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A Boson Representation for SU (N) Lattice
Gauge Theories
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Abstract. SUC/V) lattice gauge theories are reformulated in terms of fields
varying over non-compact spaces C ,̂ transforming as N dimensional repre-
sentations of SU(Λf) and integrated with Gaussian measure. This reformulation
is equivalent to a boson operator representation. Strong coupling expansions
based on this formalism do not involve SU(N) vector coupling coefficients.

1. Introduction

In pure Euclidean Yang- Mills field theories on a lattice field, variables range over
the group manifold itself. This manifold is compact and a non-trivial Riemannian
space. The gauge groups we will consider are SU(Λf), N = 2, 3 but our results can
be immediately generalized to any N. In this article we reformulate such theories
in an equivalent fashion in terms of fields taken from the flat non-compact space
CN. They transform as N dimensional representations of SU(JV). We will therefore
call them "bosonic spinorial variables" for the gauge field. The integration is over
a Gaussian measure instead of a Haar measure. A straightforward change of
notation leads then to a boson operator formulation of Yang- Mills lattice field
theories.

Our approach is based on Bargmann's realization of group representations of
SU(ΛΓ) [1], which makes use of Hubert spaces of entire analytic functions over CN

or powers of CN. This formalism is equivalent to the so-called boson operator
calculus [2], For technical reasons and for the sake of mathematical clarity we
prefer to use spaces of analytic functions in this article.

The lattice A is assumed to be hypercubic, to have dimension D and the
boundary conditions are presumed to be periodic. Let f denote the links and p the
plaquettes of Λ. We define the partition function by the standard ansatz

_ κ,eSU(JV) (1)
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The action S can be represented as a sum of contributions Sp of each plaquette p

s( {«,})= Σ SP (2)
plaquettes

pe/4

We assume that each Sp can be expanded into characters

(3)
{R}

Here {R} is the set of irreducible unitary representations of SU(N), χR are the
corresponding characters, β is the inverse temperature or the inverse coupling
constant squared and fR(β) are "dynamical factors" that specify the action. The
Wilson action [3] or the generalized Villain action [4] are included as special
cases. The argument udpeSU(N) is the usual product of group elements uf along
the boundary dp of p.

For the purpose of generality we use (3) as a starting point. After the introduction
of bosonic spίnorial variables all integrations over gauge group variables can be
performed exactly. If we are able to sum over R for certain given functions fR(β\
we can study the reformulated Yang-Mills theory both for β-+Q (the strong
coupling limit) as for β -> oo (the weak coupling limit). Without this summation over
R the reformulated Yang-Mills theory can only be studied in the strong coupling
domain. Since all integrations in the strong coupling expansion are now Gaussian,
they are elementary. Vector coupling coefficients of SU(Λ/) do not arise. This is of
particular interest, since for N ̂  3 analytic expressions for vector coupling
coefficients are not known.

Of course one cannot expect that a complicated invariant contraction of SU(ΛΓ)
vector coupling coefficients can be replaced by an elementary integral, but it is
certainly possible to replace it by several or many such integrals. We can only
hope that up to a certain order the number of terms generated is small enough
to be listed up by a computer. We can say that our result combines the algebra
of the group with the combinatorics of the lattice and admits a unified graphical
approach to strong coupling expansions.

The method of integrating over the group SU(JV) can be extended to groups
U(N) as well. It can then be compared with the technique developed in [5] which
does not yield vector coupling coefficients of U(N) either. Our method sums up
contributions to one irreducible representation which leads to a considerable
reduction of the number of terms.

We introduce Bargmann spaces for SU(2) and SU(3) in Sect. 2. Whereas each
representation of SU(2) is self-conjugate, representations of SU(3) occur in conjugate
pairs in general. Some relevant properties of the conjugation matrix are derived
in Sect. 3. Using the delta function kernels for the Bargmann spaces, we integrate
tensor products of representation operators T* over the group SU(JV) in Sect. 3.
As a final tool we derive the projection kernels that allow us to contract the
operators T*l to characters )f(udp) in Sect. 5. Section 6 is devoted to some
miscellaneous remarks on strong coupling expansions and their generating
functions.

Notations are the same as in [6], those for links and plaquettes of the lattice
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A and the cells of the dual lattice A* are again compiled in an Appendix.

