / defines a global non-
vanishing section / of the line bundle L over T. Note that / depends on the choice
of origin.

We shall compute dl next. Note firstly that if u x = 0, then / i s constant. Hence
F°'l is zero in the horizontal direction of S2 x IR3. This means, in terms of T, that dl
vanishes in the fibre directions of π T-^IP^

Now let ζ = x + ίy be a standard local coordinate on the fibre S2 of S2 x IR3. By
stereographic projection we may write

ϊ+cΓi + C Γ i + ίC/

Now x = (xί,x29x3), so putting a = x1 + ix2 and b = x3 we get

U X=

Hence

?Q>\u.χ) = (a-2bζ-aζ2)^Ly. (5.2)

But taking coordinates (/?, ζ)-^ — on T and comparing with (3.2) we see that the
dζ

projective line Px corresponding to x is η = a — 2bζ — άζ2. Thus the section / of L on
T satisfies

a-iίw
Note that / is holomorphic in each fibre of T and also on the zero section ^ = 0,
corresponding to the chosen origin of IR3.

If // is a local holomorphic section of L, then 3(//) = 0, so from (5.3)
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and

3f= fη
Sζ (i + CC) 2 '

/ __~ \
It follows that / = gf(ζ,^)expl——-=- , where g(ζ,η) is holomorphic.

/ ~n \
The function /0 = expl——r=- is regular at (=GQ but has a singularity at

/ -η η\
C = 0. Similarly /j =exρ ——-=- + - is regular at C = 0 but singular at ζ= oo.

Thus /o/ defines a trivialization of L on the open set [/0 = {(f/,C)eT|£Φθ} and
/!/ on L?Γ

I — {(^,ζ)eT|ζφ oo}. On the intersection U0r\U1 we have f0l — e~η/l'f1l,
so the transition function 001 is given by

(5.4)

Since the real structure in these coordinates is

τ^CM-^-Γ1),

it is clear, noting that τ interchanges U0 and (71? that

φQίτ = exp(η/ζ) = φ Q Ϊ ,

so we have an antiholomorphic isomorphism

From its description as a solution of the Bogomolny equations, it is clear that L is
a canonical object on T. In algebraic geometric terms, we can describe it as
follows :

Recall that any compact complex manifold Xn has a fundamental class
ωeHn(X,K), where K is the canonical bundle. Furthermore on the total space of
any vector bundle E there is a tautological section s of π*E. Hence taking E = K*,
the anticanonical bundle, there is a natural element sπ*ωe/f%K*,0).

In our case ̂  = P15 T = K* and the line bundle LeHl(Ύ90*) is defined by

6. Boundary Conditions

Suppose now that (F, Φ) satisfies the SU(2) Bogomolny equations, subject to the
following conditions :

ΪΓL
(i)

(ϋ)

(iii) ||pφ||^0(r~2), as r-+oo.
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Here we define | |Φ| | 2= — \ TrΦ2 and denotes the angular derivative of ||Φ||,
Oaί!

, 2 X 1 / 2

These conditions are independent of the choice of origin. Note that condition
(ii) implies that m is a constant. Also, since Φ is non-vanishing at sufficiently large
distances from (i), the bundle E splits as a direct sum E = M®M* of eigenspaces of
Φ. Restricted to a large sphere the line bundle M has an integer Chern class ± fc.
By integration over the sphere (see [15]) one may show that the constant m is the
positive integer k. We shall call k the charge of the solution.

Ward's approach to constructing solutions of charge k is to use the Ansatz j/k.
This means in holomorphic terms constructing the bundle E on T as an extension.
More precisely we take on T the holomorphic line bundle 0( — k) (the pull-back
under π : T-^IP1 of the unique line bundle of degree — /c), tensor it with the bundle
L we constructed in Sect. 5, and consider vector bundles E for which there is an
exact sequence :

0->L( - k) A£ΛL*(fc)-*0 . (6.2)

This means that E has a distinguished holomorphic subbundle isomorphic to
the bundle L( — k). Since E has a symplectic form, the quotient line bundle must
be isomorphic to L*(k).