2. The Bargmann Spaces

The Bargmann space for SU(2) [1] is a Hubert space Hμ(C2) of entire analytic
functions over C2 with a Gaussian measure μ

Zl}eC\zί = xί + iyi,i = l,2, (4)
Z2/

dμ2(z) = π-2 Π Idxtdyte-*-*!, (5)
i = l , 2

and a scalar product

(f,g)μ=Sdμ2(z)f(z)g(z). (6)

We define a unitary representation of SU(2) in Hμ(C2) by the definition

TJ(z)=f(uτz),ueSυ(2). (7)

The irreducible unitary representation R=jJe^Z+ of SU(2) is carried by a
subspace Qj of Hμ(C2) consisting of analytic homogeneous polynomials of degree
2j. The standard basis in Qj consists of the polynomials

J + mzj-m

»- -Ji-ίi m
The projection /->/|β/ of any vector onto its component in Qj is established by
a kernel

f \ Q j ( z ) = $dμ2(z')Q\z,z')f(z') (9)

with

Qj(z,z')= Σ υi
m=-j

= (^)!(Z'Z")2J (10)

Here we denote

z z'= Σ ZiZ'i (11)
i = l , 2

The linear functional δz

is bounded and can consequently be given as a kernel

z'). (13)

This is the basic property of the Bargmann spaces which will be exploited in this
article. We obtain immediately
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so that Hμ(C2) decomposes into the orthogonal direct sum

Hμ(C2)= Σ Θβ; (15)

The Bargmann space for SU(3) is a similar space Hμ(C6) of entire analytic
functions over C6 with a Gaussian measure μ

"Λ /*ί
(z,z')eC6, z= I z2 , z '= [ z ' 2 \ , z; = x,. + iy, i = l,2,3 (16)

and

dμ6(z,z') = π~6 Π [dx.Λj'ί*"3" -'•dxίdtt'έΓ3" ~y' ] (17)
ι=l ,2,3

and a scalar product similar to (6). A unitary representation of SU(3) is defined in
Hμ(C6) analogously to (7).

Define

3

Wi(z,zO= X ZijkZjZ'k (18)
M = ι

Then all homogeneous polynomials of the type

(19)
i = 1 ι = l

span a subspace Q(λ μ) of //^(C6) that carries the irreducible unitary representation
R = (λ,μ)of SU(3) [7].

The set of functions (19) is linearly dependent due to

X ziwi(z,z') = Q. (20)
i = l

An orthonormal basis system can be extracted from it by the method of Gelfand
and Zetlin [8], [9]. In this work we rely only on the existence of such a basis.

Denote a state of the Gelfand-Zetlin basis for the representation R by

We may then introduce the kernel for the projection operator onto the subspace

w(z,z')) (21)
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However, we are now forced to compute this kernel by other arguments.
Homogeneity and invariance suggest the ansatz \_R = (Λ, μ)]

β*(C, w(C, ζ');z9 w(z, z')) = N*(C z-)>(C, ζ') w(z,z')r. (22)

The normalization constant results from arguments presented below

If we exchange the role of z,z' in (21) we obtain a projection operator on a
different subspace (if λ£Q) of Hμ(Cβ). In fact the space Hμ(C6) contains the
representation "3" of SU(3) (i.e., λ = l,μ = 0) twice and "3" (i.e., λ = 0,μ = 1) only
once. The sum of β* over R cannot yield the δ kernel of Hμ(C6)9 which by direct
generalization of (13) is

δζiζ,(z,z') = exp(C z + ζ' z'). (24)

Instead we consider the "generating function" for the kernels QR

We multiply one such function by a conjugate one and integrate

Jdμ6(C, OexP {ζ'Z + W(C> Γ)'w}exP {T'zo + W(C> C')'w0}

= (1 — w0 w) ~ 2 exp ——-—-— î . (26)

This integral converges whenever w0,w are small enough. Both z,w and z0,w0

have been considered as independent variables.
If we set

w0 = w(z0, zό), or w = w(z, z'\

then the second term in the exponent vanishes. Assume that w0 is expressed in
this fashion but that w is independent of z. In this case we expand both sides of
(26) in powers and obtain by homogeneity arguments

[λ lμ \λ' \μ'!] ~ 1 Jdμ6(C, O(ί'^)λ(w(C, C')'w)μ(Γ'zo)Λ (W(C5 CO ' wo)μ

Any polynomial /(C»C')e6α,μ) can ^e obtained from

by fixing the values for z, w and taking linear combinations (z, w are independent!).
Thus we obtain from (27)

C, C') w(z, z')f -/(z, z'). (28)
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This proves (22), (23).
It is a typical complication of SU(3) compared with SU(2) that the two functions

(24) and (25) are different!