To express a bundle as an extension in this way means that one may find
transition functions which are upper triangular. In our case since 0(k) has the
transition function ζk and L has the function e~η/ζ, an application of the stfk Ansatz
requires looking for a bundle E with transition functions

f ( η , ζ )

The off-diagonal term f(η, ζ) defines a Cech cocycle representing a class in the
sheaf cohomology group /^(T, L2( — 2/c)). This group classifies all extensions of the
form (6.2).

We shall now prove the following:

Theorem (6.3). Let (F, Φ) be a solution of the SU(2) Bogomolny equations of charge
k on IR3, satisfying the boundary conditions (6.1). Let E be the corresponding
holomorphic bundle on T defined by (4.1) and let L+ denote the subbundle of E
consisting of solutions to (^v—iΦ)s = 0 which decay as ί-> + oo. Then L+ is a
holomorphic subbundle isomorphic to L(—k] and thus E may be represented as an
extension

Proof. In the neighbourhood of an oriented line in IR3, choose a trivialization
(e0, e^ of the vector bundle E which consists of the orthogonal eigenvectors of Φ at
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large distances in the positive direction. Then for large r,

Hence taking the covariant derivative,

Since \\VΦ\\ = 0(r~2) from (6.1) this implies that the connection matrix in this
gauge is of the form :

A B\ where ||ΰ|| =0(r'2).
-B* -A)

Now consider the diagonal part of this matrix. It defines a connection which
preserves the eigenspaces of Φ. Choose a gauge which is covariant constant in the
radial directions for this connection. Then the form of the matrix is unchanged, but
in polar coordinates the 1-form A has no dr term.

The curvature F is given by :

_/dA~B*B dB

-dB* -(dA-B*B)

0 -ί*d\\Φ\\J

by the Bogomolny equations VΦ = *F. Hence, if (ul,u2) are orthogonal coor-
dinates on the unit sphere and A = A1 du1+A2du2, we have

2

and from condition (ii) of (6.1)

dr

and similarly for A2. Thus in the radial direction Ai tends to a limit At as r-»oo.
Instead of choosing a fixed set of polar coordinates we may consider the pulled

back connection pf V on S2 x IR3 and choose an analogous gauge in a neigh-
bourhood of an orbit of the geodesic flow. Then, as ί->oo along the flow, the
connection approaches a pulled back connection pJF which moreover preserves
the eigenspaces of Φ.

Now consider the corresponding holomorphic vector bundle E on T. From
(4.1)
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In the present gauge we may write this as

k
1-1 +

dx t
0

x + C(t)x = 0, (6.4)

0
t\

where ||C(ί)|| =O(t 2). This follows from condition (i).
Since ||C(ί)|| is integrable, we may apply a theorem of Levinson (see [5, 6]) on

the asymptotic behaviour of ordinary differential equations to deduce that there
are solutions x0, x1 such that

as ί-> + oo .
>*i>

In particular there is a uniquely determined 1-dimensional subspace L^CEZ of
solutions (namely multiples of x0) which decay as ί-> + oo.

The solution x0 is obtained by using the fundamental solution of the
unperturbed equation:

f t
k

K(s,t)=\
e*~<7 0

0 0

0 0

o *<-'ί
tk

S>t9

S<t.

One then solves the equation

J K(s,i)C(s)x(s)ds

Since C(ί) is integrable, T is a contraction mapping for large enough ί l 5 so there is
a unique solution amongst functions bounded on [ίl5 oo). Using this method, and
the uniform bounds on C(ί) provided by the boundary conditions one may show
that L+ varies continuously with zeT, and moreover is differentiable by condition
(ii). Furthermore, the derivative relative to some choice of initial value is given by:

dxr

so since by condition (ii)

'dC

Tz(
as,

d_C_

Ίϊz
2 ) as s-^oo, uniformly as z varies over a

compact set, we have another contraction mapping and

<const| |x0 | | .
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dx
Thus in particular -̂  ->0 as ί-> + oo.

dz
We now wish to show that L+ is a holomorphic subbundle of E. If s is a local

differentiable section of L+ then we may use the symplectic form of E to express
the obstruction to holomorphicity as <(δs, s).

In terms of the sphere bundle S2 x IR3,

which because of the Bogomolny equations is constant along the geodesic flow.
But as we have seen s(z,ί) and Ps(z,ί) both tend to zero as £-» + oo. Thus the
constant is zero and L+ is holomorphic. Note that we may define L~ as the
subspace of solutions which decay as f-> — oo and the same argument shows that
L~ is holomorphic. We shall consider the relationship between the two in the next
section.

It remains to identify L+ with L( — k). The line bundle L corresponds to the
trivial 17(1) solution of the Bogomolny equations. Consider the holomorphic
bundle £®L*. This corresponds to a 17(2) solution where the Higgs field is
replaced by Φ — i. Hence the subbundle L+®L* is isomorphic to the space of
solutions to the equation

k

dx

~dt
+ C(f)x = (

0 2--
t

such that t~kx(t)->λe0.
Now let s be a local section of L+ ®ZΛ It defines s(z, t) on S2 x R3. As £-» + oo,

the eigenspace of the Higgs field corresponding to the limiting eigenvalue i tends to
a line bundle p fM of degree ±k (a bundle on the sphere of infinity) and the
connection, as we have seen, tends to a pulled back connection p^P.

Define α : L+ ®L*->π*M by

α(s)= lim Γks(z,i).
t-> + oo

Note that α is independent of the choice of origin t = 0 on the line. By using the
fundamental solution again we see that

8 <*< ^ M, ,— ct(s(z,t)) = <x, — (z,t),
oz oz

and hence

(S0'1 + Ά0> x) α(s) = Oi(70tls(z91)). (6.5)

However a line bundle on ίS
2 = lP1 with connection has a holomorphic

structure defined by the d operator 50'1 +Ά0'1 and the holomorphic structure on
£®L* is defined by F°! 1. Thus (6.5) implies that α is a holomorphic isomorphism.
There is a unique complex structure on a line bundle over P19 hence
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L+ ®L* = π*0( + k}. In fact, since the bundle E is holomorphically trivial on each
real section of T, L+ must have negative degree, so

and Theorem (6.3) is proved.

7. The Spectral Curve

We have established that the holomorphic vector bundle E corresponding to a
monopole is expressed as an extension

0->L+->£-^(L+)*^0, (7.1)

where L+=L(—k). We also saw in the proof of Theorem (6.3) that it is an
extension

O^L--»E-^(£~)*-*O. (7.2)

In fact the real structure σ:E-»E takes L+ to L~, for since it changes
orientation on each straight line, the solutions that decay at 4- oo go to those that
decay at — oo. Hence σ defines an antiholomorphic isomorphism

and in particular L~ =L*(— fe).
Now we may project L~ in E onto (L+)* in (7.1) and obtain a holomorphic

section,

We shall call the zero set of this section the spectral curve S. This is because it
corresponds to those points zeT for which Lz

+ =L~. In other words, it describes
those straight lines for which there are solutions to (Vv—iΦ)s = Q which decay at
both ends of the line. Since they decay exponentially they are also in j£?2. Thus we
are considering a nonlinear family of linear differential operators on the line and
we are seeking the particular parameter values for which there exist $£ 2 solutions.