3. Conjugate Representations

If Tu is a representation then

Te

u = Tu-l.τ (29)

is called the "conjugate" representation. For SU(2) we have

u~^'τ = εuε~l

e = ύτ2eSU(2) (30)

so that both representations are equivalent. In the basis (8) we have in fact

DL'(U) = (VLTA\ (31)

Wmm,(u-^τ} = (- irm+j-m'Dj-m,-m'M. (32)

In the case of SU(3) and relying on the basis (19) we define a substitution C

(33)
c

and introduce the C matrix with respect to the Gelfand-Zetlin basis

ι£(z, w(z, z')) -> t£(w(z, z'), z) = X t#ίz, w(z, z'))C?β. (34)
α'

By inspection of Eq. (19) we obtain

Rc = (λc,μc\λc = μ,μc = λ. (35)

By definition of the Gelfand-Zetlin basis [8], [9] we have reality of CR

(C«y = (CR)τ, (36)

and by repeated application we get

CRe = (C*Γl. (37)
If we introduce matrix elements

D*.(«) = (tί,TBιί,)ίl, (38)
we have in addition (in matrix notation)

CRDR(u-1>τ) = DRc(u)CR. (39)
Using

DRAu) = DR

Λ(uτ] (40)

and applying (39) once for u and once for uτ we can argue by means of Schur's
lemma that

(CRΓ1=ΛCR)T. (41)
The constant y* turns out below to be

^
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Besides the invariant sum over the basis 01 tne space QR we have also to deal
with invariant sums of the kind

Σ ι£>, w(z,z'))C?,βι£(C, w(C, O) = Σ"? W^,*'),Φ*(C, w(ζ,C'))
α,α' α

= ΛΓ«(C W(z,z'))>(C,O zr. (43)

On the other hand we may use (41) and get

Comparison of (44) and (43) yields

NRC

(45)
N*

Inserting (23) gives (42).

4. Integration over the Group

From the introduction we know that for each link { = (x,p\ p — 1,2,..., D1), we have
an integration

over the group. Each plaquette having this link on its boundary contributes a
factor D^,(u)\ more precisely, we have the integral

ldu(x>p} π />£αγ
>σ)K,p)) Π ££«rτ-'p>τ)(wΰ,U (46)

σ^p τ^P

In the second product we use (39) and (40) to transform the factors into

DR(χ-ϊ>p.τ)(μ-ι>T) = (CΛ^-ΐ'p τ)D^-i'p'τ)(w(JC>p))CKu~^p'τ))αiα . (47)

We know already from [6] that for SU(2)

with

(49)

For SU(3) we have similarly

DR

m,(u) = (υR, THυ$)μ = $dμ6(ζ, ζ')dμ6(z, z')vR(ζ, w(ζ, ζ'))

tt;C',z>f (z, w(z,z')) (50)

1 For the notations of links and plaquettes, see the Appendix
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with

ζ,zeC3. (51)

Both kernels in the integrals (48) and (50) are obtained by operating with Tu on
the left arguments of the delta functions (13) and (24), respectively.

Thus we are left with integrals of the type

Lκ „({£(*)}, MO}) = Sduexp\ f (uτζ(i)) W) } (52)
U=l J

with K = 2D - 2 for SU(2) and K = 2(2D - 2) for SU(3). For SU(2) the result was
already reported in [6].

Σ - " 2 V V » w j ? ι~wj / / r o \

n = Q n\(n 4-1)!

with

A:

For SU(3) the result is similar

(54)
CUMO, α/K/r

with

K ζ(j) z(ϊ), C(0*^0% C(
* — 6" Σ co)'z(0? ζ(j)'z(j\ c(/)'z(^) (56)

The expression for general SU(ΛΓ) can easily be guessed at, the first term in the
series for LKN is always one.