We shall prove the following properties of the curve S :

Proposition (7.3). Let S be the spectral curve corresponding to an SU(2) monopole
of change k. Then

(i) S is compact.
(ii) S is defined by an equation

where a{(ζ) is a polynomial of degree 21.
(iii) The line bundle L2 is holomorphically trivial on S.
(iv) S is preserved by the real structure τ.
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Proof, (i) Let s be a non-zero solution of (Vυ— ίΦ)s = Q on some line, and consider
the function f= \\s\\2 on the line. Since 5 is the solution of a linear first order
equation, />0. Now,

- 0at

since V preserves the inner product and iΦ is self-adjoint. Differentiating again, we
obtain

But from the boundary conditions (i) and (iii) of (6.1), there exists R>0 such that

| |Φ||2>i and \((rΌΦ)s,S)\<$ \\s\\2

if r>R.
Hence if the whole line is a distance greater than .R from the origin,

d2f f π

—f- >/>0
at

for all solutions s. Thus since / is convex and non-constant, it cannot be bounded
and there are no non-zero solutions which decay at both ends of the line.

Hence the spectral curve S lies in the disc bundle of radius R of T = TS2 and is
therefore compact.

(ii) The curve is defined by ψ = 0, where φ is a holomorphic section of 0(2fc) on
T. Let / be the ideal sheaf of a section P of T, then for any vector bundle E there is
an exact sequence of sheaves:

where JV is the normal bundle. Since in our case N = 0P(2\ if we take E = 0(2k), we
have

0-»/w+ 1 ®0(2k}-^/n®0(2k)-^0P(2k-2n}-*ΰ . (7.4)

Now if n>k, //°(P1?0(2/c — 2n)) = 0, so from the exact cohomology sequence of
(7.4), if a section ψ of 0(2k) vanishes to order (fe+ 1) on P, it vanishes identically on
T. Thus a section is determined by its restriction to the /cth order neighbourhood of
P. From the exact sequence of higher order neighbourhoods :

we see that

k

dimH°(P,Ok

P(2k))= X dimH°(P,0(2k-2n))
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Hence

dim#°(T, 0(2fc)) ̂  (k + I)2 . (7.5)

On the other hand 0(2) is the pull-back of the tangent bundle of P1 and this on T

has a canonical section η—in our standard coordinate system. Hence if p(η, ζ) is
dζ

( d\k

any polynomial as in (ii), ψ = p(η9ζ)\-γϊ] is a holomorphic section of 0(2fc). Since
\dζ]

the dimension of the space of such sections is (/c+1)2, it follows from (7.5) that
every such section is of this form, in particular φ. In order for S to be compact, it is
clear that the coefficient of ηk must be non-zero, hence S is defined by an equation

(iii) Since L+ =L~ on S, L+ =L(-k) and L~ ^L*(-fe), it is clear that L^L*
and hence L2 is trivial.

(iv) Since σ(L+) = L~ it is obvious that S is real.
The curve S is thus determined by (fc-h I)2 — 1 real parameters, but because of

(ii) satisfies further constraints. Since L2 has Chern class zero, its restriction to S
corresponds to a point in the 0-dimensional complex torus

where g is the genus of S. Since furthermore L2 is real (L+ = L~ on S) there are g
real constraints on the curve. If S is non-singular, we may compute the genus from
the adjunction formula:

K S + S2 = 2g-2.

Since S is the zero set of a section of O(2fc), its self-intersection number is
c1(0(2fe)) [5]. But because /?(/?, £) is of degree fe in η, S is a fe-fold covering of the
base space IP^ Hence

and since the canonical bundle K = 0( — 4),

K-S=-4k.

Thus

2g-2 = 2k2-4k
and

Hence the conditions we have described (a geometric version of those in [7])
amount to the choice of

real parameters.
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This suggests that the spectral curve determines the solution. This is in fact the
case, as we shall see now.

We have described the bundle E as an extension

in other words, defined by an element a in the sheaf cohomology group
H1(Ί,L2(-2k)). We may take the section φe#°(T,0(2fc)) and multiply to obtain
ψ(a)eHl(Ύ,L2). This class is in fact trivial for general reasons.

We have the extension

and a homomorphism ψ :L~-^(L+)*. The product defines an extension

O-+L+-^F->ZΓ-+O.

This bundle may be defined by

F={(x9y)eE®L-\β(x)

But in our case ψ = β\L~ , so the diagonal map

defines a splitting of the extension. Hence the class ψ(a) = 0.
Now consider the exact cohomology sequence of the sequence of sheaves

We obtain

0-*#%S, L^Λπ^T, L2( - 2Jc))-^H1(T, L2) .

Since ψ(ά) = Q, a = δ(u) for some αeH°(S,L2). But L2 is trivial on the compact
connected curve S, so up to a factor (which does not change the bundle E\ α is
unique. Thus

Theorem (7.6). // S is the spectral curve, the bundle E is obtained as the extension
<5(α), where a is a trivialization of L2 on S and

the coboundary map.
In particular the curve S determines the bundle E.

Example (7.7). In the case fc=l, the spectral curve S is defined by η + aί(ζ) = Q,
where α1(ζ) is of degree 2. This is just a section of π : T->1P1 and since S is real it
corresponds to a real section Px, for some distinguished point
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If we take x to be the origin, then the BPS monopole gives a solution to the
charge 1 SU(2) Bogomolny equations [4, 13]. The Higgs field Φ for this solution is
given by

Φ = f cothr --
\

Hence if we consider the lines through the origin and use a gauge which is
covarianί constant in the radial directions, the differential equation on each line is,

Clearly χ = is the unique solution which decays as r-+ + oo. Since it also
\r/smhr/ J

decays as r-> — oo, the spectral curve has as a component all the lines through x,
i.e. Px. Since it must be a section, then S = PX. Finally since by (7.6) the spectral
curve determines the solution, we see as a consequence that the BPS monopole is
the unique solution for charge k^=l.

Example (7.8). Consider the axially symmetric situation treated by Prasad and
Rossi [12] and, using different methods, by Forgacs et al. [9]. In our twistorial
approach a rotation of θ about the x3-axis corresponds to the action of 17(1) on T
given by

Hence the spectral curve S given by

is invariant iff ai(ζ) = cίζ
ί for some constants cί9 l^i^k. But then the equation

factorizes as

where the λt are the roots of the equation ξk + cίξ
k~'L+ ...+ck = Q.

Geometrically this means that the curve S is reducible and is the sum of fe
sections of T, each passing through the two points (η, ζ) = (0, 0), (0, oo).

On each individual section, the bundle L2 is trivial, since it is of degree zero. We
thus have a complex C* solution to the Bogomolny equations on C3. From Sect. 5
it corresponds to a line bundle with trivial connection and Higgs field 21 We shall
describe the condition that L2 be trivial on S in terms of this connection.

Take two component curves Pu and Pv of S corresponding to the points
u = (0, 0, λJ2\ υ = (0, 0, λj/2) in (C3. By the holomorphic approach to the Bogomolny
equations in the proof of Theorem (4.2), trivializations of L2 on Pu and Pυ agree at
a point of intersection zePuπPv if the corresponding vectors at u and v are related
by parallel translation in the plane Π corresponding to z, with respect to the flat
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connection Vπ. Hence they are compatible at both points of intersection z, z' if
parallel translation along the geodesic joining u to v is the same for both
connections Vπ and Vu>.

Now from (4.6), V — Vπ = iΦ dy and V — Vn, = iΦ ay'. On the line of intersection
ay' = — dy, so parallel translation is the same if

exp -

i.e. if the distance between u and v is a multiple of ίπ/2.
Putting in the reality condition and choosing a suitable origin, the spectral

curve for an axially symmetric solution is of the form

for fc = 2/+l, with fc.eZ and

for k = 2L

In particular, as noted by Prasad and Rossi, apart from the choice of origin
and axis of symmetry there are no continuous parameters.

8. Summary

We have shown that every SU(2) monopole satisfying the boundary condition
(6.1) defines an algebraic curve in the surface T=TP1 and that the curve
determines the monopole. It is thus possible in principle to investigate properties
of the monopole by studying algebraic curves. There are a number of questions we
have not answered, however, by this construction :

(1) Which curves in T satisfy the necessary conditions of Proposition (7.3) in
order to be a spectral curve?