The result for SU(2), (53), (54) has been derived by explicitly performing the
integrations [6]. For SU(3) the integration proceeds as follows. Each matrix
weSU(3) up to a set of Haar measure zero can be decomposed into

u = uξv, (57)

/ I 0 0 \
v= 0 α β )eSU(2) (58)

\ 0 - / f ά /

so that uξ boosts the vector

(59)



Boson Representation for Gauge Theories 463

into

(60)
i —

^1implying ξe^5. It is easy to see that the Haar measure on SU(3) is the product
of the Haar measure on SU(2) with the normalized uniform measure on 5^5

du = dω(ξ)dυ, (61)

where

1
(62)

and

(63)
V i = 1

Denote

««= K2&2C2 εSU(3), (64)

where bf, ct are functions of £ but not of v due to

3

£•= Σ εoΛ c/c (65)
M=l

Now integrate first over v9 using the known result for SU(2). Ω2 (54) is obtained
in the form [using (65)]

Ω2 = A ξ. (66)

In addition we are left with exponential factors

Both A and B are certain functions of ζ(i), z(i). Integration over the measure (63)
yields

« U B)

,tΌ»!(n + !)!(» + 2)!' l '

This method of integration can be used for an inductive derivation of the
integral LKN for arbitrary SU(iV).

5. Evaluation of Traces

Though we could well use the original lattice we prefer to rely on the dual lattice
/I* to formulate the evaluation of traces. It simplifies our language. The combinato-
rics of these contractions has been disentangled in [6]. We follow the procedure
developed in that article. In the figure we project a D cell of Λ* on the pσ coordinate
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x - p - σ

x-p

Case c Case d

Fig. 1. The [x'] D cell projected onto the pσ plane. (D — 1) cells appear as lines, (D — 2) cells as
points. The plaquettes of A encircling the (D-2) cells are drawn

plane and draw the plaquettes in the pσ plane of A along which the traces have
to be performed. Each plaquette encircles a(D — 2} cell of A* which, in the figure,
appears as a point.

Consider a (D — 1) cell [x',p] of /I*. On its boundary it has the (D — 2) cells
[x',p, σ], σ^p, and [x'+_σ,p,σ], σ =£• p. To each (D — 1) cell belongs one "link
kernel" LK>N, K = (N- l)(2D - 2\ (52) [for SU(N)]. For each boundary (D - 2) cell
of [x', p] LKN depends on an (N — l)-plet of pairs of variables ζ, z. We label these
variables by

ίf{x',p,σ} [x',p,σ]\ ir>[x',p,σ] 7'[x',p,σ]\
^[x',p] >Z[x',p} M^tx'.p] >z[x',p] Λ

and
(rfx1+s,ρ,σ} 7[x'+σ>p,σ]\
^[x',p] > Z[x',p] Λ •

Thus LKN depends on 4(N — 1)(D — 1) arguments ranging over CN. We may
graphically represent these variables by pairs of bundles of TV — 1 lines each, one
a z bundle and the other a ζ bundle, connecting the centre of the (D — 1) cell with
the centre of any of its (D — 2) cells on the boundary.
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A (D - 2) cell is common to the boundaries of four (D - 1) cells. Thus four
pairs of bundles meet on one (D — 2) cell. Evaluating the traces connects these
bundles in a certain fashion. We study first the case of SU(2) where each bundle
consists of a single line. We abbreviate the label of a (D — 2) cell by p (as for a
plaquette).

case a. p = [x',p, σ]

Σ ̂ (v.σ])̂ («£ tp])=>Σ (- ̂ "-m

), z(l) = zfx>], z(2) = zfx>] (68)

with
w(z),. = χ6 i Λ,ε1 2=+l. (69)

j
Case b. p = [x1 +_p, p, σ]

Σ ̂ ("fΛp.p])^"^,) =>Σ ί#
m m

ίf,,.,,. (70)

Case c. p = [x' -f σ, p, σ]

Σ βJfm(V>P])^,.("[χ + a,ff])^Σ^
m w

*(l) = zf*>,> f(2) = Cfc.^]. (71)

Case d. p = [x' + p + σ, p, σ]

Σ ̂ ("ΰ-W^iOv+P>P]) => Σ (- JV'

Cfx-+_p,p]. (72)

Thus at one (D - 2) cell p = [x',p,σ] we have contractions with the following
"plaquette kernel" Pft:

e,F

(73)

In the case of SU(3) the situation is very similar and we obtain the plaquette
kernel P " :
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• δ^(w(Cfχ'-2,Pl,C^-a,Pl), Cf,.-e,p];
C& -,,σ], w(Cf»' -̂ ], C£ -*.,])) (74)

With the reduction obtained so far we can write the partition function as

[ιΣdim^
(RP

) (75)
f

for SU(3), say.
The gauge in variance of the original Yang- Mills theory has been fully

preserved. In other words, the number of superfluous field variables has not been
reduced. In fact, a gauge transformation

entails

£^p]->v-Λ,Pi (77)

and similarly for z', £', etc. Both the plaquette kernels and the link kernels are
invariant under the gauge transformation (77).