The answer involves the periods of the curve, and hence is transcendental in
nature. Any curve which does satisfy those conditions defines by the coboundary
construction of Theorem (7.6) a vector bundle E over T expressed as an extension
<5(α) in Hΐ(Ύ,L2( — 2k)). Moreover, by reversing the proof of that theorem one may
show that the conjugate element σ^(α)eH1(T, L~2( — 2k)) defines an isomorphic
bundle, so that E has a quaternionic structure. In view of Theorem (4.2) it defines a
solution of the Bogomolny equations on those points of R3 which correspond to
sections of T over which E is trivial. This provokes the next question :

(2) For which curves is E trivial on every real section?
Since E = O(m)®0( — m) for some m on every projective line, we can character-

ize the sections Px for which E is trivial by the condition H°(PX,E(— 1)) = 0. From
the exact sequence

0->L(- k- 1)-+E(- l)
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this holds iff the coboundary map

H\Px,L*(k-}}}->H\P^L(-k-l}} (8.1)

is an isomorphism. This map is obtained by multiplying by the extension class
δ((x)eH1(Px,L

2( — 2k)). Now the trivialization α of L2 on S is related to a fixed
trivialization β of L2 on Px by

at the points of intersection ζ eP^nS. If the section Px is defined by the equation
η = a(ζ) and the spectral curve by ψ(η, ζ) = 0 then we may define a quadratic form
on polynomials of degree (fe— 1) by

which, identifying Hl(Px,L(-k- l))^H°(Px,L*(k- 1)) by Serre duality, is the
map (8.1). Thus the non-degeneracy of β is the required condition. In practice this
is difficult to obtain, even in the axially symmetric case.

Having considered interior regularity, one may ask for the boundary
conditions.

(3) Does a solution to the Bogomolny equations obtained this way satisfy the
boundary conditions (6.1)?

This seems quite likely - indeed a partial answer is found in Corrigan and
Goddard [7].

In some ways, the difficulties encountered in proving non-singularity parallel
those in the algebraic curve approach to instantons [3]. The monad approach [2]
gave a happier method of constructing solutions, though with some loss of
explicitness. An analogous description for monopoles (cf. Nahm [11]) would get
around some of the difficulties of the method presented here.

9. Appendix: Minimal Surfaces

As a postscript let us consider how Weierstrass used the complex geometry of T to
solve the minimal surface equations in IR3 (see [8, 17]). Recall that a minimal
surface may be considered as a map h : 17 -»R3 from some open set 17£IR2 which
satisfies :

(i) h is harmonic,
(ii) h is conformal.
If we identify IR2 with (C, then we may write

fe(z) = x(z)+x(z),

where x(z) = (x1(z), x2(
z)> X3(z)) is holomorphic, because of condition (i).

Condition (ii) will be satisfied if the (2, 0) component of the pulled back metric
vanishes, i.e.

i— 1
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Thus x = x(z) describes a holomorphic null curve in (C3. Through each point of the
curve there is a unique tangential null plane, so this describes a curve in the space
of null planes of (C3, i.e. the twistor space T.

Conversely, let C be a holomorphic curve in T. To each point we associate the
osculating section P, that is the section which is tangent to second order to the
curve at that point. In local coordinates we may describe C by a holomorphic
function

at points for which the curve is not tangential to the fibres. A section
η = a + bζ-\-cζ

2 then osculates C at the point ζ if

= f ' ( ζ ) , (9.1)

2c = /"(£).

This describes a holomorphic curve

(α,6,c) = (/-C// + iC 2Λ/ /-CΛU")

in (C3, and moreover

(bf)2 - 4a'c' = ζ2(f'")2 - 2/'"β C2 /'") = 0 ,

so the curve is null. Thus, in standard coordinates in R3 (cf. Sect. 3) we have the
minimal surface

The interpretation of the minimal surface corresponding to the spectral curve S of
a monopole is left to the reader's imagination.
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