6. Remarks

In the case of SU(2) we can perform half of the integrations in (75) by means of
an auxiliary integration as follows. We make use of

This leads to the replacement of

(78)
o+

4

π
0+ ι = l

Z[x,p]) ' τ2Z[x'-p,σ]'ί[x',p] " " τ3Z[x'-σ,p]'ί[x',σ]

The exponentials are delta functions [see Eq. (13)]. The integration over these
delta functions introduces £ into the arguments of the link kernels. It can easily
be shown that the integration over appropriately chosen remaining variables ζ, z
converges absolutely for any finite lattice whenever

|τf I ̂  e for some ε > 0 and all p, i. (80)

There results then an analytic function G({τ}) which is holomorphic around zero
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and whose Taylor expansion yields the strong coupling expansion of Z. This
"generating function" G({τ}) was first introduced in [6].

In order to study the weak coupling domain of SU(2) Yang-Mills theories
one can sum the character expansion. Denote

τ p = Π τ f , (81)
i = l

and sum

00

(82)

For standard forms of actions such as Wilson's [3] or the generalized Villian
action [4], Θ(τ,β) is entirely analytic in τ"1. We may modify the definition (82) by
adding irrelevant holomorphic functions that vanish at τ = 0, e.g.,

oo

9(τ,β) = Σ (?/ + W2J~ τ 2 J + 2 ) f j ( β ) . (83)

For the Wilson action this sum yields

g (τ9β) = (l—τ2)e(ll2}lβ(τ+τ~l) (84)

In that case we obtain

Γ 4

z = f Π Π
G also determines the dynamics in the weak coupling domain.

For SU(3) the kernel (25)

exp [τζ z + ωw(C, ζ')-w(z, z') ] (86)

can be used for an auxiliary integration still analogous to (79). However, this does
not render the integrations trivial, it increases the polynomial order of Ω3 by the
integration, and analyticity of the generating function G({τ,ω}) is doubtful.
Nevertheless G({τ, ω}) still exists as a formal power series connected with the strong
coupling expansion.

Finally we mention how the transition to the boson operator formalism is
achieved from (75). This can be formulated rigorously for the strong coupling
expansion for which each order is a polynomial expression in the variables £J,
zp

g. In each polynomial expression let all holomorphic factors appear to the right
of all antiholomorphic factors. Then replace

ζ?,z? by bς+,aξ +

C?,z! by ί£α?,

each of which is an N-plet of bosonic creation or annihilation operators. Finally
replace the integration by taking the standard Fock space vacuum expectation
value.



468 W. Rϋhl

Appendix

Notations for the lattice A and its dual Λ*. The lattice A consists of sites

x = n1 1 + n2 2 + n33 + . . . + nDD.

A link starting at x and ending at x +_ρ is denoted by (x, p). A plaquette spanned
by two links (x,p\ (x,σ\ p ± σ, is denoted by (x,p,σ) or (x,σ,p). The dual lattice
Λ* has the same structure (hypercubic) as Λ9 denote its sites by xl Its links,
plaquettes, etc., may be denoted in the same fashion as for A. However, for our
purposes another notation is more practical. We denote a D cell spanned by the
links (x',p), all p, by [x']; a (D - 1) cell spanned by the links (x',p), p^σ, by
[xt σ] a (D - 2) cell spanned by the links (x',τ), τ^p,τ^σ,by [x;,p,σ] or [x>,p].

The duality transformation is a one-to-one map of A on /I* so that

and

sites x<->D cells [x'],

links fop) <->(/) - 1) cells [x' +β,p],

plaquettes (x,p,σ)«->φ-2) cells [x' + p + σ,p,σ].

These objects of /I are orthogonal to their images in /I* so that the centre of the
object coincides with the centre of its image.
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